Chapter 8

Redox Reactions

Solutions

SECTION - A

Objective Type Questions (One option is correct)

1. 12.53 ml of 0.051 M SeO₂ reacted with 25.52 ml of 0.1 M $CrSO_4$ solution. In the reaction Cr^{2+} was oxidised to Cr^{3+} . The oxidation state at which selenium was converted is

(1) 3 (2) +2 (3) 1 (4) 0
Sol. Answer (4)

$$\stackrel{+4}{\text{SeO}_2} + \stackrel{+2}{\text{Cr}}\text{SO}_4 \longrightarrow \text{Cr}^{+3} + \stackrel{x}{\text{Se}}$$

 $nf = 4 - x$ $nf = 3 - 2$
 $= 1$
Number of meq. of SeO_2 = Number of meq. of CrSO_4
 $[0.051 \times (4 - x)] \times 12.53 = (0.1 \times 1) \times 25.52$
 $4 - x = \frac{0.1 \times 1 \times 25.52}{0.051 \times 12.53}$
 $4 - x = 3.99$
 $x \approx 0$

 A sample of NaHCO₃ + Na₂CO₃ required 20 ml of HCl using phenolphthalein as indicator and 35 ml more required if methyl orange is used as indicator. Then molar ratio of NaHCO₃ to Na₂CO₃ is

(1)
$$\frac{1}{2}$$
 (2) $\frac{2}{3}$ (3) $\frac{3}{4}$ (4) $\frac{1}{3}$

Sol. Answer (3)

Let there are x_1 meq. of NaHCO₃ and x_2 meq. of Na₂CO₃.

HPh :
$$\frac{1}{2}$$
 meq. of Na₂CO₃ = meq. of HCl
 $\frac{1}{2}$ x₂ = 20 × N

 $x_2 = 40 N$

 $\frac{7}{5}$

...(i) MeOH : meq. of NaHCO₃ + meq. of Na₂CO₃ = meq. of HCI

 $x_1 + x_2 = 55 N$ x, = 15 N n₁ × 1 = 15 N n ₁ = 15 N $x_{2} = 40 \text{ N}$ n₂ × 2 = 40 N n ₂ = 20 N n₁: n₂ = 15 N : 20 N = 3 : 4

A sample of $FeSO_4$ and FeC_2O_4 is dissolved in H_2SO_4 . The complete oxidation of sample required 8/3 eq. of KMnO₄. After oxidation, the reaction mixture was reduced by Zn. On again oxidation by 3. KMnO₄ required $\frac{5}{3}$ eq. The mole ratio of FeSO₄ and FeC₂O₄ is

(1)
$$\frac{3}{7}$$
 (2) $\frac{7}{3}$ (3) $\frac{5}{7}$

Sol. Answer (2)

$$\begin{array}{c} \underset{n_{1} \text{mole}}{\text{FeSO}_{4}} + \underset{n_{2} \text{e}}{\overset{n_{2} \text{mole}}{\text{FeC}_{2}\text{O}_{4}} + \text{KMnO}_{4} \longrightarrow \text{Fe}^{+3} + \underset{O_{2}}{\overset{H_{4}}{\text{CO}_{2}} + \text{Mn}^{+2} \end{array}$$

Number of eq. of $FeSO_4$ + Number of eq. of FeC_2O_4 = number of eq. of KMnO₄

$$n_1 \times 1 + n_2 \times 3 = \frac{8}{3}$$

 $n_1 + 3n_2 = \frac{8}{3}$
 $n_1 + n_2 = \frac{5}{3}$

By solving (i) and (ii),

$$n_2 = \frac{7}{6}$$
 and $n_2 = \frac{1}{2}$
 $\frac{n_1}{n_2} = \frac{7/6}{1/2} = \frac{7}{3}$

During the oxidation of arsenite ion, AsO_3^{-3} to arsenate AsO_4^{-3-} in alkaline medium, the numbers of moles of 4. hydroxide ions consumed per mole of arsenite ion are

3/2 (1) 2 (2) 3 (3) 2/3 (4)

Sol. Answer (1)

