Session 3

Discontinuity of a Function

A function f which is not continuous, said to be discontinuous functions, i.e. if there is a break in the function of any kind, then it is discontinuous functions.

There are two types of discontinuity

- 1. Removable discontinuity
- 2. Non-removable discontinuity

Removable Discontinuity

In this type of discontinuity, $\lim f(x)$ necessarily

exists, but is either not equal to f(a) or f(a) is not defined. Such function is said to have a removable discontinuity of the first kind.

In this case, it is possible to redefine the function in such a manner that $\lim_{x \to a} f(x) = f(a)$ and thus making function continuous.

These discontinuities can be further classified as

- (i) Missing point discontinuity
- (ii) Isolated point discontinuity

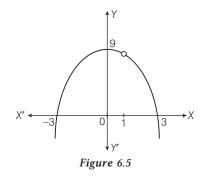
Examples of Missing Point Discontinuity

Here, $\lim_{x \to a} f(x)$ exists finitely but f(a) is not defined. e.g.

(i) Let
$$f(x) = \frac{(x-1)(9-x^2)}{(x-1)}$$

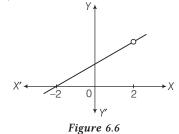
clearly $f(1) \rightarrow \frac{0}{9}$ form

 \therefore f(x) has missing point discontinuity. Shown as,



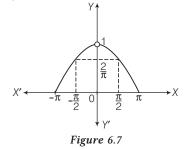
(ii)
$$f(x) = \frac{x^2 - 4}{x - 2}$$
 has missing point discontinuity at $x = 2$.

Shown as,



(iii)
$$f(x) = \frac{\sin x}{x}$$
 has missing point discontinuity at $x = 0$.

Shown as,



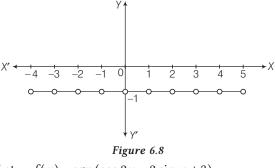
Examples of Isolated Point Discontinuity

Here, $\lim_{x \to a} f(x)$ exists and f(a) also exists but

$$\lim_{x \to a} f(x) \neq f(a).$$
 e.g

(i) Let
$$f(x) = [x] + [-x] \implies f(x) = \begin{cases} 0, \text{ if } x \in I \\ -1, \text{ if } x \notin I \end{cases}$$

where x = Integer, has isolated point discontinuity, can be shown as



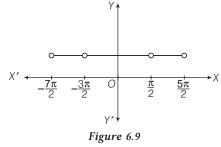
(ii) Let
$$f(x) = \text{sgn}(\cos 2x - 2\sin x + 3)$$

 $\Rightarrow f(x) = \text{sgn}(1 - 2\sin^2 x - 2\sin x + 3)$
 $= \text{sgn}(2(2 + \sin x)(1 - \sin x))$

$$= \begin{cases} 0, \text{ if } x = 2n\pi + \frac{\pi}{2} \\ 1, \text{ if } x \neq 2n\pi + \frac{\pi}{2} \end{cases}$$

 \therefore f(x) has an isolated point discontinuity at $x = 2n\pi + \frac{\pi}{2}$.

Shown as,



Non-removable Discontinuity

In this type of discontinuity $\lim_{x \to a} f(x)$ doesn't exist and therefore, it is not possible to redefine the function in any manner and make it continuous. Such function is said to have non-removable discontinuity or discontinuity of second kind.

Such discontinuities can further be classified into three types.

(i) Finite Discontinuity

If for a function f(x): $\lim_{x \to a^{-}} f(x) = L_1$ and $\lim_{x \to a^{+}} f(x) = L_2$ and $L_1 \neq L_2$, then such function is said to have a finite

discontinuity or a jump discontinuity.

In this case, the non-negative difference between the two limits is called the **Jump of Discontinuity**. A function having a finite number of jumps in a given interval is called a **Piecewise Continuous** or **Sectionally Continuous Function**.

Examples of Finite Discontinuity

(i)
$$f(x) \tan^{-1}\left(\frac{1}{x}\right)$$
 at $x = 0$
RHL i.e. $f(0^+) = \frac{\pi}{2}$
LHL i.e. $f(0^-) = -\frac{\pi}{2}$ jump $= \pi$

(ii)
$$f(x) = \frac{|\sin x|}{x}$$
 at $x = 0$
RHL i.e. $f(0^+) = 1$
LHL i.e. $f(0^-) = -1$ jump = 2

(ii) Infinite Discontinuity

If for a function $f(x) : \lim_{x \to a^{-}} f(x) = L_1$ and $\lim_{x \to a^{+}} f(x) = L_2$ and either L_1 or L_2 is infinity, then such function is said to have infinite discontinuity.

