# **DPP - Daily Practice Problems**

| Date : Start Time :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | End Time :                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| CHEMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STRY (CC23)                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| SYLLABUS : Aldehydes, Keton<br>Max. Marks : 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | es and Carboxylic acids Time : 60 min.                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| GENERAL INSTRU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| <ul> <li>Section I has 5 MCQs with ONLY 1 Correct Option, 3 marks for Section II has 4 MCQs with ONE or MORE THAN ONE Correct. For each question, marks will be awarded in one of the followin Full marks: +4 If only the bubble(s) corresponding to all the or Partial marks: +1 For darkening a bubble corresponding to each Zero marks: If none of the bubbles is darkened.</li> <li>Negative marks: -2 In all other cases.</li> <li>Section III has 5 Single Digit Integer Answer Type Questions, cases.</li> <li>Section IV has Comprehension/Matching Cum-Comprehension option, 3 marks for each Correct Answer and 0 marks in all oth Section V has 1 Matching Type Questions, 2 mark for the correct Answer to evaluate your Response Grids yourself with the here.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>a options.</li> <li>and categories:</li> <li>b orrect option(s) is (are) darkened.</li> <li>c orrect option provided NO INCORRECT option is darkened.</li> <li><b>3</b> marks for each Correct Answer and 0 marks in all other</li> <li>a Type Questions having <b>5</b> MCQs with ONLY ONE correct er cases.</li> <li>b rect matching of each row and 0 marks in all other cases.</li> </ul> |  |  |
| <ul> <li>Section I - Straight Objective Type         This section contains 5 multiple choice questions. Each question has 4 choices (a), (b), (c) and (d), out of which ONLY ONE is correct.     </li> <li>In the given transformation, which of the following is the most appropriate reagent ?         CH=CH−COCH<sub>3</sub> _ Reagent → HO         HO         CH=CH−CH<sub>2</sub>−CH<sub>3</sub>         CH=CH−CH<sub>2</sub>−CH<sub>3</sub>         HO         CH=CH−CH<sub>2</sub>−CH<sub>3</sub>         HO         CH=CH−CH<sub>2</sub>−CH<sub>3</sub>         CH=CH<sup>2</sup>−CH<sub>2</sub>−</li></ul> | (a) $NH_2NH_2$ , $\overline{OH}$ (b) $Zn - Hg/HCl$<br>(c) Na, Liq. $NH_3$ (d) $NaBH_4$<br>An organic compound A upon reacting with $NH_3$ gives B.<br>On heating B gives C. C in presence of KOH reacts with $Br_2$<br>to given $CH_3CH_2NH_2$ . A is :<br>(a) $CH_3COOH$<br>(b) $CH_3CH_2CH_2COOH$<br>(c) $CH_3 - CH - COOH$<br>$\downarrow$<br>$CH_3$<br>(d) $CH_3CH_2COOH$                          |  |  |
| Response Grid 1. abcd 2. abcd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Space for Rough Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |

3. An organic compound A, C<sub>5</sub>H<sub>8</sub>O; reacts with H<sub>2</sub>O, NH<sub>3</sub> and CH<sub>2</sub>COOH as described below:



- An ester (A) with molecular fomula,  $C_9H_{10}O_2$  was treated with excess of  $CH_3MgBr$  and the complex so formed was 4. treated with  $H_2SO_4^3$  to give an olefin (B). Ozonolysis of (B) gave a ketone with molecular formula  $C_8H_8O$  which shows positive iodoform test. The structure of (A) is
  - (a)  $C_{H_5}COOC_{2}H_5$ (b)  $C_{2}H_5COOC_{7}H_5$ (c)  $H_3CCOOCH_2C_6H_5$

GRID

- (d)  $p H_3C C_6H_4 COCH_3$
- Which of the following reagent(s) used for the conversion? 5. OH



Section II - Multiple Correct Answer Type This section contains 4 multiple correct answer(s) type questions. Each question has 4 choices (a), (b), (c) and (d), out of which ONE OR MORE is/are correct.

- $\xrightarrow{\text{OR}} C_6\text{H}_5\text{CH}_2\text{OH} + C_6\text{H}_5\text{COO}^-$ 6. 2C<sub>6</sub>H<sub>5</sub>CHO -Which of the following statement(s) is/are correct regarding the above reduction of benzaldehyde to benzyl alcohol?
  - One hydrogen is coming from H<sub>2</sub>O as H<sup>+</sup> and another (a) from C<sub>6</sub>H<sub>5</sub>CHO as H<sup>-</sup>
  - (b) from C<sub>6</sub>H<sub>5</sub>CHO as H<sup>+</sup>
  - (c) both in the form of H

(d) The reduction is an example of disproportionation reaction

W14 0 #1+4

7. HO 
$$\xrightarrow{30\% \text{ H}_2\text{SO}_4}_{\text{O}} \xrightarrow{\text{W}}_{\text{(minor)}} \xrightarrow{\text{KMnO}_4/\text{H}, \Delta}_{\text{(major)}} Y$$