5. The coefficients of I⁻, IO₃ and H⁺ in the following reaction, I⁻ + IO₃ + H⁺ ----- $I_2 + H_2O$ in a balanced state would be respectively (3) 6, 1, 5 (1) 5, 1, 6 (2) 1, 5, 6 (4) 5, 6, 1 Sol. Answer (1) $6H^+ + 5I^- + IO_3^- \rightarrow 3I_2 + 3H_2$ The chromate ion present in water sample is reduced to insoluble chromium hydroxide, Cr(OH)₃ by dithionation, 6. in basic solution. $S_2O_4^{2-} + CrO_4^{2-} + 2H_2O \longrightarrow 2SO_3^{2-} + Cr(OH)_3 + OH^{-}$ 100 L of water requires 387 g of $Na_2S_2O_4$. The molarity of CrO_4^{2-} in waste water is (1) 0.0448 (2)4.448 (3) 0.0148 (4)0.0224 Sol. Answer (3) Balanced redox reaction is $2H_2O + 3S_2O_4^{-2} + 2CrO_4^{-2} \longrightarrow 6SO_3^{-2} + 2Cr^{+3} + 4OH^{-1}$ $M_{Na_2S_2O_4=387}$ Now $2 \times n_{S_2O_4^{-2}} = 3 \times n_{CrO_4^{-2}}$ $\therefore \quad n_{CrO_4^{-2}(in \ 100 \ \ell)} = \frac{2 \times 174}{387} \times \frac{1}{3} = 1.48$:. nCO_4^{-2} in 1 L H₂O = 0.0148 A sample which contains exactly 0.5 g of uranium in the form of U4+. The total uranium is allowed to oxidized 7. by 50 ml of KMnO₄. The reaction taking place is $U^{4+} + KMnO_4 + H_2O \longrightarrow UO_2^{2+} + Mn^{2+} + H_3O^{+}$ Find the concentration of KMnO₄ required for the above purpose [U = 238] Divisions (3) (1) 0.0336 M 0.0084 M 0.0168 M (2)(4) 0.0672 M Sol. Answer (3) On balancing redox reaction $5U^{+4} + 2MnO_4^- \rightarrow 5UO_2^{+2} + 2Mn^{+2}$ n = 2 n = 5Equivalents of KMnO₄ = Equivalents of U⁺⁴ $N \times \frac{50}{1000} = \frac{0.5}{\left(\frac{238}{2}\right)}$ ∴ N = 0.084 Hence $M_{KMnO_4} = \frac{N}{5} = \frac{0.084}{5} = 0.0168 \text{ M}$

A 50 ml of a 20% (w/w) solution of density 1.2 g/ml is diluted until its strength becomes 6% (w/w). Determine 8. the mass of water added (1) 88 g (2)120 g (3) 140 g (4)180 g Sol. Answer (3) $\% \frac{w}{w} = \frac{Wt. \text{ of solute}}{Wt. \text{ of solution}} \times 100$ 1.245 g of CuSO₄.xH₂O was dissolved in water and H₂S gas was passed through it till CuS was completely 9. precipitated. The H₂SO₄ produced in the filtrate required 100 ml of 0.1 M NaOH solution. Calculate x (approximately) (1) 5 (3) 8 (2) 6 7 (4) Sol. Answer (3) Eq. of $H_2SO_4 = Eq.$ of NaOH Eq. of $H_2SO_4 = Eq.$ of $CuSO_4 \cdot xH_2O$ +3 dations (4) 10. Which of the following set correctly represents the actual oxidation state of S atoms present in tetrathionate ion (S₄O₆²⁻)? (1) 0 and +2.5 +1 and +4 0 and +5 (2)Sol. Answer (4) $O^{-}-S^{\parallel}-S^{-}-S^{-}S^{-}-S^{-}S^{-}$ Consider the reaction and the statements that follow 11. $(NH_4)_2 Cr_2O_7 \xrightarrow{\Delta} N_2 + Cr_2O_3 + 4H_2O$ S-I : The above reaction is an example of disproportionation reaction S-II : Equivalent weight of $(NH_4)_2 Cr_2O_7$ is $\frac{Molecular weight}{12}$ Choose the correct option. (1) S-I is true, S-II is false S-I is false, S-II is true (2) (3) S-I and S-II are both true S-I and S-II are both false (4) **Sol.** Answer (4) Reaction is an intermolecular redox reaction

