🛞 SRI CHAITANYA EDUCATIONAL INSTITUTIONS,INDIA.

A.P,TELANGANA,KARNATAKA,TAMILNADU,MAHARASHTRA,DELHI,RANCHI,CHANDIGARH SEC : SR ELITE, SR AIIMS S60 & SR NEET MPL DATE: 22-01-2019

NEET PART TEST-4

Max. Marks : 720

INSTRUCTIONS TO CANDIDATES

- 1. The Model **NEET- 2019** is of **3 Hrs** duration.
- 2. The question paper for NEET-2019 consists of 180 questions comprising 45 questions in Botany, 45 in Zoology, 45 in Physics and 45 in Chemistry for NEET.
- 3. All questions are of objective type (Multiple choices only)
- 4. Each question carries four marks.
- 5. Negative marking: one mark will be deducted for every wrongly answered question.
- 6. Total Marks 720.
- 7. The candidates are prohibited from carrying any paper to the examination hall except **HALL TICKET**.
- 8. No Calculators, Mini-Cards, Watches with Calculators, Pager, Cell Phone, Slide rules or outer aids to calculation will be allowed in the examination hall.
- 9. **Use Blue/Black Ball Point Pen only** to darken the appropriate circle. Answers marked with pencil would not be evaluated.

PART TEST-4 SYLLABUS:

BOTANY : Cell: The unit of life, Bio molecules, Cell cycle and cell division, Anatomy of flowering plants, Biotechnology principles & process, Biotechnology and its applications, Microbes in Human Welfare, Strategies for Enhancement in Food production, Ecosystem & Soil.

ZOOLOGY: Animal tissues, Cockroach, Organisms and Populations (excluding soil), Ecosystem (14.1 to 14.5), Biodiversity and Conservation, Environmental Issues

PHYSICS : Static electricity, Current electricity, Moving charges and Magnetism, Magnetism and matter, Electromagnetic induction, AC circuits, EM waves & Mechanical properties of solids and fluids

CHEMISTRY : IA to VIIA , zero group elements , Polymers , Chemistry in every day life and Environmental chemistry

Sri Chaitanya

(4) Gases			I, C - I, D - IV
× /			I, C - I, D - IV
			V, C - I, D - II
		(1) A - I, B - II,	C - III, D - IV
		D) Thylakoids	IV) Flat membranous sacs in stroma
•		C) Mesosomes	Mitochondria
			III) Infolding in
C C		B) Cisternae	Golgi apparatus
			II) Disc-shaped sacs in
		A) Cristae	I) Infoldings of plasma membrane in Bacteria
•		List – I	List – II
	10.	Match the follow:	ing
		(4) Alanine	
		(3) Adenine	
prokaryotic cell		(2) Cholesterol	
Pick the <u>WRONG</u> <u>MATCH</u> with regard to		(1) Lecithin	
(4) Mitochondria		except	_ 0
(3) Mesosomes	9.	• •	olecules possess nitrogen
(2) Golgi complex		(4) Secondary n	
(1) Endoplasmic reticulum		(3) Lipo protein	
cell are components of			
Vesicles, tubules & lamellae in a prokaryotic			
(4) Plasma membrane	8.		
(3) Cartilage, bones & ligaments		Č,	
(2) Fluid stroma of chloroplast			plasmic reticulum
(1) Cell wall of plants			
world of located in		synthesis?	
			actively involved in protein
	7.		embrane bound organelle
· ·			-
· · ·	0.		*
New cells are formed pre existing cells was	6.	Galactans & man	nans are present in/as
	 explained by (1) Matthias Scheleiden (2) Theodore Schwann (3) Anton von Leeuwenhock (4) Rudolf Virchow The most abundant protein of a biological world of located in (1) Cell wall of plants (2) Fluid stroma of chloroplast (3) Cartilage, bones & ligaments (4) Plasma membrane Vesicles, tubules & lamellae in a prokaryotic cell are components of (1) Endoplasmic reticulum (2) Golgi complex (3) Mesosomes (4) Mitochondria Pick the <u>WRONG MATCH</u> with regard to prokaryotic cell (1) Cell envelope - Glycocalyx, Cell wall & Plasma membrane (2) Surface structures - Flagella, Cilia & Pseudopodia (3) Inclusion bodies - Phosphate granules, cyanophyceae granules & Glycogen granules (4) Flagellum - Filament, Hook & Basal body Which is "<u>NOT</u>" by passive transport across the membrane? (2) Water (3) Mineral ions 	(1)Matthias Scheleiden(2)Theodore Schwann(3)Anton von Leeuwenhock(4)Rudolf VirchowThe most abundant protein of a biological world of located in7.(1)Cell wall of plants(2)Fluid stroma of chloroplast(3)Cartilage, bones & ligaments(4)Plasma membraneVesicles, tubules & lamellae in a prokaryotic cell are components of(1)Endoplasmic reticulum(2)Golgi complex(3)Mesosomes(4)MitochondriaPick theWRONG MATCH with regard to prokaryotic cell(1)Cell envelope - Glycocalyx, Cell wall 	explained by(1) Reserve foo(1) Matthias Scheleiden(2) Algal cell w(2) Theodore Schwann(3) Reserve foo(3) Anton von Leeuwenhock(4) Rudolf Virchow(4) Rudolf Virchow7. What is the m observed in cells synthesis?(1) Cell wall of plants(2) Centrosome(2) Fluid stroma of chloroplast(3) Rough endo(3) Cartilage, bones & ligaments(4) Plasma membrane(4) Plasma membrane8. Chromatin is cherVesicles, tubules & lamellae in a prokaryotic cell are components of8. Chromatin is cher(1) Endoplasmic reticulum(2) Glyco protein (3) Mesosomes(4) Mitochondria9. All these biom exceptPick the WRONG MATCH with regard to prokaryotic cell9. All these biom except(1) Cell envelope - Glycocalyx, Cell wall & Plasma membrane(1) Lecithin (2) Cholesterol (3) Adenine (4) Alanine(2) Surface structures - Flagella, Cilia & Pseudopodia10. Match the follow: List - I(3) Inclusion bodies - Phosphate granules, cyanophyceae granules & Glycogen granules10. Match the follow: List - I(4) Flagellum - Filament, Hook & Basal body0) Thylakoids(1) Neutral solutes(1) A - I, B - II (3) A - II, B - II(2) Water(3) A - II, B - II (3) A - II, B - II(3) Mineral ions(4) A - A III, B - II

11. Which one among the following is a homo (2)Fibers **Sclereids** polymer? (3)(1) Glycogen (4) Cork (2)DNA 18. Mature sieve tube element possess all except (3) GLUT-4 (1) Nucleus (4) Morphine (2)Sieve plate 12. Nucleic acid with catalytic power is Vacuole (3) (1)Ribosome (4) Cytoplasm Hydrolases All three types of simple tissues are present (2)19. in the anatomy of (3) Lyases (1) Dicot root (4) Ribozyme 13. Which one exemplify a coenzyme? (2)Monocot root (1) Proteins (3) Dicot stem Minerals (2)(4) Monocot stem 20. (3) Haem Secondary cortex is observed in anatomy of (4) NAD Grasses (1)14. Syncytium is due to the absence of (2)Herbs (1) Karyokinesis Mosses (3) (2) Cytokinesis Trees (4) (3) Free nuclear divisions 21. Which one of the following is NOT a disease (4) DNA replication resistant variety of wheat? 15. Recombinase activity is seen during (1)Kalyan sona (1)Prophase - I (2)Himgiri (3) Sonalika (2)Metaphase - I (3) Anaphase - I (4) Parbhani kranti Telophase - I 22. Hybrid protoplasts are formed during (4) 16. Growth in dicots is contributed by all types (1)Hybridisation / crossing of meristems except Somatic hybridization (2)(1) Apical meristems (3) Mutation breeding Intercalary meristems Plant introduction (2)(4) (3) Lateral meristems 23. Viruses can be used as / in **Biofertilizers** (4) Secondary meristems (1)17. Gritty nature of pear, guava & sapota fruits is (2)**Biogas** plants due to Sewage treatment (3)(1) Collocytes Bio control agents (4)

Sri Chaitanya

	 Grit Flocs and organic impurities 		fragments with both ends sticky (1) 6
	(3) Biogas		(2) 4 (2) 7
	(4) Anaerobes		(3) Zero
25.	Yeast help in the production of all except	21	(4) 5 Ecological quale directly dependent on light
	(1) Curd	31.	Ecological cycle directly dependent on light is
	(2) Bread		(1) Sulphur cycle
	(3) Statins		(1) Suphu cycle(2) Phosphorous cycle
	(4) Wine		(2) Thospholous cycle(3) Carbon cycle
26.	Which among the following function as		(3) Carbon cycle(4) Nitrogen cycle
	cellular defense mechanism in bacteria?	32.	VAM is
	(1) Restriction enzymes	52.	(1) Nitrogen fixing fungus
	(2) Antibody production		(2) Biofertiliser fungus
	(3) RNA interference		(2) Biocotrol bacterium
	(4) PCR		(4) Biopesticide fungus
27.	Breeding plants with high & improved levels	33.	Genetically engineered rice is
	of nutrients is named as		(1) Jaya
	(1) Biomagnification		(2) Basmati
	(2) Biofortification		(3) Golden rice
	(3) Biopatency		(4) $IR - 8$
	(4) Bioenergies	34.	What is true regarding <i>Cry</i> protein ?
28.	Blue white screening of transformed cells is		(1) It is produced by <i>cry</i> gene of <i>bacillus</i>
	based on inactivation of		thurigenesis
	(1) Antibiotics		(2) It is a insoluble inactive crystalline
	(2) β - galactosidase enzyme		protein with in bacteria
	(3) <i>Ori</i>		(3) It turn active in the gut of insects due to
	(4) Ligase enzyme		alkaline P ^H
29.	Which of the following ecosystem service		(4) All the above
	would carry the heaviest price tag?	35.	Biolistic gun is used for
	(1) Nutrient cycling		(1) Disarming pathogen vector
	(2) Soil formation		(2) Construction of rDNA
	(3) Climate regulation		(3) DNA fingerprinting
	(4) Recreation		(4) Transformation of plant cells
Sri	Chaitanya Pao	e 4	

36.	EcoR1 is synthesized on		2) 5^1 GTCTTC 3^1
	(1) 70 S ribosomes		3) 5^1 GAATTC 3^1
	(2) 80 S ribosomes		4) 3^1 GAATTC 5^1
	(3) DNA template	43.	A single stranded DNA / RNA segment with
	(4) Eukaryotic cell cytoplasm	43.	radioactivity helpful in selection of desired
37.	GEAC was established by		gene or transformed cells is
	(1) India		•
	(2) USA		 Plasmid Proho
	(3) United nations		(2) Probe(2) Chimaria DNIA
	(4) WHO		(3) Chimeric DNA
8.	Transgenic rape seed (Brassica napus) is		(4) Donor gene
	(1) Herbicide tolerant	44.	Flavr savr variety of tomato is
	(2) Pest resistant		(1) Bruise resistant
	(3) Male sterile		(2) Delayed ripening
	(4) Early maturing		(3) Transgenic variety
9.	Meloidogyne cause		(4) All the above
	(1) Root rot in cotton	45.	Rennet is used in/as
	(2) Root knot in tobacco		(1) Sewage treatment
	(3) Soft rot in potato		(2) Cheese production
	(4) Wilt in tomato		(3) Wine production
0.	Cry protein crystals possess		(4) Immuno suppressive agent
	(1) Toxic insecticidal properties	46.	Which of the following do not represent
	(2) Toxic bactericidal properties		the mouthparts of cockroach?
	(3) Anti viral properties		(1) Mandibles
	(4) Anti nematode properties		(2) Antennae
1.	Restriction enzymes, polymerase enzymes,		(3) Maxillae
	ligases, vectors and the host organisms are		(4) Labrum and labium
	called of recombinant DNA	47	
	technology	47.	Which of the following is <i>not</i> an adaptation in <i>Opuntia</i> to conserve water?
	1) Enzymes		(1) Sunken stomata
	2) Processes		
	3) PCR		(2) Scotoactive stomata
	4) Tools		(3) C3 photosynthesis
12.	<i>Eco</i> RI recognize the palindrome namely		(4) Modification of leaves into spines
	1) 5^1 GTTTTC 3^1		
Sri	Chaitanya	l 1 e 5	