- Of the 4 compounds listed above, more than one will :
- (a) exhibit resonance due to conjugation in their structure
- show NaHCO<sub>3</sub> test (b)
- have a cyclic structure (c)
- (d) show 2, 4-DNPh precipitation
- 8. One mole of  $C_6H_5COCH_2CH_3$  is treated with one mole of  $Br_2$ in basic solution, the product(s) formed is (are)
  - (a) 1 mole of  $C_{\ell}H_{s}COCBr_{3}CH_{3}$
  - (b) 1 mole of C<sub>6</sub>H<sub>5</sub>COCHBrCH<sub>2</sub>Br
  - (c)  $0.5 \text{ mole of } C_6 H_5 \text{COCBr}_2 \text{CH}_3$
  - (d) 0.5 mole of unreacted  $C_6H_5COCH_2CH_3$ . 0

9. 
$$R - \overset{\parallel}{C} - R + CH_2N_2 \longrightarrow Product(s) \text{ is/are}$$
  
OCH<sub>3</sub>

(a) 
$$\operatorname{RCOCH}_2 R$$
 (b)  $\operatorname{RCHR}_2$   
(c)  $\operatorname{RC}_2 CH$  (d) All the three

#### Section III - Integer Type

This section contains 5 questions. The answer to each of the questions is a single digit integer ranging from 0 to 9.

**10.** 
$$\operatorname{CH_3CCH_3}_{H_3} + \operatorname{CH_3CH_2CCH_3}_{\Delta} \xrightarrow{\operatorname{KOH(aq)}}_{\Delta} (A)$$

(A) = number of aldol condensation product (including stereoisomer).

In the scheme given below, the total number of intramolecular 11. aldol condensation products formed from (Y) is

$$\frac{1.O_3}{2.Zn,H_2O}(Y) \xrightarrow{1.NaOH(aq.)}{2.Heat}$$

Total number of enol possible for the compound formed 12. during given reaction will be (including stereoisomer): **O** 

$$CH_3MgBr + CH_3CH_2CCl \rightarrow$$

13. The total number of carboxylic acid groups in the product P is



14. Among the following, the number of reaction(s) that product(s) benzaldehyde is





### **Section IV - Comprehension Type**

Directions (Qs. 15-19): Based upon the given paragraphs, 4 multiple choice questions have to be answered. Each question has 4 choices (a), (b), (c) and (d), out of which ONLY ONE is correct.

#### PARAGRAPH-1

Column I contains some reaction and Column II & Column III contains Reagent used and Products formed respectively.



- **18.** What happens when acetic acid is treated with conc.  $H_2SO_4$ ? (a)  $CO+H_2O$  (b)  $CH_4+CO_2$ (c)  $CO+CH_4$  (d) No reaction
- **19.** If formic acid is replaced by benzoylformic acid,  $C_6H_5$ COCOOH the product formed will be

Response

- (a)  $C_6H_5COOH+CO+CO_2$
- (b)  $C_6H_5COOH+CO_2$
- (c)  $C_6H_5COOH+CO$
- (d)  $C_6H_5CHO + CO_2$





18. abcd

## A **P ()** B **P ()** C **P ()** D **P ()**

C

(s

| H <sub>3</sub> C CH <sub>3</sub> | S. | Nucleophilic addition |
|----------------------------------|----|-----------------------|
| 19.@b©d                          | 6  |                       |

| GRID 20. $\vec{A} - \vec{p}\vec{q}\vec{T}\vec{s}; \vec{B} - \vec{p}\vec{q}\vec{T}\vec{s}; C - \vec{p}\vec{q}\vec{T}\vec{s}; D - \vec{p}\vec{q}\vec{T}\vec{s}$ |    |                  |    |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------|----|--|
| DAILY PRACTICE PROBLEM DPP CHAPTERWISE 23 - CHEMISTRY                                                                                                         |    |                  |    |  |
| Total Questions                                                                                                                                               | 20 | Total Marks      | 74 |  |
| Attempted                                                                                                                                                     |    | Correct          |    |  |
| Incorrect                                                                                                                                                     |    | Net Score        |    |  |
| Cut-off Score                                                                                                                                                 | 24 | Qualifying Score | 35 |  |
| Success Gap = Net Score – Qualifying Score                                                                                                                    |    |                  |    |  |
| Net Score = (Correct × 4) – (Incorrect × 1)                                                                                                                   |    |                  |    |  |

Space for Rough Work

## DAILY PRACTICE PROBLEMS

# CHEMISTRY SOLUTIONS

# DPP/CC23

1. (a) Aldehydes and ketones can be reduced to hydrocarbons by the action (i) of amalgamated zinc and concentrated hydrochloric acid (Clemmensen reduction), or (b) of hydrazine  $(NH_2NH_2)$  and a strong base like NaOH, KOH or potassium *tert*-butoxide in a high-boiling alcohol like ethylene glycol or triethylene glycol (Wolf-Kishner reduction)

HO  

$$CH = CH - COCH_3$$
  
 $MI_2NH_2/OH^-$   
 $Wolf-kishner$   
Reduction  
 $HO$   
 $CH = CH - CH_2 - CH_3$ 

-OH group and alkene are acid-sensitive groups so clemmensen reduction can not be used. Acid sensitive substrate should be reacted in the Wolf-Kishner reduction which utilise strongly basic conditions.