Equivalent weight = $\frac{\text{Mol.wt}}{6}$

12. Consider the given reaction/process

 $Zn + NaOH \rightarrow$ (I)

(II) $NH_4NO_3 \xrightarrow{\Delta} \rightarrow$

(III)
$$CH_4(g) + H_2O(g) \xrightarrow{1270 \text{ K}}_{\text{Ni}} \rightarrow$$

Then the reaction(s) or process in which hydrogen is not formed is

(1) (I) and (III) only (2) (II) only (3) (II), (III) only (4) (III) only

Sol. Answer (2)

 $NH_4NO_3 \xrightarrow{\Delta} N_2O + 2H_2O$

- 13. Consider the reaction of Pb₃O₄ with two different acids HCI and HNO₃ and choose the incorrect statement.
 - (1) Reaction with HCI includes a redox reaction
 - (2) Reaction with HNO₃ includes acid base reaction
 - (3) PbO₂ is passive to both Cl⁻ as well as NO₃⁻
 - (4) PbO is reactive towards both Cl⁻ as well as NO₃⁻

Sol. Answer (3)

$$Pb_3O_4 + 8HCI \rightarrow 3PbCI_2 + CI_2 + 4H_2O$$

$$Pb_3O_4 + 4HNO_3 \rightarrow 2Pb(NO_3)_2 + PbO_2 + 2H_2O_3$$

14. 0.859 g of a mixture of CuS and Cu₂S was titrated with 25 ml of 0.5 M acidified potassium permanganate solution producing cupric ions and SO_2^2 . The SO_2 produced was boiled off and excess of MnO_4^- required 29 ml of 0.5 M Fe²⁺ solution. The molar ratio of CuS : Cu₂S in the original mixture taken is

(1) 6:5	(2) 7:4 (3) 4:7	(4) 4:3
Answer (4)	A Rakas	
$Cu_2S \xrightarrow{KMnO_4} Cu^{2+}$	+ SO ₂	
(// 0)	(Dis	

Sol. Answer (4)

$$Cu_2S \xrightarrow{KMnO_4} Cu^{2+} + SO_2$$

$$\underset{(x=6)}{\overset{KMnO_{4}}{\longrightarrow}}Cu^{2+}+SO_{2}$$

Let m moles of CuS be a and that of Cu₂S be b

and meq of CuS + meq of Cu₂S + meq of Fe²⁺

= meq of KMnO₄

$$\therefore$$
 a × 6 + b × 8 + 29 × 0.5 × 1 = 25 × 0.5 × 5
6a + 8b + 14.5 = 62.5
6a + 8b = 48
on solving a = 4, b = 3

84%

When a metal (M) is burnt in presence of oxygen, it gains a weight equal to 0.32 times its initial weight. If 15. the molar mass of the metal be 50 g/mole then the empirical formula of its oxide from the following can be

(1) MO (2) MO₂ (3) MO₂ (4) MO_₄

Sol. Answer (1)

Let 100 g metal be taken

so mass of oxide = 132 g

∴ Equivalent mass of metal = 25 g

as 8 gm of oxygen reacts with 25 g of the metal

:. Valency of metal = n-factor of metal

= 2

The compound formed is MO

16. 5.68 g of a mixture of CaCO₃ and MgCO₃ was dissolved in 800 ml of 0.4 M HCl and the solution was diluted to 1 lit. 20 ml of this solution was neutralised by 20 ml of 0.1 M Na₂CO₃. The percentage of MgCO₃ in the mixture is (approx.)