48. Which is the most species-rich taxon among the following?

- (1) Algae
- (2) Angiosperms
- (3) Mosses
- (4) Ferns

49. Choose the correctly matched pair.

- (1) Columnar epithelium PCT of the nephron
- (2) Ciliated epithelium mucosa of the stomach
- (3) Compound epithelium Bowman's capsule
- (4) Squamous epithelium alveoli of the lungs
- 50. Vertical distribution of different species occupying different levels is called
 - (1) Stratification
 - (2) Succession
 - (3) Trophic structure
 - (4) Productivity
- 51. To protect and improve the quality of environment, the Government of India passed the Environment (Protection) Act in the year
 - (1) 1986
 - (2) 1953
 - (3) 1923
 - (4) 1968
- 52. Female cockroach can be distinguished from male cockroach by the presence of
 - (1) Wings that extend beyond the tip of abdomen
 - (2) Anal styles
 - (3) Boat-shaped 7th sternum in the abdomen
 - (4) Anal cerci

- 53. Lichens represent an example of
 - (1) Commensalism
 - (2) Mutualism
 - (3) Amensalism
 - (4) Parasitism
- 54. How many biodiversity hotspots cover our country's exceptionally high biodiversity regions?
 - (1) Two
 - (2) Four
 - (3) Three
 - (4) Five
- 55. The mass of living material at a particular time in a trophic level is called the
 - (1) Standing state
 - (2) Productivity
 - (3) Carrying capacity
 - (4) Standing crop
- 56. Primary pollutants responsible for the formation of acid rains are
 - (1) SO_2 and NO_X
 - (2) CO_2 and CO
 - (3) CO₂ and NO_X
 - (4) SO_2 and O_3
- 57. Select the *incorrect* statement from the ones given below with respect to *Periplaneta americana*.
 - (1) Blood from the pericardial sinus enters the heart through the ostia.
 - (2) Mechanical digestion occurs only in the preoral cavity
 - (3) Sclerites are joined to one another by arthrodial membrane.
 - (4) The development is paurometabolous (through nymphal stages).

Sri Chaitanya

- 58. In a growing population,
 - (1) Reproductive individuals are less than the post-reproductive individuals
 - (2) Pre-reproductive individuals are less than the reproductive individuals
 - (3) Reproductive and pre-reproductive individuals are equal in number
 - (4) Pre-reproductive individuals are more than the reproductive individuals
- 59. The blood-brain barrier protects the brain from circulating pathogens. Which type of cell junctions between endothelial cells restrict free movement of substances from the blood into the brain?
 - (1) Gap junctions
 - (2) Desmosomes
 - (3) Tight junctions
 - (4) Hemidesmosomes
- 60. Which of the following IUCN red list categories are collectively described as 'Threatened'?
 - (1) Critically endangered, Endangered, Near threatened
 - (2) Vulnerable, Data deficient, Least concern
 - (3) Extinct in the wild, Critically endangered, Not evaluated
 - (4) Critically endangered, Endangered, Vulnerable
- 61. The term ecosystem was coined by
 - (1) Ernst Haeckel
 - (2) August Weismann
 - (3) Arthur Tansley
 - (4) Charles Elton
- Sri Chaitanya

- 62. Degradation of ozone in stratosphere is catalyzed by
 - (1) Argon
 - (2) Chlorine
 - (3) Hydrogen
 - (4) Sulphur
- 63. Which of the following is true about cockroach?
 - (1) Ommatidia 200
 - (2) Spiracles 10 pairs
 - (3) Ovarioles 16 pairs
 - (4) Heart chambers 10
- 64. Select the correct statement about neuroglia.
 - (1) They are the excitable cells of the neural system.
 - (2) They cannot undergo mitosis.
 - (3) Action potentials swiftly travel along their plasma membrane.
 - (4) They make up more than one-half the volume of neural tissue in our body.
- 65. National reptile of India is
 - (1) King cobra
 - (2) Indian gharial
 - (3) Monitor lizard
 - (4) Leatherback turtle
- 66. The rate of formation of new organic matter by the consumers of an ecosystem is termed
 - (1) Secondary productivity
 - (2) Gross primary productivity
 - (3) Biotic potential
 - (4) Net primary productivity

67		e increase in concentration of the cicant at successive trophic levels is	72.	Whi	
	ref	erred to as			
	(1)	Eutrophication		(1)	Im
	(2)	Bioremediation		(2)	Fra
	(3)	Biofortification		(3)	Ca
	(4)	Biomagnification		(4)	Hu
68	S. Ma	ijor excretory organs of cockroach are	73.	The	
	(1)	Hepatic caeca		con	
	(2)	Malpighian tubules		was	nei
	(3)	Utriculi majores		(1)	Fra
	(4)	Green glands		(2)	Mo
69		nich of the following is a correct match a type of tissue and its location?		(3) (4)	Ge Pol
	(1)	Transitional – Trachea epithelium	74.	Sele cocl	
	(2)	Dense regular – Tendon connective tissue		(1)	Pro cov
	(3)	Keratinized – Oesophagus epithelium		(2)	Yel str
	(4)	Hyaline cartilage – Ear pinna		(0)	hir
70		logistic growth curve, $\frac{dN}{dt}$ value is		(3)	Th col pla
	ma	iximum during		(\mathbf{A})	-
	(1)	Acceleration phase		(4)	Th gai
	(2)	Asymptote			lon
	(3)	Deceleration phase			
	(4)	Lag phase	75.	Oys	
71		nich scientist proposed 'Rivet popper		(1)	Sm off
		pothesis' related to biodiversity and osystems?		(2)	Sm off
	(1)	Alexander von Humboldt		(3)	La
	(2)	Paul Ehrlich		(A)	off
	(3)	David Tilman		(4)	Laı off
	(4)	Arthur Tansley			
Sı	ri Cha	Aitanya Pag	je 8		

- of the following is not a step ed in decomposition?
 - nmobilisation
 - agmentation
 - atabolism
 - umification
- Jnited Nations climatic change ence (COP-24) in the year 2018 ld in
 - ance
 - orocco
 - ermany
 - bland
- the correct statement about aches.
 - othoracic wings called tegmina over the hind wings when at rest.
 - ellow coloured filamentous ructures excrete urea through the ndgut.
 - haemolymph consists of ne lourless haemocytes and coloured asma.
 - ne nervous system consists of nine inglia joined by paired ngitudinal connectives.
- s produce a

- nall number large-sized of fspring
- nall number of small-sized fspring
- number large-sized rge of fspring
- rge small-sized number of fspring

76.	Threatened species are protected in their natural habitat in		(
	(1) Botanical gardens		(
	(2) Seed banks	82.	l v
	(3) Sacred groves		
	(4) Zoological parks		(
77.	Which ecosystem has the maximum biomass?		(
	(1) Pond ecosystem		(
	(2) Forest ecosystem	83.	I
	(3) Lake ecosystem		e
	(4) Grassland ecosystem		(
78.	Which of the following is a secondary pollutant in troposphere?		(
	(1) Carbon monoxide		(
	(2) Sulphur dioxide	0.4	(
	(3) Ozone	84.	١
	(4) Carbon dioxide		(
79.	Smooth muscle fibres are		(
	(1) Fusiform		(
	(2) Striated		(
	(3) Voluntary	85.]
	(4) Cylindrical		(
80.	In male cockroach, sperms are stored in		(
00.	(1) Spermathecae		(
	(2) Mushroom-shaped gland		(
	(3) Genital pouch	86.	1
	(4) Seminal vesicles		(
81.	Penicillin is an antibiotic that helps combat bacterial infections. The		(
	interaction between <i>Penicillium</i> and the		(
	bacterium exemplifies		(
	(1) Amensalism		(
	(2) Commensalism		
Sri	Chaitanya Pag	je 9	

- (3) Parasitism
- (4) Mutualism
- 82. Mass extinction of cichlid fishes in Lake Victoria was due to
 - (1) Overexploitation
 - (2) Habitat degradation
 - (3) Alien species invasion
 - (4) Environmental pollution
- 83. Each of the following occupy more than one trophic level in the same ecosystem, except
 - (1) Cockroach
 - (2) Sparrow
 - (3) Crow
 - (4) Deer
- 84. World Ozone Day is
 - (1) 16th October
 - (2) 16th September
 - (3) 16th December
 - (4) 16th November
- 85. The egg case of cockroach is
 - (1) Ootheca
 - (2) Spermatheca
 - (3) Ommatidium
 - (4) Spermatophore
- 86. Natality refers to
 - (1) Number of individuals leaving a habitat
 - (2) Birth rate
 - (3) Number of individuals entering a habitat
 - (4) Death rate

87. Gametes of threatened species are preserved in viable and fertile condition for long periods using liquid nitrogen at a temperature of

- (1) -80°C
- (2) -96°C
- (3) -196°C
- (4) -273°C
- 88. Which ecological pyramids are always upright?
 - (1) Pyramids of numbers
 - (2) Pyramids of biomass
 - (3) Pyramids of energy
 - (4) All ecological pyramids
- 89. Van Mahotsav is a festival of
 - (1) Planting trees in open areas
 - (2) Taking oath to protect trees
 - (3) Worshipping trees
 - (4) Conservation of sacred groves
- 90. If a population growing exponentially doubles in size in 4 years, what is the intrinsic rate of increase (r) of the population? $(\log_{10}e = 0.434)$
 - (1) 0.231
 - (2) 0.168
 - (3) 0.173
 - (4) 0.184
- 91. A point charge + Q is placed at the centroid of an equilateral triangle. When a second charge + Q is placed at a vertex of the triangle, the magnitude of the electrostatic force on the central charge is 8 N. The magnitude of the net force on the central charge when a third charge + Q is placed at another vertex of the triangle is
 - (1) zero

- (2) 4 N
- (3) $4\sqrt{2}$ N
- (4) 8 N
- 92. The electric potential in a region is given by $V = (2x^2-3y)$ volt where x and y are in meters. The electric field intensity at a point (0, 3m, 5m) is
 - (1) $-6\hat{i}$ N/C
 - (2) 3 j N/C
 - (3) $-3\hat{j}$ N/C
 - (4) Zero
- 93. A plane electromagnetic wave of frequency 50 MHz travels in free space along the positive x-direction. At a particular point in space and time, $\vec{E} = 6.3 \,\hat{j} \, V/m$. The corresponding magnetic field \vec{B} , at that point will be
 - (1) $18.9 \times 10^{-8} \text{ kT}$
 - (2) $6.3 \times 10^{-8} \text{ kT}$
 - (3) $2.1 \times 10^{-8} \text{ kT}$
 - (4) $18.9 \times 10^8 \text{ kT}$
- 94. The magnitude of electric field intensity at point (2,0,0)m due to a short dipole of dipole moment, $\vec{P} = \hat{i} + \sqrt{3}\hat{j}$ coulomb metre kept with its centre at origin is

