THE	EORIES OF ACIDS	S & BASES					
1.	Which of the follo	wing acids is monoprotic:					
	$(A) H_2S$	(B) H_3PO_2	(C) H_3PO_3	(D) H_3PO_4			
2.	The weakest Bronsted base among the following is:						
	(A) Cl ⁻	(B) HS ⁻	(C) ClO ₄	(D) NH ₃			
3.	Several acids are listed below with their respective equilibrium constants :						
	$HF(aq) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + F^-(aq)$			$K_a = 7.2 \times 10^{-4}$			
	$HS^{-}(aq) + H_2O(\ell) \rightleftharpoons H_3O + (aq) + S^{2-}(aq)$			$K_a = 1.3 \times 10^{-11}$			
	$CH_3COOH(aq) + H_2O(\ell) \Longrightarrow H_3O^+(aq) + CH_3COO (aq)$			$K_a = 1.8 \times 10^{-5}$			
	Which is the strongest acid and which acid has the strongest conjugate base ?						
	(A) HF and HF	(B) HF and HS ⁻	(C) HS ⁻ and HF	(D) HS ⁻ and CH ₃ COOH			
4.	Several bases are listed below with their respective K_b values:						
	$NH_3(aq) + H_2C$	$O(\ell) \iff NH_4^+(aq) + OH^-(aq)$	ıq).	$K_b = 1.8 \times 10^{-5}$			
	$C_5H_5N(aq) + H_2O(\ell) \iff C_5H_5NH^+(aq) + OH^-(aq).$			$K_b = 1.5 \times 10^{-9}$			
	$N_2H_4(aq) + H_2(aq)$	$O(\ell) \rightleftharpoons N_2H_5^+(aq) + OH^-$	$K_b = 8.5 \times 10^{-7}$				
	Which is the weakest base and which base has the weakest conjugate acid?						
	(A) C_5H_5N and C_5	H_5N (B) NH_3 and NH_3	(C) C ₅ H ₅ N and NH ₃	(D) NH_3 and N_2H_4			
5.	Which of the follo	wing can act both as a Brons	sted acid & a Bronsted	base (amphiprotic species) in aq. solution			
	$(A) NH_3$	(B) $H_2PO_3^-$	(C) HCO ₃	(D) OH-			
6.	How many of the following species behave as a strong acid or as a strong base in aqueous solution ?						
	(a) HNO ₂	(b) HNO_3 (c) NH_4^+	(d) Cl ⁻ (e)	$H^{-}(f) O^{2-}$ (g) $H_{2}SO_{4}$ (h) 3			
	(i) 4	(j) 5 (k) 6					
7.	Consider following reactions (a) H_2CO_3 (aq) + HSO_4^- (aq) \iff H_2SO_4 (aq) + HCO_3^- (aq)						
	(b) HF (aq) + Cl ⁻ (aq) \rightleftharpoons HCl (aq) + F ⁻ (aq)						
	- 5	$(aq) \rightleftharpoons NH_4^+(aq) + F^-(aq)$					
	•	CN^- (aq) \rightleftharpoons HCN (aq) + SC	O_4^{2-} (aq)				
	-	ing to the right are:	(G)				
0	(A) a, b	(B) c, d	(C) a, c	(D) b, d			
8.	What are the conjugate bases of each of the following Bronsted Lowry acids?						
	(a) HOCl	(b) HPO ₄ ²⁻	(c) H ₂ O	(d) CH ₃ NH ₃ ⁺			
0	(e) H ₂ CO ₃	(f) H_2	= =	-			
9.	Which relation is G	$0 \xrightarrow{K_a} H_3O^+ + F^- ; F^- + 1$	$H_2O \xrightarrow{\square} HF + OH$				
	$(A) \frac{K_b}{K_a} = K_w$	(B) $K_a \times K_b \times K_w = 1$	(C) $K_b \times K_w = K_a$	(D) $\frac{\kappa_{\rm w}}{\kappa_{\rm a}} = K_{\rm b}$			
10.	For the following equilibrium at 25°C : $\text{NH}_3 + \text{H}_2\text{O} \rightleftharpoons \text{NH}_4^+ + \text{OH}^-$, equilibrium constant is 1.8×10^{-5} . Calculate equilibrium constant for the equilibrium at 25°C : $\text{NH}_4^+ + \text{H}_2\text{O} \rightleftharpoons \text{NH}_4\text{OH} + \text{H}^+$						
	(A) 1.8×10^{-19}	(B) 5.55×10^{-10}	(C) 1.8×10^{-9}	(D) data insufficient			