42% 57% (1) 29.6% (2)(3)(4)

Sol. Answer (1)

Redical III - JEE Foundation Let m moles of CaCO₃ be x and m moles of MgCO₃ be y

 $\therefore x \times 100 + y \times 84 = 5680$

and, meq of acid = meq of base

$$20 \times 0.1 \times 2 + 20 \left(\frac{x+y}{1000}\right) \times 2 = \frac{0.4 \times 800}{1000} \times 20$$

$$\Rightarrow 0.4 \times 10 + 0.4 \left(\frac{x+y}{10}\right) = 0.4 \times 16$$

$$\Rightarrow 10 + \frac{x+y}{10} = 16$$

 \Rightarrow x + y = 160 - 100

 \Rightarrow x + y = 60

and 100x + 84y = 5680

16y = 320

$$\Rightarrow$$
 x = 40

 \therefore mass of MgCO₃ = 20 × 84 mg

:. % MgCO₃ =
$$\frac{20 \times 84}{5680} \times 100\% = 29.6\%$$

17. K₂Cr₂O₇ is used as an oxidising agent. In one such reaction, a monobasic acid HX is allowed to react with $K_2 Cr_2 O_7$ which converts the X⁻ ions to X₂ and is itself reduced to Cr⁺³. How many moles of HX are required in balanced equation involving one mole of K₂Cr₂O₇?

Sol. Answer (4)

$$\begin{aligned} & \left(2X^{-} \rightarrow X_{2} + 2e^{-}\right)3 \\ & \frac{Cr_{2}O_{7}^{2-} + 14H^{+} + 6e^{-} \rightarrow 2Cr^{3+} + 7H_{2}O}{14H^{+} + 6X^{-} + Cr_{2}O_{7}^{2-} \rightarrow 2Cr^{3+} + 3X_{2} + 7H_{2}O} \\ & \frac{+8X^{-} + 2K^{+}}{14HX + K_{2}Cr_{2}O_{7} \rightarrow 2CrX_{3} + 2KX + 7H_{2}O + 3X_{2}} \end{aligned}$$

- 18. Species like $Fe(HC_2O_4)_3$ and $Ca(HC_2O_4)_2$ can act both as acids as well as reducing agents. Consider the following and select the correct statement.
 - (1) $Fe(HC_2O_4)_3$ has a lesser equivalent weight as an acid than as a reducing agent
 - (2) The equivalent weight of $Ca(HC_2O_4)_2$ is equal on reaction with both NaOH as well as $Na_2Cr_2O_7$
 - (3) $Fe(HC_2O_4)_3$ has a lesser equivalent weight than $Ca(HC_2O_4)_2$ on reaction with NaOH
 - (4) $Fe(HC_2O_4)_3$ has a greater equivalent weight than $Ca(HC_2O_4)_2$ on reaction with $Na_2Cr_2O_7$

Sol. Answer (3)

As an Acid As a reducing agent

Fe(HC ₂ O ₄) ₃	x = 3	x = 6
	E = 107.6	E = 53.83
Ca(HC ₂ O ₄) ₂	x = 2	x = 4
M = 218	E = 109	E = 54.5

19. Analysis for detection of alcohol in blood uses the concept of redox, titrations according to reaction (unbalanced)

$$C_2H_5OH + Cr_2O_7^{2-} \rightarrow CO_2 + H_2O + Cr^3$$

In one such experiment, 10 ml of 0.05 M $K_2Cr_2O_7$ is required to completely neutralise 10 gm sample of blood. What is the percentage by weight of alcohol in blood?

(1) 1.15 (2) 0.0115 (3) 0.115 (4) 11.5

Sol. Answer (3)

$$\begin{split} & C_2H_5OH + Cr_2O_7^{2-} \rightarrow CO_2 + Cr^{3+} \\ & (n=12) \qquad (n=6) \end{split}$$

$$\therefore \quad \text{meq of } C_2H_5OH = \text{meq of } Cr_2O_7^{2-} \end{split}$$

$$1000 \times 12 \times \frac{x}{46} = 10 \times 0.05 \times 6$$

 $\therefore \text{ Percentage by weight} = \frac{0.0115}{10} \times 100 = 0.115\%$

Consider following hypothetical reaction $SnCl_2 \rightarrow SnO_2 + ClO_3^-$ 20.

Select the correct statement about given reaction.