NC⁻¹
$$\left(\text{Take} \frac{1}{4\pi\varepsilon_o} = K \right)$$

(1) $\frac{K\sqrt{13}}{8}$
(2) $\frac{K\sqrt{13}}{4}$
(3) $\frac{K\sqrt{7}}{8}$
(4) $\frac{K\sqrt{7}}{8}$

95. A current loop, having two circular arcs joined by two radial lines is shown in the figure. It carries a current of 10 A. The magnetic field at point O will be close to

- (1) $1.0 \times 10^{-5} \,\mathrm{T}$
- (2) $1.5 \times 10^{-5} \,\mathrm{T}$
- (3) $1.0 \times 10^{-7} \,\mathrm{T}$
- (4) $2 \times 10^{-7} \text{ T}$
- 96. Three concentric spherical metallic shells A,
 B and C of radii a, b and c (a < b < c) have charges Q, −2Q and Q respectively. If the shells A and C are at the same potential, correct relation between the radii a, b and c is

(1)
$$\frac{2ac}{a+c} = b$$

$$\begin{array}{c} (2) \\ a+b \end{array} = c \\ (2) \\ 2c \\ b \end{array}$$

(2)

$$(3) \quad \frac{1}{a-c} = b$$

$$(4) \quad c = a + b$$

97. Number of identical $8\mu F$ and 250V capacitors required to make a combination of $16\mu F$ and 1000 V are

- (1) 32
- (2) 8
- (3) 4
- (4) 2

98. In the given circuit all resistors are of R ohm each. If an additional zero resistance wire is connected between C and B, then the ratio of equivalent resistance between AB of original circuit to that of new circuit formed is

99. A paramagnetic material has 10^{28} atoms/m³. Its magnetic susceptibility at temperature 350 K is 2.4×10^{-4} . Its susceptibility at 300 K is:

(1)
$$3.6 \times 10^{-4}$$

- (2) 2.8×10^{-4}
- (3) 2.6×10^{-4}
- (4) 2.2×10^{-4}
- 100. In the circuit given below, the values of some resistances are known and some are unknown as shown. Find the equivalent resistance between points A and B

Sri Chaitanya

101. A non - viscous, incompressible costly fluid flows through a horizontal pipe of circular cross section. The initial diameter of the pipe is d_1 , the pipe then shrinks to diameter $d_2 < d_1$, expands to diameter $d_3 > d_1$ and then returns to its initial diameter d_1 before exiting to the atmosphere. A thief wants to drill a small hole so that some fluid leaks out of the pipe before the exit. He will be successful if he drills the hole at

- (1)
- (2)point B
- (3) point C
- (4) any point along the pipe
- 102. A galvanometer, whose resistance is 50 ohm, has 25 divisions in it. When a current of 4×10^{-4} A passes through it, its needle (pointer) deflects by one division. To use this galvanometer as a voltmeter of range 2.5 V, it should be connected to a resistance of:
 - (1) 6250 ohm in series
 - (2)250 ohm in parallel
 - 200 ohm in series (3)
 - (4) 6200 ohm in parallel
- 103. In the given circuit the ammeter reading is zero. What is the value of resistance R?

- $R = 10\Omega$ (2)
- $R = 0.1\Omega$ (3)

- (4) $R = 0.4 \Omega$
- 104. A galvanometer is used to measure the current delivered by a combination of two identical batteries each of 1.5V. When two cells are connected in series, the galvanometer shown in figure (1) records a current of 1A. When the two cells are in parallel, the current recorded bv galvanometer shown in figure (2) is 0.6A. What is the resistance of the galvanometer ?

- 105. In a potentiometer experiment, experimental cell used in secondary circuit is balanced against 240cm length of potentiometer wire. On shunting this experimental cell with a resistance of 2Ω , the balancing length becomes 120cm. The internal resistance of the cell is
 - (1) 4Ω
 - (2) 2Ω
 - 1Ω (3)
 - (4) 0.5Ω

Sri Chaitanya

- 106. A charged particle (charge q, mass m) has velocity V_o at origin in + X direction in a region where a uniform magnetic field B exists in - Z direction. Find the 'Y' coordinate of particle when it crosses Y axis
 - (1) $3mV_o/qB$
 - (2) $2mV_o/qB$
 - (3) $3mV_o/2qB$
 - (4) $4mV_o/qB$
- 107. The charge on a capacitor plate in a circuit, as a function of time, is shown in the figure: What is the value of current at t = 4 s ?

- (1) $3\mu A$
- (2) $2 \mu A$
- (3) zero
- (4) $1.5 \,\mu \,A$
- 108. A non conducting disc of radius 'R' and uniformly charged with charge 'Q' is rotating about its axis with angular frequency 'ω'. Find the magnetic moment of the sphere

(1) $\frac{QR^2\omega}{2}$ (2) $\frac{QR^2\omega}{3}$ (2) $QR^2\omega$

(3)
$$\frac{1}{4}$$

(4) $\frac{QR^2\alpha}{8}$

109. A parallel plate capacitor with plates of area $1m^2$ each, area at a separation of 0.1 m. If the electric field between the plates is 100 N/C, the magnitude of charge each plate is

Sri Chaitanya

$$\left(\text{Take } \varepsilon_0 = 8.85 \times 10^{-12} \, \frac{\text{C}^2}{\text{Nm}^2} \right)$$
(1) 7.85×10⁻¹⁰ C

- (2) $6.85 \times 10^{-10} \text{ C}$
- (3) $9.85 \times 10^{-10} \text{ C}$
- (4) $8.85 \times 10^{-10} \text{ C}$
- 110. An ideal battery of 4V and resistance R are connected in series in the primary circuit of a potentiometer of length 1 m and resistance 5Ω . The value of R, to give a potential difference of 5mV across 10cm of potentiometer wire, is
 - 490 Ω
 - (2) 480Ω
 - (3) 395Ω
 - (4) 495 Ω
- 111. For the circuit shown in figure, the direction and magnitude of the force on the loop PQR kept in uniform magnetic field is

- (1) zero
- (2) ILB out of the page
- (3) $\frac{1}{2}ILB$ into the page
- (4) ILB into the page
- 112. How much work will be done in increasing the diameter of a soap bubble kept in air from 2cm to 5cm ? Surface tension of soap solution is 3×10^{-2} Nm⁻¹
 - (1) $2.96 \times 10^{-4} J$
 - (2) $3.96 \times 10^{-4} J$
 - (3) $4.96 \times 10^{-4} J$
 - (4) $1.96 \times 10^{-4} J$

113. Determine the electric dipole moment of the system of three charges, placed on the vertices of an equilateral triangle, as shown in the figure:

(2) $\sqrt{3}ql$

(1)

- (3) $\sqrt{2}ql$
- (4) 2ql
- 114. A small conductor of length 2mm carrying a current of 2A is held parallel to an infinitely long conductor carrying current of 10A at a distance of 100 mm as shown. Find the force on small conductor

- (1) $6 \times 10^{-5} N$
- (2) $8 \times 10^{-8} N$
- (3) $8 \times 10^{-5} N$
- (4) $7 \times 10^{-5} N$
- 115. The length of an elastic string is a metre when the longitudinal tension is 4N and b metre when the longitudinal tension is 5N. The length of the string in metre when the longitudinal tension is 9 N is
 - (1) a-b
 - (2) 5b-4a
 - (3) $2b \frac{1}{4}a$
 - (4) 4a-3b

Sri Chaitanya

116. In the figure shown a current I_1 is established in the long straight wire AB. Another wire CD carrying current I_2 is placed in the plane of the paper. The line joining the ends of this wire is perpendicular to the wire AB. The resultant force on the wire CD is

(1) zero

- (2) towards negative x axis
- (3) towards positive y axis
- (4) towards negative y axis
- Dimensional formula of coefficient of viscosity (η) of a fluid is _____
 - (1) $\left[MLT^{-1} \right]$ (2) $\left[ML^{-1}T^{-1} \right]$ (3) $\left[ML^{2}T^{-1} \right]$
 - $(4) \quad \left[ML^{-1}T^{-1} \right]$

30 Ω

(4)

Page

118. In the experimental set up of metre bridge shown in the figure, the null point is obtained at a distance of 40 cm from A. If a 10Ω resistor is connected in series with R₁, the null point shifts by 10 cm. The resistance that should be connected in parallel with (R₁ + 10) Ω such that the null point shifts back to its initial position is

- 119. An emf of 1mV is induced in a coil when the current in it changes steadily from 2A to 4A in 0.1s. Find the self inductance of the coil
 - (1) $60 \mu H$
 - (2) 50 mH
 - (3) $44 \,\mu H$
 - (4) $50 \mu H$
- 120. A particle of mass m and charge q is in an electric and magnetic field given by $\vec{E} = 2\hat{i} + 3\hat{j}$; $\vec{B} = 4\hat{j} + 6\hat{k}$. The charged particle is shifted from the origin to the point P (x = 1; y = 1). The magnitude of the total work done by both the fields together (consider all values to be in S.I system) is
 - (1) (0.35) q
 - (2) (0.15) q
 - (3) (2.5) q
 - (4) 5q
- 121. A paramagnetic substance in the form of a cube with sides 1cm has been induced a magnetic dipole moment of 20×10^{-6} J/T when a magnetizing field of intensity of 60×10^{3} A/m is applied. Its magnetic susceptibility is
 - (1) 2.3×10^{-2}
 - (2) 3.3×10^{-2}
 - (3) 3.3×10^{-4}
 - (4) 4.3×10^{-2}
- 122. When magnetic flux through a coil is changed, the variation is induced current in the coil with time is as shown in graph. If resistance of coil is 10Ω , then the total change in flux of coil will be

- (3) 3 weber
- (4) 4 weber
- 123. In the figure shown below, effective capacitance of system between A and B is

124. The Wheatstone bridge shown in figure here, gets balanced when the carbon resistor used as R_1 has the colour code (Orange, Red, Brown). The resistors R_2 and R_4 are 80Ω and 40Ω , respectively. Assuming that the colour code for the carbon resistors gives their accurate values, the colour code for the carbon resistor, used as R_3 , would be:

- (1) Red, Green, Brown
- (2) Brown, Blue, Brown
- (3) Grey, Black, Brown
- (4) Brown, Blue, Black

125. R.m.s. value of current $i = 4\sin(\omega t + \pi/3)$

is (1)

Page 15 (2) 2A (3) $\frac{5}{\sqrt{2}}$ A (4) $2\sqrt{2}$ A

5A

- 126. The self induced emf of a coil is 25 volts. When the current in it is changed at uniform rate from 10 A to 25 A in 1s, the change in the energy of the inductance is:
 - (1) 437.5 J
 - (2) 637.5 J
 - (3) 740 J
 - (4) 540 J
- 127. A power transformer without any electric energy loss is used to step up an alternating emf of 220 volt to 11 kV to transmit 4.4 kW of power. If the primary coil has 1000 turns, what is the current in the secondary ?
 - (1) 4 A
 - (2) 0.4 A
 - (3) 0.004 A
 - (4) 0.2 A
- 128. Lenz's law is based on law of conservation of
 - (1) charge
 - (2) momentum
 - (3) angular momentum
 - (4) energy
- 129. A vessel contains oil (density $= 0.8 \text{ gm/cm}^3$) over mercury (density $= 13.6 \text{ gm/cm}^3$). A homogeneous sphere floats with half its volume immersed in mercury and the other half in oil. The density of the material of the sphere in gm/cm³ is
 - (1) 3.3
 - (2) 6.4
 - (3) 7.2
 - (4) 12.8
- 130. A wire of length L and radius r is rigidly fixed at one end. On stretching the other end of the wire with a force F, the increase in its length is l. If another wire of same material but of length 2L and radius 2r is stretched with a force of 2F, the increase in its length will be
 - (1) l
 - (2) 2*l*
 - (3) $\frac{l}{2}$
- Sri Chaitanya