In other words, If x = a is a vertical asymptote for the graph of y = f(x), then f is said to have infinite discontinuity at a.

Examples of Infinite Discontinuity

(i)
$$f(x) = \frac{x}{1-x}$$
, at $x = 1$
RHL i.e. $f(1^+) = -\infty$
LHL i.e. $f(1^-) = \infty$
(ii) $f(x) = \frac{1}{x^2}$, at $x = 0$
RHL i.e. $f(0^+) = \infty$
LHL i.e. $f(0^-) = \infty$

(iii) Oscillatory Discontinuity

If for a function f(x): $\lim_{x \to a} f(x)$ doesn't exist but oscillate between two finite quantities, then such function is said to have oscillatory discontinuity.

Examples of Oscillatory Discontinuity

(i)
$$f(x) = \sin\left(\frac{1}{x}\right)$$

 $\Rightarrow \lim_{x \to 0} f(x) = \text{a value between} -1 \text{ to } 1.$

:. Limit doesn't exist, as it oscillates between -1 and 1 as $x \rightarrow 0$.

(ii)
$$f(x) = \cos\left(\frac{1}{x}\right)$$

 $\Rightarrow \lim_{x \to 0} \cos\left(\frac{1}{x}\right) = a \text{ value between } -1 \text{ to } 1.$

:. Limit doesn't exist, as it oscillates between -1 to 1 at $x \rightarrow 0$.

List of Continuous Functions

	Function $f(x)$	Interval in which $f(x)$ is continuous
1.	constant <i>c</i>	$(-\infty, \infty)$
	x^n , <i>n</i> is an integer ≥ 0	$(-\infty, \infty)$
3.	x^{-n} , <i>n</i> is a positive integer	$(-\infty,\infty)-\{0\}$
4.	x-a	$(-\infty, \infty)$
5.	$P(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$	$(-\infty,\infty)$
6.	$\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are	$(-\infty, \infty) - \{ x : q(x) = 0 \}$
	polynomial in x	
7.	$\sin x$	$(-\infty, \infty)$
8.	cos x	$(-\infty, \infty)$
9.	tan x	$(-\infty,\infty)-\left\{(2n+1)\frac{\pi}{2}:n\in I\right\}$
10.	cot x	$(-\infty,\infty)-\{n\pi:n\in I\}$
11.	sec x	$(-\infty,\infty) - \{(2n+1)\pi/2 : n \in I\}$
12.	cosec x	$(-\infty,\infty)-\{n\pi:n\in I\}$
13.	e ^x	$(-\infty, \infty)$
14.	$\log_e x$	$(0, \infty)$
		$\begin{pmatrix} x - 1, & x < 0 \end{pmatrix}$

Example 11 *Examine the function,* $f(x) = \begin{cases} x - 1, & x < 0 \\ 1/4, & x = 0 \\ x^2 - 1, & x > 0 \end{cases}$

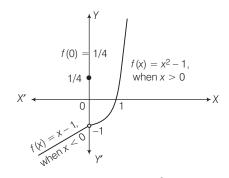
Discuss the continuity and if discontinuous remove the discontinuity.

Sol. $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = -1$

But f(0) = 1/4. Thus, f(x) has removable discontinuity and f(x) could be made continuous by taking

$$f(0) = -1 \implies f(x) = \begin{cases} x - 1, & x < 0\\ -1, & x = 0\\ x^2 - 1, & x > 0 \end{cases}$$

Graphically f(x) could be plotted as showing



Example 12 *Show the function,* $f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1}, & \text{when } x \neq 0 \\ 0, & \text{when } x = 0 \end{cases}$

has non-removable discontinuity at x = 0.

Sol. We have,
$$f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1}, & \text{when } x \neq 0 \\ 0, & \text{when } x = 0 \end{cases}$$