- (1) It is an example of decomposition reaction
- (2) n-factor of the reactant in above reaction is 2
- (3) Molecular weight of reactant is equal to fourteen time of its equivalent weight
- (4) n-factor of reactant in above reaction is not defined

Sol. Answer (3)

$$2e$$

$$SnCl_{2}^{(+2)} \rightarrow SnO_{2} + ClO_{3}^{-1}$$

$$6 \times 2 = 12$$

$$n \text{ factor} = 12 + 2 = 14$$
Eq. wt =
$$\frac{\text{Molecular wt.}}{14}$$

In which of the following pairs of compounds oxygen atoms present have different oxidation states in both 21. molecules

(4)

- (1) CrO_5 and H_2SO_5
- (3) $K_2Cr_2O_7$ and K_2CrO_4

(2) KMnO₄ and K₂Cr₂O H₂SO₃ and SO₂CI

Sol. Answer (1)

Cr⁺¹⁰ and S⁺⁸ are not possible so all oxygen atoms are not in a state of -2

22. During the balancing of the following reaction

$$Au + KCN + H_2O + O_2 \rightarrow KAu(CN)_4 + KOH$$

If the stoichiometric coefficient of Au is maintained as 1 than the sum of the stoichiometric coefficients of all the species present is

(2) 11.25 (1) 8.75 10 (4) 12.65

Sol. Answer (2)

 $4Au + 16KCN + 6H_2O + 3O_2 \rightarrow 4KAu(CN)_4 + 12KOH$

But coefficient of Au is to be made equal to

so , sum =
$$\frac{45}{4}$$

- 23. Certain mass of HCN completely oxidised by 40 ml acidified KMnO₄ solution. The products obtained are CO₂ and NO_3^{-} . The CO_2 obtained above is bubbled through lime water and 2 g $CaCO_3$ is obtained. Select the incorrect statement among the following.
 - (1) The molarity of KMnO₄ used is 0.5 M
- (2) The mass of HCN taken initially is 0.54 gm
- (3) The milliequivalent of NO_3^- produced is 160
- (4) n-factor of HCN in the above conversion is 10

Sol. Answer (1)

POAC on carbon

m moles of
$$CaCO_3 = \frac{2}{100} \times 1000 = 20$$

... m moles of HCN = 20

mass of HCN = $20 \times 27 \times 10^{-3} = 0.54$ g

Also, m moles of N = 20 = moles of NO_3^{-1}

 \therefore m equivalents of NO₃⁻ = 20 × 8 = 160

Now, meq of HCN = meq of $KMNO_4$, x = 2 + 8 = 10

49

$$\Rightarrow$$
 20 × 10 = 40 × 5 × M

- \Rightarrow M = 1
- 24. A 1 L solution is prepared by dissolving 14.7 g of phosphoric acid (H_3PO_4) in water. The solution is titrated against NaOH only up to the second equivalence point. The equivalent weight of H₃PO₄ in the neutralisation reaction is

(3)

98

(1) 32.67 (2) Sol. Answer (2) $H_3PO_4 + NaOH \longrightarrow Na_2HPO_4 + H_2O$

Equivalent weight of $H_3PO_4 = \frac{Molecular weight}{No. of H^+ ion replaced}$

(2)

42.6

25. What is the equivalent weight of Cl₂ in gm/equivalent in following unbalanced reaction?

$$Cl_2 \longrightarrow Cl^- + ClO_3^-$$

(1) 35.5

Sol. Answer (2)

n-factor of $Cl_2 = \frac{2 \times 10}{12} = \frac{20}{12}$ $\frac{MM}{M} = \frac{71 \times 12}{22} = 42.6 \text{ g}$

Eq. weight
$$=\frac{1}{n} = \frac{1}{20}$$

2 g impure sample of $\rm KMnO_4$ required 40 ml of 0.5 M ferrous oxalate for complete reduction. 26. Find out the percentage purity of KMnO₄.

56.4% (1) 80.5% (3) 72.3% 94.8% (2) (4)

Nedical III

Sol. Answer (4)

 $\frac{\text{wt.}}{158} \times 5 \times 1000 = 40 \times 0.5 \times 3$ wt. = 1.896 % Purity = $\frac{1.896}{2} \times 100 = 94.8\%$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

65.66

(4)

(4)

68

Solutions of Assignment (Level-II)

Sol. Answer (1, 2, 3)

When the same substance undergoes oxidation and reduction simultaneously it is termed as disproportionate.