- (4) $\frac{1}{4}$
- 131. The energy associated with electric field is (U_E) and with magnetic field is (U_B) for an electromagnetic wave in free space. Then:
 - (1) $U_E = \frac{U_B}{2}$
 - (2) $U_{\rm E} < U_{\rm B}$
 - (2) $U_E = U_B$ (3) $U_E = U_B$
 - $(4) \quad U_{\rm E} > U_{\rm B}$
- 132. Drift speed of electrons, when 1.6 A of current flows in a copper wire of cross section 1 mm^2 , is v. If the electron density in copper is $10^{28}/\text{m}^3$ the value of v in mm/s is close to (Take charge of electron to be $=1.6 \times 10^{-19} \text{ C}$)
 - (1) 1
 - (2) 2
 - (3) 3
 - (4) 4
- 133. An alternating voltage of R.M.S voltage 250 volt and w = 10 radian/second, is applied in an LCR series circuit where L = 0.4H, C = 1/80 F and $R = 3\Omega$. The power supplied by the source is
 - (1) 1000 W
 - (2) 7500 W
 - (3) 3380 W
 - (4) 3000 W
- 134. A magnet is suspended so as to swing horizontally makes 50 vibrations/min at a place where dip is 30^{0} , and 40 vibrations / min where dip is 45^{0} . Compare the earth's total fields at the two places

(1)
$$\frac{25}{8\sqrt{6}}$$

(2) $\frac{15}{4\sqrt{2}}$
(3) $\frac{20}{2\sqrt{4}}$
(4) $\frac{15}{6\sqrt{2}}$

- 135. Out of the following options which one can be used to produce a propagating electromagnetic wave?
 - (1) A charge moving at constant velocity
 - (2) A stationary charge
 - (3) A chargeless particle
 - (4) An accelerating charge
- 136. Which of the following statement is not correct?
 - (1) proteins are polyamides formed from amino acids
 - (2) except glycine, all other amino acids show optical activity
 - (3) Histidine contains heterocyclic ring in its structure
 - (4) Argenine is an acidic amino acid
- 137. Mark the wrong statement about denaturation

of proteins

- (1) The primary structure of the protein does not change
- (2) Globular proteins are converted into fibrous proteins
- (3) The secondary and tertiary structures are affected
- (4) Coagulation of egg white on boiling is an example reversible denaturation
- 138. Synthesis of identical copies of DNA is called
 - (1) transcription
 - (2) replication
 - (3) translation
 - (4) reverse transcription
- 139. If the amino group of glycine and carboxylic acid group of alanine undergo elimination of water molecule, the name of the compound thus formed is
 - (1) Alanylglycine(dipeptide)
 - (2) Glycyl alanine(tri peptide)
 - (3) Glycyl alanine(dipeptide)
 - (4) Alanineglycine(dipeptide)

- 140. Incorrect statement among the following is
 - Deficiency of Vitamin B₂ leads to Cheilosis
 - (2) Deficiency of Vitamin E leads to Neurosis of heart muscles
 - (3) Deficiency of vitamin C leads to Beri beri
 - (4) Deficiency of vitamin K causes Lengthening time of blood clotting
- 141. Which among the following is incorrect statement?
 - (1) The mixture of chloroxylenol and alpha-terpineol is called Dettol
 - (2) Cetyl trimethyl ammonium bromide is a cationic detergent
 - (3) The order of sweetness is : Alitame > Sucralose > Saccharin > Aspartame
 - (4) Iproniazid acts as antacid
- 142. The reagent that indicates the presence of carbonyl group in glucose is
 - (1) HI
 - (2) NH_2OH
 - (3) $(CH_3CO)_2 O$
 - (4) $Conc.HNO_3$
- 143. Which one of the following sets forms the biodegradable polymer?
 - (1) $CH_2 = CH CN$ and $CH_2 = CH CH = CH_2$
 - (2) $H_2N CH_2 COOH$ and $H_2N (CH_2)_5 COOH$
 - (3) $HO-CH_2-CH_2-OH$ and $p-HOOC-C_6H_4-COOH$

(4) C_6H_5 -CH=CH₂ & H₂C=CH-CH=CH₂

- 144. Which of the following is not a condensation polymer?
 - (1) Nylon-6
 - (2) Dacron
 - (3) Teflon
 - (4) Bakelite

Sri Chaitanya

- 145. High Density Poly ethylene (HDPE) is formed when addition polymerization of ethylene takes place in hydrocarbon solvent in the presence of a catalyst 'X' at 335K at 7 atm. Then 'X' is:
 - (1) O₂
 - (2) $(C_2H_5)_3Al + TiCl_4$
 - (3) R-Li
 - (4) Nylon-2 Nylon-6
- 146. Tajmahal is being slowly disfigured and discolored. This is primarily due to:
 - (1) Water pollution
 - (2) Global warming
 - (3) Soil pollution
 - (4) Acid rain
- 147. The higher concentration of which gas in air can cause stiffness of flower buds?
 - (1) SO₂
 - (2) NO₂
 - (3) CO₂
 - (4) CO
- 148. The two monomers for the synthesis Nylon-6, 6 are
 - (1) HOOC (CH_2)₆COOH & $H_2N(CH_2)_6NH_2$
 - (2) HOOC (CH₂)₄COOH & $H_2N(CH_2)_4NH_2$
 - (3) HOOC (CH₂)₆COOH & $H_2N(CH_2)_4NH_2$
 - (4) HOOC (CH_2)₄COOH & $H_2N(CH_2)_6NH_2$
- 149. Water samples with BOD values of 1ppm and 18ppm respectively are:
 - (1) Highly polluted and clean
 - (2) Highly polluted and highly polluted
 - (3) Clean and highly polluted
 - (4) Clean and Clean
- 150. The compound that is not a common component of photochemical smog is:
 - (1) O_3
 - (2) CH₂=CHCHO
 - $(3) \quad CF_2Cl_2$
 - (4) $H_3C CO OONO_2$
- Sri Chaitanya

- 151. Which of the following tests cannot be used to identify amino acids?
 - (1) Biuret test
 - (2) Xanthoprotein test
 - (3) Barfoed test
 - (4) Ninhydrin test
- 152. The homo polymer formed 4hydroxybutanoic acid is:
 - (1) (-OC (CH₂)₃-O-)_n
 - (2) $(-OOC (CH_2)_3-O_{-})_n$
 - (3) (-OC (CH₂)₂-COO-)_n
 - (4) $(-OC (CH_2)_2-CO_n)$
- 153. The correct match between item I and item II is:

10.			
	Item-I		Item-II
(A)	Allosteric effect	(P)	Molecule binding to the active site of enzyme
(B)	Competitive inhibitor	(Q)	Molecule crucial for communication in the body
(C)	Receptor	(R)	Molecule binding to a site other than the active site of enzyme
(D)	Poison	(S)	Molecule binding to the enzyme covalently
(1)	$(A) \to (P) ;$ $(D) \to (Q)$; (B)-	$\rightarrow (R) ; (C) \rightarrow (S)$
(2)	$(\Delta) \rightarrow (\mathbb{R})$	\cdot (B)-	\rightarrow (P) · (C) \rightarrow (S)

- (2) (A) \rightarrow (R); (B) \rightarrow (P); (C) \rightarrow (S); (D) \rightarrow (Q)
- (3) (A) \rightarrow (P); (B) \rightarrow (R); (C) \rightarrow (Q); (D) \rightarrow (S)
- (4) (A) \rightarrow (R); (B) \rightarrow (P); (C) \rightarrow (Q); (D) \rightarrow (S)
- 154. I_2O_5 is used in the estimation of 'X'. Regarding X correct statement is
 - (1) It is a Lewis acid
 - (2) It is a π acceptor ligand
 - (3) It is a contaminant
 - (4) It is highly soluble in water