4.4	TC 111			75 10 10 + 2500 1 1 1 + 277				
11.	If equilibrium constant of $CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^-$ is 5.55×10^{-10} at $25^{\circ}C$, calculate equilibric constant of $CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$ at $25^{\circ}C$.							
	(A) 1.8×10^{-4}	=	(C) 5.55×10^4	(D) 1.8×10^{-5}				
рн (OF SOLUTION	(D) 1.0 × 10	(C) 3.33 × 10	(D) 1.0 × 10				
12.								
14.	(A) 9.82		(C) 8.82					
12	` ′	(B) 10.18	• •	(D) - 9.82				
13.	-	the pOH of pure water	_	(D) 25%C				
1.4	(A) 45°C	(B) 25°C	(C) 15°C	(D) 35°C				
14.	For pure water at 25°C and 50°C, the correct relation is : (A) $pH_{25^{\circ}C} = pH_{50^{\circ}C}$ (B) $pH_{25^{\circ}C} > pH_{50^{\circ}C}$ (C) $pH_{50^{\circ}C} > pH_{25^{\circ}C}$ (D) Can't say							
4 =								
15.	_			atter at this temperature : ?				
	(A) 6.7	(B) 7	(C) 7.6	(D) 6.4				
16.	For pure water at 10°C and 60°C, the correct relation is:							
	(A) $pOH_{10^{\circ}C} = pOH_{60^{\circ}C}$ (B) $pOH_{10^{\circ}C} > pOH_{60^{\circ}C}$ (C) $pOH_{60^{\circ}C} > pOH_{10^{\circ}C}$ (D) Can't say							
17.	At – 50°C, autoprotolysis of NH ₃ gives $[NH_4^+] = 1 \times 10^{-15}$ M. Hence, autoprotolysis constant of NH ₃ is :							
	(A) $\sqrt{1\times10^{-15}}$	(B) 1×10^{-30}	(C) 2×10^{-30}	(D) 2×10^{-15}				
18.	For a 10^{-3} M solution of a weak monoacidic base ($K_b = 5 \times 10^{-4}$), calculate the % ionisation of base.							
	Report your answer rounding it off to the nearest whole number.							
19.	What is the K_b of a wear	ak base that can produce o	one OH- ion per molecule,	, if its 0.04 M solution is 2.5% ionized:				
	(A) 2.5×10^{-4}	(B) 2.5×10^{-6}	(C) 2.5×10^{-5}	(D) 2.5×10^{-7}				
20.	The degree of dissociation of 0.04 M HA solution is 0.01. What would be the degree of dissociation of 0.01 M solution of the acid at the same temperature ?							
	(A) 0.02	(B) 0.16	(C) 0.005	(D) 0.04				
21.	CO ₂ in aqueous solution	CO_2 in aqueous solution shows following ionic equilibrium : $2H_2O + CO_2 \rightleftharpoons HCO_3^- + H_3O^+$						
	If hydronium ion (H ₃ O ⁺) concentration at 25°C is 2 x 10 ⁻⁶ M, what is hydroxide ion (OH ⁻) concentration							
	(A) $5 \times 10^{-8} \text{ M}$	(B) $2 \times 10^8 \text{ M}$	(C) $5 \times 10^{-9} \text{ M}$	(D) 0.05 M				
22.	What is the percent ionization of a 0.01 M HCN solution : Given $K_a = 6.4 \times 10^{-9}$.							
	(A) $8 \times 10^{-4} \%$	(B) 0.08 %	(C) $8 \times 10^{-3} \%$	(D) 0.8 %				
23.	Which solution has ma	ximum pH:						
	(A) $0.01 \text{ M H}_2\text{SO}_4$	(B) 0.01 M HCl	(C) 0.01 M Ba(OH) ₂	(D) 0.01 M NaOH				
24.	(a) pH of a NaOH solu	a) pH of a NaOH solution is 10.3. What is concentration of NaOH solution?						
	(b) What is molar concentration of Sr(OH) ₂ if its solution has pH of 12 ?							
	(A) [NaOH] = 2×10^{-4} M		(B) $[Sr(OH)_2] = 5 \times 10^{-3} \text{ M}$					
	(C) Both (A) and (B)		(D) None of these					
25.		_	d must be dissolved to produce 250 ml of an aqueous solution of $pH = 3.52$?					
	Assume complete diss		(6) 2.75	(D) 7.5 10.5				
	(A) 3.75×10^{-5}		(C) 3.75×10^{-4}	(D) 7.5×10^{-3}				
26.	pH of 10 ⁻⁸ N NaOH solution is							
	(A) 7.2	(B) 6.8	(C) 6.98	(D) 7.02				

Answers

RACE # 39

1. (AB) 2. (C) 3. (B) 4. (B) 5. (BC) 6. (B) 7. (B) 9. (D) 10. (B) 11. (D)

12. (A) 13. (C) 14. (B) 15. (D) 16. (B) 17. (B) 18. 50 19. (C) 20. (D) 21. (C)

22. (B) **23.** (C) **24.** (C) **25.** (A) **26.** (D)