5. Which of the following is/are disproportionation reactions?

(1)
$$6NaOH + 3Cl_2 \longrightarrow NaClO_3 + 5NaCl + 3H_2C$$

(2)
$$2NaOH + Cl_2 \longrightarrow NaOCI + NaCI + H_2O$$

(3)
$$H_2O_2 \longrightarrow H_2O + \frac{1}{2}O_2$$

(4) $2KCIO_3 \longrightarrow 2KCI + 3O_2$

Sol. Answer (1, 2, 3)

- 6. Which of the following statements regarding H₂SO₅ is/are correct?
 - (1) The oxidation number of sulphur is +6
 - (3) Three oxygen atoms are present in form of oxide
- Sol. Answer (1, 2, 3)

Structure is

- (2) Two oxygen atoms are present in form of peroxide
- (4) The oxidation state of sulphur is + 8

150 Redox Reactions Solutions of Assignment (Level-II) 7. Which of the following can act as an oxidising agent? HNO₃ (3) (4)(1) H_2SO_4 (2) KMnO_₄ $K_2Cr_2O_7$ **Sol.** Answer (1, 2, 3, 4) In all options oxidation number of central metal can decrease. 8. The oxidation number of carbon is zero in (1) HCHO (2) CH₂Cl₂ (3) $C_{12}H_{22}O_{11}$ (4)CHCl₂ **Sol.** Answer (1, 2, 3) It is based on simple application of common oxidation states of H and oxygen. HCHO \Rightarrow H – $\frac{H^{+2}}{1-1}$ H net charge = 0 Similarly in CH₂Cl₂ and C₁₂H₂₂O₁₁ (sugar) 150 ml $\frac{M}{10}$ Ba(MnO₄)₂ in acidic medium can oxidise completely 9. Nedical III - The out of the series integer 100 ml 1M C₂O₄²⁻ (4) 75 ml 1M K₂Cr₂O₇ (1) 150 ml 1M Fe²⁺ (2) 50 ml 1M FeC₂O₄ **Sol.** Answer (1, 2) Alternative solution Valency factors n for $Ba(MnO_{4})_{2} = 10$ $Fe^{+2} = 1$ $FeC_2O_4 = 3$ $C_2 O_4^{-2} = 2$ $K_{2}Cr_{2}O_{7} = 6$ Now on calculating Meq. Ba(MnO₄)₂ = $150 \times \frac{1}{10} \times 10 = 150$ Meq. of $Fe^{+2} = 150 \times 1 \times 1 = 150$ Meq. of $FeC_2O_4 = 50 \times 1 \times 3 = 150$ Meq. of $C_2 O_4^{-2} = 100 \times 1 \times 2 = 200$ Meq. of $K_2Cr_2O_7 = 75 \times 1 \times 6 = 450$ 10. The strength of "20 volume" H₂O₂ is equal to 3.58 N (1) 60.86 g/L (2) 1.79 M 3.035% (3) (4)**Sol.** Answer (1, 2, 3) 20 volume H₂O₂ $1NH_2O_2 = 5.6$ volume 1 volume $H_2O_2 = \frac{1}{5.6} NH_2O_2$

20 volume $H_2O_2 = \frac{20}{5.6} NH_2O_2 = 3.57 N$ Strength in g/L = NE= 3.57 × 17 = 60.71 g/L $N = M \times n$ factor $3.57 = M \times 2$ $M = 1.786 \approx 1.79 M$ 1, 2, 3 are correct options. volume strength = $5.6 \times N$ $\therefore N = \frac{20}{5.6} = 3.57$

Volume strength = 11.2 × M

$$M = \frac{20}{11.2} = 1.78$$

11. When 1 mole of $KMnO_4$ is reacted with FeC_2O_4 in acidic medium, then the reacted amount of FeC_2O_4 is

(1) $\frac{5}{3}$ moles	3	(2) 5	5 equivalents	(3)	$\frac{3}{5}$ moles	dat (4)	3 equivalents
Answer (1, 2)					100	inces L'	
+7 KMnO ₄ +	FeC ₂ O ₄	→Fe ⁺³	$^{3} + CO_{2} + Mn^{+2}$		the maise		
nf = 7 - 2	nf = (3-2) +	2×(4 -	-3)	120	Aucatio		