155. $3B_{1}H_{1} + 6NI_{1} \longrightarrow X - Marcella Y + 12H_{2}$ X and Y respectively are (1) $3B_{1}M_{1}$ and $2B_{1}E_{2}NH_{3}$ (2) $3[BH_{1}(M_{1})_{2}]^{*}[BH_{1}]$ and $2B_{1}N_{1}H_{4}$ (3) $3B_{1}M_{1}H_{4}$ and $2B_{1}E_{2}NH_{3}$ (4) $3B_{1}H_{2}NH_{3}$ and $2B_{1}E_{2}NH_{3}$ (5) $3B_{1}H_{2}$ and $2B_{1}E_{2}NH_{3}$ (4) $3B_{1}H_{2}NH_{3}$ and $2B_{1}H_{2}H_{1}$ (4) $3B_{1}H_{2}NH_{3}$ and $2B_{1}H_{2}H_{1}$ (4) $3B_{1}H_{2}NH_{3}$ and $2B_{1}H_{2}H_{1}$ (4) $3B_{1}H_{2}NH_{3}$ and $2B_{1}H_{2}H_{1}$ (5) $2N_{1}H_{2}H_{1}$ (6) $2N_{1}H_{2}H_{1}$ (7) $2N_{2}H_{2}H_{1}$ (8) $2N_{1}H_{2}H_{2}$ (9) $2N_{2}H_{2}H_{2}$ (1) $H_{2}H_{2}H_{2}$ (1) $H_{2}H_{2}H_{2}H_{2}H_{2}H_{2}H_{2}H_{2}$	1.5.5	2D II ANII V heat V 1011		(2) (2, 4) and (2, 4)
(1)3 $B_NS_1H_6$ and $2 B_2H_6$. 2NH3 (2)(4)(4, 2) and (4, 2)(2)3 $B_NS_1H_6$ and 2 $B_1N_1H_6$ (3)3 B_2H_6 . 2NH3 and 2 $B_1N_1H_6$ (4)162.Which of the following hydride is least volatile?(4)(3) $B_1N_1H_6$ and 2 $B_1N_1H_6$ (4)3 B_2H_6 . 2NH3 and 2 $B_1N_1H_6$ (4)162.Which of the following hydride is least volatile?(1)Disproportionation step (2)Double displacement reaction (3)Chemical combination type of redor reaction(2) $H_2\Gammae$ (3)Chemical combination type of redor reaction(3)H_2O(4)H_2Se(4)Comproportionation reaction(3)K(4)Cs(5)Among the following is not a hydrolysis product of XeF_6? (1)Na Col (2)Na(4)(3)XeOF4 (4)Yeo Sr2(1)Xef4(3)XeOF4 (4)Stontium(3)XeF2(4)XeO2F2 (1)XeF6(3)XeF2(5)Maring alkaline earth metals strongest reducing agent is: (1)Barium (3)(3)XeF2(4)N2 + HC1(3)a copper salt (4)(4)an aluminium salt(5)Nc1_3 + HC1 (3)(4) $A_2 e F_3^3$ (6)Ny + HC1(3)a copper salt (4)(4)(4)N 2 + HC1(3)a copper salt (4)(4)N 2 + HC1(3)Ba(OH)2 (2)Mg(OH)2(4)Ny + HC1(3)Ba(OH)2 (2)Mg(OH)2(5)<	155.			
(2) 3 [BH ₂ (NH ₃) ₂] ⁺ [BH ₄] and 2 B ₃ H ₅ H ₆ (3) 3 B ₃ H ₄ and 2 [BH ₂ (NH ₃) ₂] ⁺ [BH ₄](3) C (H ₁) and 2 B ₃ H ₂ (H ₁)156. Oxidation of sulphur by cone. H ₂ SO ₄ is an example of (1) Disproportionation step (2) Double displacement reaction (3) Chemical combination type of redor reaction (4) Comproportionation reaction(1) H ₂ Se (2) H ₂ Te (3) H ₂ O (4) H ₂ Se157. Among the following hydroxides given which has lowest P^{K_3} at a given temperature (1) B (OH) ₃ (3) In (OH) ₃ (4) T/ OH(2) Na (3) K (4) Cs158. Which of the following is not a hydrolysis product of XeF ₆ ? (1) XeO ₄ (2) XeO ₃ (3) XeOF ₄ (4) XeO ₂ F ₂ (164. The Δ H ² ; values of graphite, diamond and fullerene (C ₆₀) (1) Graphite > diamond > fullerene (C ₆₀) (2) Diamond > graphite = fullerene (C ₆₀) (3) Graphite = graphite = fullerene (C ₆₀) (4) Fullerene (C ₆₀) (3) KeF ₄ (4) XeO ₄ F ₂ ^- (1) XeO ₄ (2) NeCl ₃ + HCl (3) N ₂ + NCl ₃ (4) N ₂ + HCl(6) NH ₃ reacts with excess of Cl ₂ to produce (1) N ₂ + HCl (3) N ₂ + NCl ₃ (4) N ₂ + HCl(3) a copper salt (4) an aluminium salt(6) NH ₃ reacts with excess of Cl ₂ to produce (1) N ₂ + HCl (3) N ₂ + NCl ₃ (4) N ₂ + HCl(3) Ba(OH) ₂ (2) Mg(OH) ₂ (3) Ba(OH) ₂ (4) Sr(OH) ₂ (6) The thermally more stable hydroxide is (1) (2, 2) and (2, 2)(2) (2) Mg(OH) ₂ (3) Ba(OH) ₂ (4) Sr(OH) ₂		1 2		
			1.0	
(4) 3 B-Ha, 2NH1 and 2 BNH2156. Oxidation of sulphur by conc. H ₂ SO ₄ is an example of(1) Disproportionation step(2) Double displacement reaction(3) Chemical combination type of redox reaction(4) Comproportionation reaction(57. Armong the following hydroxides given which has lowest P^{Kb} at a given temperature(1) B (OH) ₅ (2) AI (OH) ₅ (3) In (OH) ₅ (4) T/ OH(58. Which of the following is not a hydrolysis product of XeF ₆ ?(1) XeO ₄ (2) XeO ₃ (3) XeOF ₄ (4) Strontium(3) XeOF ₄ (1) Beryllium(2) Barium (3) Calcium(4) Strontium(50. NH ₃ reacts with excess of Cl ₂ to produce(1) N ₂ + NCl ₃ (4) N ₂ + HCl(51. The number of S = O and S - OH bonds present in peroxosulphuric acid respectively are (1) (2, 2) and (2, 2)Sri ChaitanyaPage			162.	
156. Oxidation of suppur by conc. H_2SO_4 is an example of(2) H_2Te (1)Disproportionation step(3) H_2O (2)Double displacement reaction(3) H_2O (3)Chemical combination type of redox reaction(4) H_2Se (4)Comproportionation reaction(5)The alkali metal with the lowest density is(1)B (OH)_5(2)Al (OH)_5(2)Al (OH)_5(3)K(3)In (OH)_5(4)Cs(4)T / OH(4)T / OH(5)Much of the following is not a hydrolysis product of XeF_6?(16)(1)XeO_4(2)Diamond > fullerene (Ce_0)(2)XeO_3(3)Garaphite = fullerene (Ce_0)(3)XeOF_4(1)XeF_6(4)XeO_2F_2(1)XeF_6(5)Mnong alkaline earth metals strongest reducing agent is:(1)XeF_6(2)NC1_3 + HC1(3)N_2 + NC1_3(4)N_2 + NH_4C1(2)a cobalt salt(3)N_2 + NC1_3(4)N_2 + HC1(4)N_2 + HC1(3)a coper salt(4)N_2 + HC1(3)Ba(OH)_2(1)C2, 2) and (2, 2)(2)Mg(OH)_2(3)StrotHipuric acid respectively are (1)(1)Ca(OH)_2(3)StrotHipuric acid respectively are (1)(2)Al (OH)_2(4)StrOH)_2(3)Ba(OH)_2(5)ChaitanyPage <th>1.5.6</th> <th></th> <th></th> <th></th>	1.5.6			
11.10Disproprioriation step(1)Disproprioriation step(1)Double displacement reaction(3) H_2O (4)Comproportionation reaction(4) H_3Se (5)Among the following hydroxides given which has lowest P^{Sh} at given temperature (1)(1)Li(1)B (OH)_3(3)In (OH)_3(3)In (OH)_3(3)In (OH)_3(4)T7 (OH)164.The ΔH_1^a values of graphite, diamond and fullerene (C_{60})158.Which of the following is not a hydrolysis product of XeF_0? (1)XeO4(2)XeO3(3)(3)XeOF4(4)(4)XeO2F2165.159.Among alkaline earth metals strongest reducing agent is: (1)Ne_1 + Nf_4Cl(2)NCl_3 + HCl(3)(3)N_2 + NCl_3(4)(4)Strontium166.(5)NCl_3 + HCl(6)N_2 + HCl(7)The number of S = O and S - OH bonds present in peroxosulphuric acid respectively are (1)(1)The number of S = O and S - OH bonds present in peroxosulphuric acid and pyrosulphuric acid respectively are (1)(1)Calcium(1)The thermally more stable hydroxide is (1)(2)Mg(OH)2(3)Sa(OH)2(4)Str(OH)2	156.	· ·		
(2) Double displacement reaction(3) Chemical combination type of redox reaction(4) H_2Se (3) Comproportionation reaction(4) H_2Se (15) Among the following hydroxides given which has lowest P^{Ch} at a given temperature (1) B (OH);(2) Na(3) In (OH);(3) In (OH);(4) T/OH(4) T/OH(5) Which of the following is not a hydrolysis product of XeFs?(6) The ΔH_1^{α} values of graphite, diamond and fullerene (C ₆₀)(1) XeO4(2) XeO3(2) XeO3(3) XeOF4(3) XeOF4(4) Fullerene (C ₆₀)(3) XeOF4(5) Which fluoride is isostructural with ICI2(4) XeO ₂ F2(1) XeF4(5) Mornium(3) Calcium(4) Strontium(6) NH3 reacts with excess of Cl2 to produce(1) N2 + NH4Cl(3) a copper salt(3) N2 + NCl3(4) N2 + HCl(4) N2 + HCl(3) a copper salt(4) N2 + HCl(4) an aluminium salt(5) The thermally more stable hydroxide is (1) Ca(OH)2(2) Mg(OH)2(3) Ba(OH)2(3) Stri ChaitaryaPage		1		
(3) Chemical combination type of redox reaction(3) Chemical combination type of redox reaction(4) Comproportionation reaction163. The alkali metal with the lowest density is (1) Li(1) B (OH)3(2) Al (OH)3(2) Al (OH)3(3) In (OH)3(4) T/OH(4) T/OH(58. Which of the following is not a hydrolysis product of XeF6?164. The ΔH_1^{σ} values of graphite, diamond and fullerene (C ₆₀)(1) XeO4(2) XeO3(2) XeO3(3) Graphite > fullerene (C ₆₀)(3) XeOF4(4) Fullerene (C ₆₀) > diamond > graphite(3) XeOF4(5). Which fluoride is isostructural with ICl2(4) XeO252(1) XeF4(5) Among alkaline earth metals strongest reducing agent is: (1) Beryllium (3) Calcium(3) XeF2(1) N2 + NH4Cl(3) XeF2(2) NCl3 + HCl(3) AceF3(3) N2 + NCl3(4) N2 + HCl(3) N2 + HCl(3) a copper salt(4) N2 + HCl(4) an aluminium salt(5) The thermally more stable hydroxide is (1) Ca(OH)2(1) (2, 2) and (2, 2)(2)Sri ChaitaryaPage				
(4)Comproportionation reaction157.Among the following hydroxides given which has lowest P^{K_0} at a given temperature (1) B (OH)3 (2) Al (OH)3 (3) In (OH)3 (4) T/ OH(2)(3)In (OH)3 (4) T/ OH(3)(4)T/ OH158.Which of the following is not a hydrolysis product of XeF6? (1)164.(1)KeO4 (2)(4)(2)XeO3 (3)(6)(3)XeOF4 (4)(7)(4)XeO2F2159.Among alkaline earth metals strongest reducing agent is: (1)(1)Beryllium (2)(2)Nel (4)(3)XeJ<+MCl (2)(4)Strontium(5)Ncl_3 + HCl (3)(6)NH3 reacts with excess of Cl2 to produce (1)(1)N2 + NCl3 (4)(3)N2 + NCl3 (4)(4)N2 + HCl(5)Ncl stalt (2)(6)N2 + HCl(7)N2 + HCl(8)N2 + HCl(9)N2 + HCl(10)(2)(11)The number of S = O and S - OH bonds present in peroxosulphuric acid and pyrosulphuric acid respectively are (1)(1)(2, 2)SriChaitanyaPage			163	
(a) Comparison Function Function157. Among the following hydroxides given which has lowest P^{K^b} at a given temperature (1) B (OH); (2) A1 (OH); (3) In (OH); (4) T7 OH(2) Na(3) In (OH); (4) T7 OH(3) In (OH); (4) T7 OH(4) The ΔH_1^{α} values of graphite, diamond and fullerene (C_{60}) (1) Graphite > diamond > fullerene (C_{60}) (2) Diamond > graphite > fullerene (C_{60}) (2) Diamond > graphite > fullerene (C_{60}) (3) Graphite = graphite = fullerene (C_{60}) (3) Graphite = graphite = fullerene (C_{60}) (4) Fullerene (C_{60}) > diamond > graphite (2) Na(3) XeOF4 (4) XeO ₂ F2(4) Fullerene (C_{60}) > diamond > graphite(5) Which fluoride is isostructural with ICI2 (1) XeO4 (2) Barium (3) Calcium (4) Strontium(1) XeF4 (2) XeF6 (3) XeF2 (4) XeF3 ³⁻ (6) NH3 reacts with excess of Cl2 to produce (1) N2 + NR4_Cl (2) NCl3 + HCl (3) N2 + NCl3 (4) N2 + HCl(2) a cobalt salt (3) a copper salt (4) an aluminium salt(6) NH3 reacts with excess of Cl2 to produce (1) N2 + HCl (3) N2 + NCl3 (4) N2 + HCl(3) a copper salt (4) an aluminium salt(6) NH3 reacts with excess of Cl2 to produce (1) N2 + HCl (3) N2 + NCl3 (4) N2 + HCl(3) a copper salt (4) an aluminium salt(6) The number of S = O and S - OH bonds present in peroxosulphuric acid and pyrosulphuric acid respectively are (1) (2, 2) and (2, 2)(2) Mg(OH)2 (3) Ba(OH)2 (4) Sr(OH)2(3) CaticaryFage			105.	-
which has lowest $P^{K^{5}}$ at a given temperature (1) B (OH) ₃ (2) Al (OH) ₃ (3) In (OH) ₃ (4) T/OH 158. Which of the following is not a hydrolysis product of XeF ₆ ? (1) XeO ₄ (2) XeO ₃ (3) XeOF ₄ (4) XeO ₂ F ₂ 159. Among alkaline earth metals strongest reducing agent is: (1) Beryllium (2) Barium (3) K (4) Cs 164. The ΔH_{1}^{o} values of graphite, diamond and fullerene (C ₆₀) (1) Graphite > diamond > fullerene (C ₆₀) (2) Diamond > graphite = fullerene (C ₆₀) (3) Graphite = graphite = fullerene (C ₆₀) (4) Fullerene (C ₆₀) > diamond > graphite 165. Which fluoride is isostructural with ICI ₂ ⁻ (1) XeF ₄ (2) XeF ₆ (3) XeF ₂ (4) XeF ₆ ³⁻ 166. Borax bead test is not given by (1) a nickel salt (2) a cobalt salt (3) Ac (4) XeF ₆ ³⁻ 166. Borax bead test is not given by (1) a nickel salt (2) a cobalt salt (3) a copper salt (4) N ₂ + HCl 161. The number of S = O and S - OH bonds present in peroxosulphuric acid and pyrosulphuric acid respectively are (1) (2, 2) and (2, 2) Sri Chaitanya Page	157.			
(1) B (OH) ₃ (2) Al (OH) ₃ (3) In (OH) ₃ (4) T/OH (58. Which of the following is not a hydrolysis product of XeF ₆ ? (1) XeO ₄ (2) XeO ₃ (3) XeOF ₄ (4) XeO ₂ F ₂ (59. Among alkaline earth metals strongest reducing agent is: (1) Beryllium (2) Barium (3) Calcium (4) Strontium 160. NH ₃ reacts with excess of Cl ₂ to produce (1) N ₂ + NH ₄ Cl (2) NCl ₃ + HCl (3) N ₂ + NCl ₃ (4) N ₂ + HCl (5) Nh spin sent in peroxosulphuric acid and pyrosulphuric acid respectively are (1) (2, 2) and (2, 2) Sri Chaitanya K (4) Cs 164. The AH_{1}^{o} values of graphite, diamond and fullerene (C ₆₀) (1) Graphite > diamond > fullerene (C ₆₀) (2) Diamond > graphite > fullerene (C ₆₀) (3) Graphite = graphite = fullerene (C ₆₀) (4) Fullerene (C ₆₀) > diamond > graphite 165. Which fluoride is isostructural with ICl ₂ ⁻ (1) XeF ₄ (2) XeF ₆ (3) XeF ₂ (4) XeF ₆ ³⁻ 166. Borax bead test is not given by (1) a nickel salt (4) an aluminium salt 167. The thermally more stable hydroxide is (1) Ca(OH) ₂ (3) Ba(OH) ₂ (4) Sr(OH) ₂				
(2) Al (OH) ₃ (3) In (OH) ₃ (4) T/OH 158. Which of the following is not a hydrolysis product of XeF ₆ ? (1) XeO ₄ (2) XeO ₃ (3) XeOF ₄ (4) XeO ₂ F ₂ 159. Among alkaline earth metals strongest reducing agent is: (1) Beryllium (3) Calcium (4) Strontium 160. NH ₃ reacts with excess of Cl ₂ to produce (1) N ₂ + NH ₄ Cl (2) NCl ₃ + HCl (3) N ₂ + NCl ₃ (4) N ₂ + HCl (3) N ₂ + HCl (3) N ₂ + HCl (4) N ₂ + HCl (5) Nhich fluoride is isostructural with ICl ₂ (6) Borax bead test is not given by (1) a nickel salt (2) a cobalt salt (3) a copper salt (4) an aluminium salt 167. The thermally more stable hydroxide is (1) Ca(OH) ₂ (2) Mg(OH) ₂ (3) Ba(OH) ₂ (4) Sr(OH) ₂ (4) Sr(OH) ₂ (5) Mich fluoride is isostructural with ICl ₂ (4) XeF ₆ ³⁻ 166. Borax bead test is not given by (1) a nickel salt (2) a cobalt salt (3) a copper salt (4) an aluminium salt 167. The thermally more stable hydroxide is (1) Ca(OH) ₂ (3) Ba(OH) ₂ (4) Sr(OH) ₂ (4) Sr(OH) ₂		(1) B (OH) ₃		
(3) In (OH) ₃ (4) T/OH (5) In (OH) ₃ (6) T/OH (6) T/OH (7) XeO ₄ (7) XeO ₄ (8) XeOF ₄ (9) XeO ₅ (1) XeO ₄ (2) XeO ₃ (3) XeOF ₄ (4) XeO ₂ F ₂ (5) Among alkaline earth metals strongest reducing agent is: (1) Beryllium (3) Calcium (4) Strontium (5) NCl ₃ + HCl (6) NCl ₃ + HCl (7) NCl ₃ + HCl (7) NCl ₃ + HCl (8) N ₂ + NCl ₃ (9) N ₂ + NCl ₃ (1) The number of S = O and S - OH bonds present in peroxosulphuric acid and pyrosulphuric acid respectively are (1) (2, 2) and (2, 2) Sri Chaitanya Page		(2) Al (OH) ₃	164	
(4) T7OH(4) T7OH(5) Which of the following is not a hydrolysis product of XEF6? (1) XeO4(1) KeO4(2) XeO3(3) XeOF4(4) XeO2F2(4) XeO2F2(5) Among alkaline earth metals strongest reducing agent is: (1) Beryllium (2) Barium (3) Calcium (4) Strontium(6) NH3 reacts with excess of Cl2 to produce (1) N2 + NH4Cl(1) N2 + NH4Cl(2) NCl3 + HCl(3) N2 + NCl3 (4) N2 + HCl(4) N2 + HCl(5) The number of S = O and S - OH bonds present in peroxosulphuric acid respectively are (1) (2, 2) and (2, 2)Sri Chaitanya		(3) In (OH) ₃	104.	
158. Which of the following is not a hydrolysis product of XeF_6? (1) XeO_4 (2) XeO_3 (3) XeOF_4 (4) XeO_2F_2(2) Diamond > graphite > fullerene (C_{60}) (3) Graphite = graphite = fullerene (C_{60}) (4) Fullerene (C_{60}) > diamond > graphite(3) XeOF_4 (4) XeO_2F_2(1) XeF_4(4) XeO_2F_2(2) XeF_6 (3) Calcium (4) Strontium(2) Barium (3) Calcium (4) Strontium(2) XeF_6 (3) XeF_2 (4) XeF_6^{3-}(3) Calcium (4) Strontium(3) N_2 + NH_4Cl (2) a cobalt salt(2) NCl_3 + HCl (3) N_2 + NCl_3 (4) N_2 + HCl(3) a copper salt (4) an aluminium salt(4) N_2 + HCl(3) a copper salt (4) an aluminium salt(5) The thermally more stable hydroxide is (1) Ca(OH)2(3) Ba(OH)2 (3) Ba(OH)2 (4) Sr(OH)2(4) StricthataryPage		(4) T <i>l</i> OH		
product of XeF ₆ ? (1) XeO ₄ (2) XeO ₃ (3) XeOF ₄ (4) XeO ₂ F ₂ 159. Among alkaline earth metals strongest reducing agent is: (1) Beryllium (2) Barium (3) Calcium (4) Strontium 160. NH ₃ reacts with excess of Cl ₂ to produce (1) N ₂ + NH ₄ Cl (2) NCl ₃ + HCl (3) N ₂ + NCl ₃ (4) N ₂ + HCl (3) N ₂ + NCl ₃ (4) N ₂ + HCl (3) N ₂ + HCl (3) XeF ₆ (3) XeF ₁ (4) N ₂ +S ³⁻ (5) Rorax bead test is not given by (1) a nickel salt (2) a cobalt salt (3) a copper salt (4) an aluminium salt 167. The thermally more stable hydroxide is (1) Ca(OH) ₂ (2) Mg(OH) ₂ (3) Ba(OH) ₂ (4) Sr(OH) ₂	158.	Which of the following is not a hydrolysis		
(1) XeO_4 (2) XeO_4 (3) $XeOF_4$ (4) Fullerene $(C_{60}) > diamond > graphite(3) XeOF_4(4) Fullerene (C_{60}) > diamond > graphite(4) XeO_2F_2(5) Which fluoride is isostructural with ICI_2^-(1) Beryllium(2) Barium(2) Barium(3) Calcium(4) Strontium(3) Calcium(4) Strontium(6) Borax bead test is not given by(1) N_2 + NH_4CI(2) a cobalt salt(2) NCI_3 + HCI(3) a copper salt(3) N_2 + NCI_3(4) N_2 + HCI(4) N_2 + HCI(5) The thermally more stable hydroxide is(1) Ca(OH)_2(2) Mg(OH)_2(3) Ba(OH)_2(3) Ba(OH)_2(4) Sr(OH)_2(4) Sr(OH)_2$		•		
(2) XeO_3 (3) $XeOF_4$ (6) XeO_2F_2 (3) $XeOF_4$ (4) XeO_2F_2 (5) Which fluoride is isostructural with ICl_2^- (4) XeO_2F_2 (1) XeF_4 (2) Barium(2) Barium(3) Calcium(3) Calcium(4) Strontium(4) Strontium(5) NH_3 reacts with excess of Cl_2 to produce(1) $N_2 + NH_4Cl$ (1) $N_2 + NH_4Cl$ (2) a cobalt salt(2) $NCl_3 + HCl$ (3) a copper salt(3) $N_2 + NCl_3$ (4) $N_2 + HCl$ (4) $N_2 + HCl$ (5) The thermally more stable hydroxide is(1) $(2, 2)$ and $(2, 2)$ (2) $Mg(OH)_2$ Sri ChaitanyaPage				
(4) XeO_2F_2 (1) XeF_4 159. Among alkaline earth metals strongest reducing agent is: (1) Beryllium (2) Barium (3) Calcium (4) Strontium(2) XeF_6 (3) Calcium (4) Strontium(3) XeF_2 (4) XeF_6^{3-} (4) XeF_6^{3-} (5) Calcium (4) Strontium(6) Borax bead test is not given by (1) a nickel salt (2) a cobalt salt (2) a cobalt salt(6) NH_3 reacts with excess of Cl_2 to produce (1) $N_2 + NH_4Cl$ (2) a cobalt salt (2) a cobalt salt (3) a copper salt (4) an aluminium salt(3) $N_2 + NCl_3$ (4) $N_2 + HCl$ (3) a copper salt (4) an aluminium salt(4) $N_2 + HCl$ (2) $Mg(OH)_2$ (3) $Ba(OH)_2$ (4) $Sr(OH)_2$ (5) The that tanyaPage			165	
(i)(i)(i)(i)159. Among alkaline earth metals strongest reducing agent is: (1)(i)(i)160. NH3 reacts with excess of Cl2 to produce (1)(i)(i)(i)N2 + NH4Cl(i)a nickel salt(i)N2 + NH4Cl(i)a copper salt(i)N2 + NCl3(i)Calcim(i)N2 + NCl3(i)Calcid(i)N2 + HCl(i)a naluminium salt(i)N2 + HCl(i)Calcid(ii)N2 + HCl(ii)Calcid(iii)N2 + HCl(iii)Calcid(iii)N2 + HCl(iii)Calcid(iii)N2 + HCl(iii)Calcid(iii)(iii)Calcid(iiii)(iii)Calcid(iiii)(iii)Calcid(iii)(iii)Calcid(iiii)(iii)Calcid(iiii)(iii)Calcid(iiii)(iiii)Calcid(iiii)(iiii)Calcid(iiii)(iiii)Calcid(iiii)(iiii)Calcid(iiii)(iiii)Calcid(iiii)(iiii)Calcid(iiii)(iiii)Calcid(iiiii)(iiii)Calcid(iiiii)(iiiiii)Calcid(iiiiii)(iiii)Calcid(iiiiii)(iiii)Calcid(iiiii)(iiii)Calcid(iiiiii)(iiii)Calcid(iiiiii)(iiii)Calcid			165.	-
reducing agent is: (1) Beryllium (2) Barium (3) Calcium (4) Strontium 160. NH_3 reacts with excess of Cl_2 to produce (1) $N_2 + NH_4Cl$ (2) $NCl_3 + HCl$ (3) $N_2 + NCl_3$ (4) $N_2 + HCl$ (5) HCl_6 (6) XeF_6^{3-} (6) Borax bead test is not given by (1) a nickel salt (2) a cobalt salt (3) a copper salt (4) an aluminium salt 167. The thermally more stable hydroxide is (1) $Ca(OH)_2$ (2) $Mg(OH)_2$ (3) $Ba(OH)_2$ (4) $Sr(OH)_2$ (4) $Sr(OH)_2$	1.50			(1) Aer_4
(1) Beryllium(3) XeF_2 (2) Barium(3) XeF_2 (3) Calcium(4) XeF_6^{3-} (4) Strontium(5) Eras bead test is not given by(1) $N_2 + NH_4Cl$ (1) a nickel salt(2) $NCl_3 + HCl$ (2) a cobalt salt(3) $N_2 + NCl_3$ (3) a copper salt(4) $N_2 + HCl$ (3) a copper salt(4) $N_2 + HCl$ (3) a copper salt(6) The number of $S = O$ and $S - OH$ bonds present in peroxosulphuric acid respectively are(1) $Ca(OH)_2$ (1) $(2, 2)$ and $(2, 2)$ (2) $Mg(OH)_2$ Sri ChaitanyaPage	159.	с		(2) XeF_6
(2) Barium(3) Calcium(4) XeF_6^{3-} (3) Calcium166. Borax bead test is not given by(4) XeF_6^{3-} (5) NH ₃ reacts with excess of Cl ₂ to produce(1) a nickel salt(1) $N_2 + NH_4Cl$ (2) a cobalt salt(2) $NCl_3 + HCl$ (3) a copper salt(3) $N_2 + NCl_3$ (4) $N_2 + HCl$ (4) $N_2 + HCl$ (5) a copper salt(5) N_2 + HCl(6) Calcium(6) NH ₃ reacts with excess of Cl ₂ to produce(7) a nickel salt(7) N_2 + NH_4Cl(7) a cobalt salt(8) N_2 + NCl_3(1) CalcOH ₂ (9) N_2 + HCl(2) Mg(OH) ₂ (1) Ca(OH) ₂ (2) Mg(OH) ₂ (1) (2, 2) and (2, 2)(3) Ba(OH) ₂ Sri ChaitanyaPage				(3) XeF_2
(3) Calcium(4) Strontium(4) Strontium166. Borax bead test is not given by160. NH_3 reacts with excess of Cl_2 to produce(1) $N_2 + NH_4Cl$ (1) $N_2 + NH_4Cl$ (2) a cobalt salt(2) $NCl_3 + HCl$ (3) a copper salt(3) $N_2 + NCl_3$ (4) $N_2 + HCl$ (4) $N_2 + HCl$ 167. The thermally more stable hydroxide is(1) Ca(OH)_2(2) Mg(OH)_2161. The number of S = O and S - OH bonds present in peroxosulphuric acid respectively are (1) (2, 2) and (2, 2)(3) Ba(OH)_2Sri ChaitanyaPage				(4) XeF^{3-}
160. NH_3 reacts with excess of Cl_2 to produce(1) a nickel salt(1) $N_2 + NH_4Cl$ (2) a cobalt salt(2) $NCl_3 + HCl$ (3) a copper salt(3) $N_2 + NCl_3$ (4) $N_2 + HCl$ (4) $N_2 + HCl$ (5) The thermally more stable hydroxide is(1) Ca(OH)_2(2) Mg(OH)_2(2) Mg(OH)_2(3) Ba(OH)_2(1) (2, 2) and (2, 2)(4) Sr(OH)_2Sri Chaitanya			1.00	
(1) $N_2 + NH_4Cl$ (2) $NCl_3 + HCl$ (3) $N_2 + NCl_3$ (4) $N_2 + HCl$ 161. The number of S = O and S - OH bonds present in peroxosulphuric acid and pyrosulphuric acid respectively are (1) (2, 2) and (2, 2) Sri Chaitanya Page	160		166.	
(2) $NCl_3 + HCl$ (3) $N_2 + NCl_3$ (4) $N_2 + HCl$ 161. The number of S = O and S - OH bonds present in peroxosulphuric acid and pyrosulphuric acid respectively are (1) (2, 2) and (2, 2) Sri Chaitanya Page	100.			
(2) $\operatorname{Her}_{13} + \operatorname{Her}_{14}$ (3) $\operatorname{N}_{2} + \operatorname{HCl}_{3}$ (4) $\operatorname{N}_{2} + \operatorname{HCl}_{3}$ (5) $\operatorname{Her}_{13} + \operatorname{HCl}_{3}$ (4) an aluminium salt (5) $\operatorname{Her}_{14} + \operatorname{HCl}_{3}$ (6) $\operatorname{In}_{10} + \operatorname{In}_{10} + I$				
 (3) N₂ + NCl₃ (4) N₂ + HCl 161. The number of S = O and S - OH bonds present in peroxosulphuric acid acid and pyrosulphuric acid respectively are (1) (2, 2) and (2, 2) (3) Ba(OH)₂ (4) Sr(OH)₂ (5) The thermally more stable hydroxide is (1) Ca(OH)₂ (2) Mg(OH)₂ (3) Ba(OH)₂ (4) Sr(OH)₂ 		(2) $NCl_3 + HCl$		
 (4) N₂ + HCl (1) Ca(OH)₂ (2) Mg(OH)₂ (3) Ba(OH)₂ (4) Sr(OH)₂ (5) Sri Chaitanya 		(3) $N_2 + NCl_3$	167	
 161. The number of S = O and S - OH bonds present in peroxosulphuric acid and pyrosulphuric acid respectively are (1) (2) Mg(OH)₂ (3) Ba(OH)₂ (4) Sr(OH)₂ Sri Chaitanya Page 		(4) $N_2 + HCl$	167.	
present in peroxosulphuric acid and pyrosulphuric acid respectively are (1) (2, 2) and (2, 2) Sri Chaitanya Page (3) Ba(OH) ₂ (4) Sr(OH) ₂	161.	The number of $S = O$ and $S - OH$ bonds		
pyrosulphuric acid respectively are (1) (2, 2) and (2, 2) Sri Chaitanya Page (4) Sr(OH) ₂				
(1) (2, 2) and (2, 2) Sri Chaitanya Page				
				()()2
	Sri		ſe	

