QUADRATIC EQUATIONS

FACTORISATION METHODS TO FIND THE SOLUTION OF QUADRATIC EQUATIONS

Steps to find the solution of given quadratic equation by factorisation

- Firstly, write the given quadratic equation in standard form $ax^2 + bx + c = 0$.
- Find two numbers α and β such that sum of α and β is equal to b and product of α and β is equal to ac.
- Write the middle term bx as $\alpha x + \beta x$ and factorise it by splitting the middle term and let factors are (x + p) and (x + q) i.e. $ax^2 + bx + c = 0 \Rightarrow (x + p)(x + q) = 0$
- Now equate reach factor to zero and find the values of x.
- These values of x are the required roots/solutions of the given quadratic equation.

IMPORTANT QUESTIONS

Solve the quadratic equation by using factorization method: $x^2 + 2x - 8 = 0$

Solution: $x^2 + 2x - 8 = 0$

$$\Rightarrow x^2 + 4x - 2x - 8 = 0 \Rightarrow x(x+4) - 2(x+4) = 0$$

\Rightarrow (x+4)(x-2) = 0 \Rightarrow x + 4 = 0, x - 2 = 0 \Rightarrow x = -4, 2

Questions for practice

- 1. Solve the quadratic equation using factorization method: $x^2 + 7x 18 = 0$
- 2. Solve the quadratic equation using factorization method: $x^2 + 5x 6 = 0$
- 3. Solve the quadratic equation using factorization method: $y^2 4y + 3 = 0$
- **4.** Solve the quadratic equation using factorization method: $x^2 21x + 108 = 0$
- 5. Solve the quadratic equation using factorization method: $x^2 11x 80 = 0$
- **6.** Solve the quadratic equation using factorization method: $x^2 x 156 = 0$
- 7. Solve the following for x: $\frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$.
- **8.** Solve the following for $x : \frac{1}{2a+b+2x} = \frac{1}{2a} + \frac{1}{b} + \frac{1}{2x}$

NATURE OF ROOTS

The roots of the quadratic equation $ax^2 + bx + c = 0$ by quadratic formula are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{D}}{2a}$$

where $D = b^2 - 4ac$ is called discriminant. The nature of roots depends upon the value of discriminant D. There are three cases –

Case - I

When D > 0 i.e. $b^2 - 4ac > 0$, then the quadratic equation has two distinct roots.

i.e.
$$x = \frac{-b + \sqrt{D}}{2a}$$
 and $\frac{-b - \sqrt{D}}{2a}$

Case - II

When D = 0, then the quadratic equation has two equal real roots.

i.e.
$$x = \frac{-b}{2a}$$
 and $\frac{-b}{2a}$

Case - III

When D < 0 then there is no real roots exist.

IMPORTANT QUESTIONS

Find the discriminant of the quadratic equation $2x^2 - 4x + 3 = 0$, and hence find the nature of its roots.

Solution : The given equation is of the form $ax^2 + bx + c = 0$, where a = 2, b = -4 and c = 3.

Therefore, the discriminant, $D = b^2 - 4ac = (-4)^2 - (4 \times 2 \times 3) = 16 - 24 = -8 < 0$

So, the given equation has no real roots.

Ouestions for Practice

- 1. Find the discriminant and the nature of the roots of quadratic equation: $3\sqrt{3} x^2 + 10x + \sqrt{3} = 0$.
- 2. Find discriminant and the nature of the roots of quadratic equation: $4x^2 2x^2 + 3 = 0$.
- 3. Find discriminant and the nature of the roots of quadratic equation: $4x^2 12x + 9 = 0$.
- **4.** Find discriminant and the nature of the roots of quadratic equation: $5x^2 + 5x + 6 = 0$.
- **5.** Write the nature of roots of quadratic equation $4x^2 + 4\sqrt{3}x + 3 = 0$.
- **6.** Write the nature of roots of the quadratic equation $9x^2 6x 2 = 0$.
- 7. Write the nature of roots of quadratic equation : $4x^2 + 6x + 3 = 0$
- 8. The roots of $ax^2 + bx + c = 0$, $a \ne 0$ are real and unequal. What is value of D?
- **9.** If $ax^2 + bx + c = 0$ has equal roots, what is the value of c?