2. (d) 
$$A \xrightarrow{NH_3} B \xrightarrow{\Delta} C \xrightarrow{Br_2} CH_3CH_2NH_2$$

Reaction (III) is a Hofmann bromamide reaction. Now formation of  $CH_3CH_2NH_2$  is possible only from a compound  $CH_3CH_2CONH_2(C)$  which can be obtained from the compound  $CH_3CH_2COO^-NH_4^+(B)$ .

Thus (A) should be CH<sub>3</sub>CH<sub>2</sub>COOH

$$CH_{3}CH_{2} - \overset{\parallel}{C} - OH \xrightarrow{\text{NH}_{3}} CH_{3}CH_{2}COO^{-}NH_{4}^{+}$$
(A)
(B)
$$\xrightarrow{\Delta} CH_{3}CH_{2}CONH_{2}$$
(C)
KOH  $\downarrow$  Br<sub>2</sub>

$$CH_3CH_2NH_2$$

4.

**(a)** 

3. (c) Given compound A is 
$$CH_3 - CH_2 - C = C = O$$
  
 $| CH_3$ 

Reactions given are as following :

$$CH_3 - CH_2 - C = C = O \xrightarrow{NH_3} CH_3 \rightarrow CH_3$$

$$\begin{bmatrix} CH_3 - CH_2 - C = C - O^- \\ CH_3 & H_3 \end{bmatrix}$$

$$\begin{bmatrix} CH_3 - CH_2 - C = C - OH \\ CH_3 & H_2 \end{bmatrix}$$

$$\begin{bmatrix} CH_3 - CH_2 - C = C - OH \\ CH_3 & H_2 \end{bmatrix}$$

$$Tautomerisation \downarrow$$

$$CH_3 - CH_2 - CH = C - NH_2$$

$$CH_3 - CH_2 - CH = C - NH_2$$

$$CH_3 - CH_2 - CH - COH - CH_3$$

$$CH_3 - CH_2 - CH - COH - COH - CH_3$$

$$CH_3 - CH_2 - CH - CH - COH - CH_3$$

$$CH_3 - CH_2 - CH_3 - CH_3 - CH_3 - CH_3 - CH_3$$

$$CH_3 - CH_2 - CH - CH_3 - CH_3 - CH_3$$

$$CH_3 - CH_2 - CH_3 - CH_3 - CH_3 - CH_3 - CH_3$$

$$CH_3 - CH_2 - CH_3 - CH_3 - CH_3 - CH_3 - CH_3 - CH_3$$

$$CH_3 - CH_2 - CH_3 - CH_3$$

 $C_{6}H_{5} \xrightarrow[]{} \begin{array}{c} OMgBr \\ | \\ C_{6}H_{5} \xrightarrow[]{} \begin{array}{c} C \\ - \end{array} \\ CH_{3} \xrightarrow{H_{2}O} \\ C_{6}H_{5} \xrightarrow[]{} \begin{array}{c} CH_{3} \\ | \\ C \\ OH \end{array} \\ CH_{3} \xrightarrow{H_{2}O} \\ OH \end{array}$ 



C<sub>6</sub>H<sub>5</sub>COCH<sub>3</sub>+HCHO

 $C_6H_5COCH_3 \xrightarrow{3I_2+4NaOH} CHI_3 + C_6H_5COO^-Na^+$ 

The hydrogen atom that is added to the carbonyl (a, d) carbon of the aldehyde in the reduction is derived directly from the other aldehyde molecule as a hydride ion. The second hydrogen that is added to the negatively charged oxygen is coming from the solvent (consult mechanism of Cannizzaro reaction). Oxidation of one molecule of the compound at the expense of other molecule of the same compound is known as disproportionation.

5. (a)





8. Substitution by one Br gives C<sub>6</sub>H<sub>5</sub>COCHBrCH<sub>3</sub>, the electron-withdrawing Br increases the acidity of the remaining (c,d)  $\alpha$  hydrogen which reacts more rapidly than the hydrogens on the unsubstituted ketones.

=N

6.



~-

 $-N_2$ 

9. (a,c) 
$$R \xrightarrow{\frown} C + CH_2 - N = N \longrightarrow R \xrightarrow{O^-} CH_2 - N \xrightarrow{\downarrow} R$$

$$R - C - CH_2R \longleftarrow R - C - CH_2 \longrightarrow R - C - CH_2 \xrightarrow{O_1}_{R} \xrightarrow{P_2}_{R} \xrightarrow{P_1}_{R} \xrightarrow{P_1}_{R$$

11. One product (Z).













$$CH_3 - \overset{i}{C} = O \xrightarrow{-H^+} CH_3 - \overset{i}{C} = O$$

Thus acetic acid will be regenerated, i.e. there is no reaction.