The physical state of SF_4 , SeF_4 and TeF_4 is (1) gas, solid, solid (2) gas, liquid, solid (3) gas, gas, gas (4) gas, liquid, liquid SO_2 acts as agent and TeO_2 acts as agent (1) Oxidising, oxidizing	180
(1) gas, solid, solid (2) gas, liquid, solid (3) gas, gas, gas (4) gas, liquid, liquid SO_2 acts as agent and TeO_2 acts	180
 (1) gas, solid, solid (2) gas, liquid, solid (3) gas, gas, gas (4) gas, liquid, liquid SO₂ acts as agent and TeO₂ acts 	180
 gas, solid, solid gas, liquid, solid gas, gas, gas gas, liquid, liquid 	180
 gas, solid, solid gas, liquid, solid gas, gas, gas 	180
 gas, solid, solid gas, liquid, solid 	180
	180
The physical state of SF_4 , SeF_4 and TeF_4 is	100
(4) Xe and XeO_4	
(3) Xe and XeF_2	
(2) XeO_3 and XeO_4	
(1) Xe and XeO_3	
Here X and Y formed are	
$F_2 \xrightarrow{873K,7bar} A \xrightarrow{hydrolysis} X + Y + HF + O_2$	179
(4) N_2O_4 exhibits resonance	
single $P - P$ bond	
	178
•	
•	
•	
	177
-	
(3) SnO	170
(2) GeO	176
(1) CO	
-	
-	
(2) The two O - O bond lengths in O_3 are	175
hybridized	
	 (2) The two O - O bond lengths in O₃ are equal due to resonance (3) With BaO₂ it reacts to produce H₂O₂ (4) It causes tailing of Hg Which of the following is distinctly acidic (1) CO (2) GeO (3) SnO (4) PbO Among the following molecules i) XeO₃ ii) XeOF₄ iii) XeF₆ Those having same number of lone pairs on Xe are (1) i and ii only (2) i and iii only (3) ii and iii only (4) i, ii and iii Which of the following statement is wrong ? (1) Nitrogen cannot form dπ - dπ bond (2) Hypophosphorous acid is diprotic acid (3) Single N - N bond is weaker than single P - P bond (4) N₂O₄ exhibits resonance F₂ = ^{873K, 7bar} → A - hydrolysis → X + Y + HF + O₂ Here X and Y formed are (1) Xe and XeO₃ (2) XeO₃ and XeO₄ (3) Xe and XeF₂