QUADRATIC FORMULA METHOD

Steps to find the solution of given quadratic equation by quadratic formula method:

- Firstly, write the given quadratic equation in standard form $ax^2 + bx + c = 0$.
- Write the values of a, b and c by comparing the given equation with standard form.
- Find discriminant $D = b^2 4ac$. If value of D is negative, then is no real solution i.e. solution does not exist. If value of $D \ge 0$, then solution exists follow the next step.
- Put the value of a, b and D in quadratic formula $x = \frac{-b \pm \sqrt{D}}{2a}$ and get the required roots/solutions.

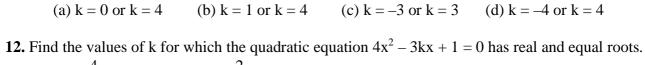
IMPORTANT OUESTIONS

Solve the quadratic equation by using quadratic formula: $x^2 + x - 6 = 0$

Solution: Here, a = 1, b = 1, c = -6

$$\Rightarrow$$
 D = $b^2 - 4ac = 1 - 4(1)(-6) = 1 + 24 = 25 > 0$

Now,
$$x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{25}}{2(1)} = \frac{-1 \pm 5}{2} \implies x = \frac{-1 - 5}{2} \text{ or } \frac{-1 + 5}{2} \implies x = \frac{-6}{2} \text{ or } \frac{4}{2} \implies x = -3 \text{ or } 2$$


Questions for practice

- 1. Solve the quadratic equation by using quadratic formula: $x^2 7x + 18 = 0$
- 2. Solve the quadratic equation by using quadratic formula: $x^2 5x + 6 = 0$
- 3. Solve the quadratic equation by using quadratic formula: $y^2 + 4y + 3 = 0$
- **4.** Solve the quadratic equation by using quadratic formula: $x^2 + 11x 80 = 0$
- 5. Solve the quadratic equation by using quadratic formula: $x^2 + x 156 = 0$
- 6. Solve for x by using quadratic formula: $9x^2 9(a + b)x + (2a^2 + 5ab + 2b^2) = 0$.

MCQ (1 MARK)

- 1. The roots of the equation $x^2 + 7x + 10 = 0$ are
 - (a) 2 and 5
- (b) -2 and 5 (c) -2 and -5 (d) 2 and -5
- 2. If α, β are the roots of the quadratic equation $x^2 + x + 1 = 0$, then $\frac{1}{\alpha} + \frac{1}{\beta}$
 - (a) 0
- (b) 1
- (c) -1
- (d) none of these

3.	If the equation x^2 (a) $k < 4$	x + 4x + k = 0 h (b) $k > 4$			
4.	-	$(x^2 + 6kx + 4) = 0$ (b) $\pm \frac{3}{2}$	-		s are both equal to
5.	If the equation x^2 (a) $-3 < b < 3$	$a^2 - bx + 1 = 0 \text{ h}$ 3 (b) -2	as two distinct $2 < b < 2$	roots then (c) $b > 2$	(d) b < -2
6.	If $x = 1$ is a common root of the equations $ax^2 + ax + 3 = 0$ and $x^2 + x + b = 0$ then $ab = 2$				
	(a) 6	(b) 3	(c) -3	(d) $\frac{7}{2}$	
7.	If p and q are the (a) $p = 1$, $q =$	roots of the eq -2 (b) p	uation $x^2 - px$ = -2, $q = 0$	+ q = 0, then (c) $b = 0$, $q =$	1 (d) $p = -2$, $q = 1$
8. If the equation $ax^2 + bx + c = 0$ has equal roots then $c =$					
	(a) $\frac{-b}{2a}$	(b) $\frac{b}{2a}$	(c) $\frac{-b^2}{4a}$	(d) $\frac{b^2}{4a}$	
9.	If the equation as (a) $a = \pm 1$	$x^2 + 2x + a = 0$ (b) $a = 0$			
10. Find the values of k for which the quadratic equation $2x^2 + kx + 3 = 0$ has real equal roots.					

11. Find the values of k for which the quadratic equation kx(x-3) + 9 = 0 has real equal roots.

 $(d) \pm 2$

(b) $\pm \frac{2}{3}$ (c) ± 2 (a) $\pm \frac{4}{3}$ (d) none of these

(c) 0

13. The value of k for which equation $9x^2 + 8xk + 8 = 0$ has equal roots is: (b) only -3(a) only 3 (c) ± 3

14. Which of the following is not a quadratic equation?

(b) $2\sqrt{6}$

(a) $\pm 2\sqrt{6}$

(a) $x - \frac{3}{x} = 4$ (b) $3x - \frac{5}{x} = x^2$ (c) $x + \frac{1}{x} = 3$ (d) $x^2 - 3 = 4x^2 - 4x$