∴ RHL at $x = 0$, let $x = 0 + h$

$$\Rightarrow \lim_{x \to 0^+} f(x) = \lim_{h \to 0} f(0+h) = \lim_{h \to 0} \frac{e^{\frac{1}{0+h}} - 1}{e^{0+h} + 1} = \lim_{h \to 0} \frac{e^{\frac{1}{h}} - 1}{e^{\frac{1}{h}} + 1}$$

$$\Rightarrow \lim_{x \to 0^+} f(x) = \lim_{h \to 0} \frac{1 - \frac{1}{e^{1/h}}}{1 + \frac{1}{e^{1/h}}} \Rightarrow \lim_{x \to 0^+} f(x) = \frac{1 - 0}{1 + 0} = 1$$
[as $h \to 0; \frac{1}{h} \to \infty \Rightarrow e^{1/h} \to \infty; 1/e^{1/h} \to 0$]
∴ $\lim_{x \to 0^+} f(x) = 1$
Again, LHL at $x = 0$, let $x = 0 - h$

$$\Rightarrow \lim_{x \to 0^-} f(x) = \lim_{h \to 0} f(0-h)$$

$$= \lim_{h \to 0} \frac{e^{-1/h} - 1}{e^{-1/h} + 1} = \frac{0 - 1}{0 + 1} = -1$$
[as $h \to 0; e^{-1/h} \to 0$]

$$\lim_{x \to 0^{-}} f(x) = -1$$

$$\implies \lim_{x \to 0^{+}} f(x) \neq \lim_{x \to 0^{-}} f(x).$$

Thus, f(x) has non-removable discontinuity.

Example 13 Show $f(x) = \frac{1}{|x|}$ has discontinuity of

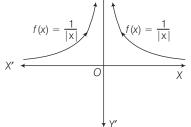
second kind at x = 0.

_

Sol. Here, $f(0) = \frac{1}{|0|}$, which shows function has discontinuity of second kind.

Graphically Here, the graph is broken at x = 0 as

$$\Rightarrow \qquad f(x) \to \infty$$



Therefore, f(x) has discontinuity of second kind.

Exercise for Session 3

1. Which of the following function(s) has/have removable discontinuity at the origin?

(a) $f(x) = \frac{1}{1+2^{\cot x}}$	(b) $f(x) = \cos\left(\frac{ \sin x }{x}\right)$
(c) $f(x) = x \sin \frac{\pi}{x}$	$(d) f(x) = \frac{1}{\ln x }$

 Function whose jump (non-negative difference of LHL and RHL) of discontinuity is greater than or equal to one. is/are

$$(a) f(x) = \begin{cases} \frac{(e^{1/x} + 1)}{(e^{1/x} - 1)}; & x < 0\\ \frac{(1 - \cos x)}{x}; & x > 0 \end{cases}$$

$$(b) g(x) = \begin{cases} \frac{(x^{1/3} - 1)}{(x^{1/2} - 1)}; & x > 0\\ \frac{\ln x}{(x - 1)}; & \frac{1}{2} < x < 1 \end{cases}$$

$$(c) u(x) = \begin{cases} \frac{\sin^{-1} 2x}{\tan^{-1} 3x}; & x \in [0, \frac{1}{2}]\\ \frac{|\sin x|}{x}; & x < 0 \end{cases}$$

$$(d) v(x) = \begin{cases} \log_3(x + 2); & x > 2\\ \log_{1/2}(x^2 + 5); & x < 2 \end{cases}$$

3. Consider the piecewise defined function $f(x) = \begin{cases} \sqrt{-x}, & \text{if } x < 0 \\ 0, & \text{if } 0 \le x \le 4, \text{ choose the answer which best describes } \\ x - 4, & \text{if } x > 4 \end{cases}$

the continuity of this function.

- (a) the function is unbounded and therefore cannot be continuous.
- (b) the function is right continuous at x = 0.
- (c) the function has a removable discontinuity at 0 and 4, but is continuous on the rest of the real line.
- (d) the function is continuous on the entire real line.
- 4. If $f(x) = \text{sgn}(\cos 2x 2\sin x + 3)$, where sgn() is the signum function, then f(x)
 - (a) is continuous over its domain.
 - (b) has a missing point discontinuity.
 - (c) has isolated point discontinuity.
 - (d) has irremovable discontinuity

5.
$$f(x) = \frac{2\cos x - \sin 2x}{(\pi - 2x)^2}$$
; $g(x) = \frac{e^{-\cos x} - 1}{8x - 4\pi}$

h(x) = f(x) for $x < \pi/2 = g(x)$ for $x > \pi/2$, then which of the followings does not hold?

- (a) *h* is continuous at $x = \pi/2$
- (b) *h* has an irremovable discontinuity at $x = \pi/2$
- (c) *h* has a removable discontinuity at $x = \pi/2$

$$(\mathsf{d}) f\left(\frac{\pi^+}{2}\right) = g\left(\frac{\pi^-}{2}\right)$$

Answers

Exercise for Session 3

1. (b,c,d) 2. (a,c,d) 3. (d) 4. (c) 5. (a,c,d)