- (2)Oxidising, complexing (3) Reducing, complexing (4) Reducing, oxidizing 5. Cyclic trimetaphosphoric acid is (1) $(HPO_3)_3$ and contain 9σ bonds (2) $H_3P_3O_6$ and contain 12σ bonds (3) $(HPO_3)_3$ and contain 15 σ bonds (4) $H_3P_3O_9$ and contain 18σ bonds 6. Which of the following has most negative ΔH_{f}^{o} value (1) LiF (2) NaF (3) KF (4) RbF 7. The volume of colourless gas released at STP when one mole of Lithium nitrate is heated (1) 22.4 lit (2) 5.6 lit (3) 28 lit (4) 11.2 lit 8. The halide of beryllium which is more soluble in water is (1) BeI_2 (2) $BeBr_2$ (3) BeCl₂ (4) BeF_2 9. When copper is heated with conc. HNO_3 it produces ? (1) $Cu(NO_3)_2$ and N_2O (2) $Cu(NO_3)_2$ and NO_2 (3) $Cu(NO_3)_2$ and NO (4) $Cu(NO_3)_2$, NO and NO_2 0. $XeF_6 + KF \longrightarrow A$. In this reaction 'A' is (1) $K^+ [XeF_5]^-$
 - (2) $K^+[XeF_7]^-$
 - $(3) \quad \mathrm{K}^{+} \left[\mathrm{XeF}_{3} \right]^{-}$
 - (4) $K^{+}[XeF_{6}]^{-}$

20

Q:)

SRI CHAITANYA EDUCATIONAL INSTITUTIONS, INDIA

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI

NEET PART TEST - 4 KEY SR ELITE, SR AIIMS S60 & SR NEET MPL

Date : 22-01-19

1)	4	2)	2	3)	3	4)	2	5)	3	
11)	1	12)	4	13)	4	14)	2	15)	1	
21)	4	22)	2	23)	4	24)	2	25)	1	4
31)	3	32)	2	33)	3	34)	4	35)	4	<u>, , , , , , , , , , , , , , , , , , , </u>
41)	4	42)	3	43)	2	44)	4	45)	2	

BOTANY

1) 4	2) 2	3) 3	4) 2	5) 3	6) 2	7) 3	8) 1	9) 2	10) 4
1) 1	12) 4	13) 4	14) 2	15) 1	16) 2	17) 3	18) 1	19) 3	20) 4
1) 4	22) 2	23) 4	24) 2	25) 1	26) 1	27) 2	28) 2	29) 2	30) 3
1) 3	32) 2	33) 3	34) 4	35) 4	36) 1	37) 1	38) 3	39) 2	40) 1
1) 4	42) 3	43) 2	44) 4	45) 2					

ZOOLOGY

46) 2	47) 3	48) 2	49) 4	50) 1	51) 1	52) 3	53) 2	54) 3	55) 4
56) 1	57) 2	58) 4	59) 3	60) 4	61) 3	62) 2	63) 2	64) 4	65) 1
66) 1	67) 4	68) 2	69) 2	70) 1	71) 2	72) 1	73) 4	74) 4	75) 4
76) 3	77) 2	78) 3	79) 1	80) 4	81) 1	82) 3	83) 4	84) 2	85) 1
86) 2	87) 3	88) 3	89) 1	90) 3					

PHYSICS

91)	4	92)	2	93)	3	94)	3	95)	1	96)	1	97)	1	98)	3	99)	2	100)	3
101)	3	102)	3	103)	1	104)	4	105)	2	106)	2	107)	3	108)	3	109)	4	110)	3
111)	1	112)	2	113)	2	114)	2	115)	2	116)	4	117)	2	118)	2	119)	4	120)	4
121)	3	122)	2	123)	1	124)	2	125)	4	126)	1	127)	2	128)	4	129)	3	130)	1
131)	3	132)	1	133)	2	134)	1	135)	4										

CHEMISTRY

136)	4	137)	4	138)	2	139)	1	140)	3	141)	4	142)	2	143)	2	144)	3	145)	2
146)	4	147)	1	148)	4	149)	3	150)	3	151)	3	152)	1	153)	4	154)	2	155)	2
156)	4	157)	4	158)	1	159)	2	160)	2	161)	4	162)	3	163)	1	164)	4	165)	3
166)	4	167)	3	168)	3	169)	2	170)	4	171)	2	172)	1	173)	2	174)	4	175)	3
176)	1	177)	2	178)	4	179)	2	180)	2										

$$E_Y = -\frac{\partial V}{\partial Y} = +3$$

$$\vec{E} = E_X \hat{i} + E_Y \hat{j} = -4x\hat{i} + 3\hat{j} = 3\hat{j}N/C$$

93.
$$B = \frac{E}{C} = \frac{6.3}{3 \times 10^8} = 2.1 \times 10^{-8}T$$

$$\overline{E} \times \overline{B} = \overline{C} \Longrightarrow \overline{B} \text{ acts along } + Z \text{ axis}$$

$$\overline{B} = 2.1 \times 10^{-8}T \hat{K}$$

94. The dipole moment makes an angle 60° with X – axis and lies in X – Y plane as shown in figure The electric field at point A due to dipole is

$$F = \frac{kP}{r^3}\sqrt{1+3\cos^2\theta} \text{ where } \theta = 60^{\circ}$$

$$\therefore E = \frac{\sqrt{7}K}{8}$$
95. $\overline{B} = \frac{\mu_o I}{4\pi}\theta \left[\frac{1}{r_1} - \frac{1}{r_2}\right] \approx 10^{-5}T$

96.

$$V_{\text{Net}} \text{ of } A = V_{\text{Net}} \text{ of } C$$

$$\frac{1}{4\pi\varepsilon_o} \left[\frac{Q}{a} - \frac{2Q}{b} + \frac{Q}{C} \right] = \frac{1}{4\pi\varepsilon_o} \left[\frac{Q - 2Q + Q}{C} \right]$$

$$\frac{1}{4\pi\varepsilon_o} \left[\frac{Q}{a} - \frac{2Q}{b} + \frac{Q}{C} \right] = 0$$

$$\Rightarrow Q \left[\frac{1}{a} + \frac{1}{c} \right] = \frac{2Q}{b}$$

$$\Rightarrow b = \frac{2ac}{a+c}$$

97. N = Number of capacitors in series in each row = $\frac{V_{eff}}{V_{each}} = \frac{1000V}{250V} = 4$

Effective capacitance of each row =
$$\frac{C_{each}}{N} = \frac{8\mu F}{4} = 2\mu F$$

Net capacitance of system = $(C_{eff of each row})m$ where m = Number of identical rows in parallel

16 = (2)m

$$\Rightarrow m = 8$$

Total number of capacitors = mn = 32

98. Case -(1)

$$R_{eff(2)} = \frac{R}{3}$$

- 99. Magnetic susceptibility (s) $\propto \frac{1}{T_K}$
- 100. From the circuit it can be concluded that

$$V_A - V_B = 2 \times 1 + 2 \times 1 = 4 \text{ volt}$$

$$R_{eq} = 4/5 = 0.8\Omega$$

101. At 'B', C.S.A of pipe is less, velocity of fluid (V) is more and pressure (P) is less. Since pressure at (P_B) is less than atmospheric pressure, fluid does not come out of hole

At 'C', pressure of fluid (P_C) is more than atmospheric pressure, through hole at C fluid comes out

102. I_g for full scale deflection = $4 \times 10^{-4} \times 25 = 10^{-2} A$

$$V = I_g (G + R)$$

2.5 = 10⁻² (50 + R)

 $R = 200\Omega$ in series

103. $V_{across R} = 2V$ $I_{along R} R = 2$

$$\left(\frac{12}{500+R}\right)R = 2$$

104. Case – (1)

$$1 = \frac{3}{2r+G} \Longrightarrow 2r+G = 3 \quad \dots \quad (1)$$

$$Case - (2)$$

$$0.6 = \frac{1.5}{r/2 + G} \Longrightarrow \frac{r}{2} + G = 2.5 \dots (2)$$

$$105. \quad r = R \left[\frac{P_1 - P_2}{P_2} \right]$$

$$106. \quad Y = 2r = 2 \left(\frac{mV_o}{Bq} \right)$$

107.
$$I = \frac{dQ}{dt}$$
 and charge (Q) is constant at t = 4s

108.
$$\frac{M}{L} = \frac{Q}{2m} \Longrightarrow M = \frac{Q}{2m}(L)$$
$$= \frac{Q}{2m}(I\omega) = \frac{Q}{2m}\left(\frac{mR^2}{2}\omega\right)$$

109.
$$E = \frac{\varepsilon}{\varepsilon_o} = \frac{Q}{A\varepsilon_o}$$

110.

$$I = \frac{4}{R+5}$$

 $V_{across 10 cm \, length \, of \, wire} = IR_{of \, 10 cm \, length \, of \, wire}$

$$5 \times 10^{-3} = \frac{4}{R+5} (0.5)$$
$$\implies R = 395\Omega$$

- 111. Magnetic force experienced by current carrying loop kept in uniform magnetic field is always zero
- 112. $W = T \left(8\pi R_2^2 8\pi R_1^2 \right)$ $P_1 = ql \qquad P_2 = ql$ $P_{\text{Net}} = ql\sqrt{3}$ 113.
- 114. $F = \frac{\mu_o I_1 I_2 L}{2\pi r}$
- 115. Using Hooke's law, F = Kx we can write

$$4 = k \left(a - \ell_o \right) \dots (i)$$

and
$$5 = k(b - \ell_o)$$
 (ii)

If ℓ be the length under tension 9N, then

$$9 = k(\ell - \ell_o) \dots$$
 (iii)

After solving above equations, we get $\ell = (5b - 4a)$

$$\ell = (5b - 4a)$$

116. Using F.L.H.R, force on CD is along -y axis

117.
$$F_{V} = \eta A \frac{\Delta V}{\Delta x}$$
$$MLT^{-2} = \eta L^{2} \frac{LT^{-1}}{L}$$
$$\eta = \left[ML^{-1}T^{-1} \right]$$
$$118. \quad \frac{R_{1}}{R_{2}} = \frac{40}{60} = \frac{2}{3}$$
$$\frac{R_{1} + 10}{R_{2}} = \frac{50}{50}$$
$$\Rightarrow R_{1} + 10 = R_{2}$$
$$R_{1} + 10 = \frac{3R_{1}}{2}$$
$$R_{1} = 20\Omega \text{ and } R_{2} = 30\Omega$$
Now in case (3)
$$\frac{\left(\frac{30R}{30+R}\right)}{30} = \frac{2}{3} \Rightarrow R = 60\Omega$$

119. $e = L \frac{dI}{dt}$

120. W_{done} by both fields = W_{done} by electric field (Since W_{done} by magnetic field on the charged particle is zero)

$$= \overline{F_{el}}.\overline{d}$$
$$= q(2\hat{i}+3\hat{j}).(\hat{i}+j)$$
$$= q(2+3)$$
$$= 5q$$

121.
$$I = \frac{M}{V} = \frac{20 \times 10^{-6}}{10^{-6}} = 20 \frac{A}{m}$$
$$I = SH$$
$$20 = S(60 \times 10^{3})$$
$$S = \frac{1}{3} \times 10^{-3} = 3.3 \times 10^{-4}$$

122.
$$q = \frac{\Delta \phi}{R} = \text{Area of I} - t \text{ graph}$$

123. $\frac{1}{Cs} = \frac{1}{10} + \frac{1}{10} + \frac{1}{5} = Cs = 2.5 \,\mu F$
124. $R_1 = 320 \,\Omega$
 $\frac{R_1}{R_2} = \frac{R_3}{R_4} \Longrightarrow R_3 = 160 \,\Omega = 16 \times 10^1 \,\Omega = \text{Brown, blue, brown}$
125. $I_{\text{RMS}} = \frac{I_0}{\sqrt{2}}$
126. $L \frac{dI}{dt} = e$
 $L \frac{(15)}{1} = 25$
 $L = \frac{5}{3} H$
 $\Delta U = \frac{1}{2} L \left(I_2^2 - I_1^2\right) = 437.5 J$
127. $P_s = I_s E_s$
 $4400 = I_s (11 \times 10^3)$
 $I_s = 0.4 A$

- 128. Lenz's law is based on law of conservation of energy
- 129. Let density of material of sphere (in g/cm^3) be ρ Applying the condition of floatation, Weight = Upthust

(or)
$$V \rho g = \frac{V}{2} \rho_{\text{oil}} g + \frac{V}{2} \rho H_{\text{Hg}} g$$
 (or) $\rho = \frac{\rho_{\text{oil}}}{2} + \frac{\rho_{\text{Hg}}}{2}$
= $\frac{0.8}{2} + \frac{13.6}{2} = 7.2 \, g/cm^3$

130. Increase in length of the wire $\ell = \frac{F.L}{\pi r^2 y}$ and $\ell^1 = \frac{2F \times (2L)}{\pi (2r)^2 Y} = \ell$

131. $U_E = U_B$ 132. $I = \eta AeV_d$ $V_d = \frac{I}{\eta Ae} = \frac{1.6}{10^{28} (10^{-6}) 1.6 \times 10^{-19}}$ $= 10^{-3} m s^{-1}$ 133. $R = 3\Omega$ $X_L = \omega L = 4\Omega$ $X_C = \frac{1}{\omega C} = 8\Omega$ $\sqrt{R^2 + (X_C - X_L)^2} = 5\Omega$ $\cos \phi = \frac{R}{Z} = \frac{3}{5}$

Average power supplied = $I_{RMS}E_{RMS}\cos\phi$

$$=\frac{250}{5}$$
 250 $\frac{3}{5}$

= 7500 watt

134.
$$N \propto \sqrt{B_H}$$

 $N \propto \sqrt{B \cos \theta}$
 $\frac{N_1}{N_2} = \sqrt{\frac{B_1}{B_2} \frac{\cos \theta_1}{\cos \theta_2}}$
 $\frac{50}{40} = \sqrt{\frac{B_1}{B_2} \frac{\cos 30^\circ}{\cos 45^\circ}}$
 $\frac{25}{16} = \frac{B_1}{B_2} \frac{B}{\sqrt{2}}$
 $\frac{B_1}{B_2} = \frac{25}{8\sqrt{6}}$

135. Electromagnetic waves are produced by accelerating of deceleration charges