Sol. Answer (1, 2)

$$KMnO_4 + FeC_2O_4 \longrightarrow Fe^{+3} + CO_2 + Mn^{+3}$$

nf = 7-2 nf = (3-2)+2×(4-3)
= 1+2=3

Number of eq. of $KMnO_4$ = Number of eq. of FeC_2O_4 $n_{KMnO_4} \times nf = n_{FeC_2O_4} \times nf$

$$n_{KMnO_4} \times nf = n_{FeC_2O_4} \times nf$$

 $1 \times 5 = n_{FeC_2O_4} = \frac{5}{3}$

$$n_{FeC_2O_4} = \frac{5}{3}$$

Number of eq. of $FeC_2O_4 = 1 \times 5 = 5$ equivalents

- For the following balanced redox reaction, $2MnO_4^- + 4H^+ + Br_2 \rightleftharpoons 2Mn^{2+} + 2BrO_3^- + 2H_2O$. If the molecular 12. weight of MnO_4^- and Br_2 are x & y respectively then
 - (2) Equivalent weight of Br₂ is $\frac{y}{5}$ (1) Equivalent weight of MnO_4^{-} is $\frac{x}{5}$
 - (3) Equivalent weight of Br_2 is $\frac{y}{10}$
- (4) n-factor ratio of MnO_4^- and Br_2 is 2 : 1

Sol. Answer (1, 3) +7 $^{+7}_{2MnO_{4}^{-}+8H^{+}+Br_{2}} \xrightarrow{0}_{2Mn^{+2}+2BrO_{3}^{-}+2H_{2}O}$ $nf = 1 \times (7 - 2)$ $nf = 2 \times (5 - 0)$ = 5 = 10 $E_{MnO_4^-} = \frac{x}{5}$ $E_{Br_2} = \frac{y}{10}$ n factor of MnO₄⁻ and Br₂ = 5 : 10 = 1 : 2 Options 1, 3 are correct. 13. Consider the reaction, $aFeS_2 + bO_2 \rightarrow cFe_2O_3 + dSO_2$ Which is correct for the above reaction? ticaline transferred to the services interesting to the services of the servic (1) n-factor for FeS₂ is 11 (2) The ratio of moles of a : b is 4 : 11 (3) The ratio of moles of a : b is 11 : 4 The ratio of moles of c : d is 1 : 4 **Sol.** Answer (1, 2, 4) $^{+2}_{a}$ FeS₂+bO₂ \longrightarrow cFe₂O₃+dSO₂ n factor of FeS₂ = $\frac{1 \times (3-2)}{Fe} + \frac{2 \times [4-(-1)]}{S}$ edicall = 1 + 10 = 11 n factor of $O_2 = 2 \times 2 = 4$ For balancing n factors are interchanged $4FeS_2 + 11O_2 \longrightarrow 2Fe_2O_3 + 8SO_2$ a=4 b=11 c=2 d = 8 a : b = 4 : 11 c:d=2:8=1:4 So options 1, 2, 4 are correct. 14. When $Na_2S_2O_3$ is reacted with I_2 to form $Na_2S_4O_6$ and NaI then which statement is correct? (1) n-factor for $Na_2S_2O_3$ is one (2) n-factor for I_2 is two (3) 2 moles of Na₂S₂O₃ is reacted with one mole of I₂ (4) n-factor for $Na_2S_4O_6$ is one

Sol. Answer (1, 2, 3)

$$2Na_{2}S_{2}O_{3} + l_{2}^{0} \longrightarrow Na_{2}S_{4}O_{6} + 2Na_{1}^{-1}$$

$$nf = 2 \times (2.5 - 2) \quad nf = 2 \times 1$$

$$= 2 \times 0.5 \qquad = 2$$

$$= 1$$

$$nf = 1 \quad (2.5 - 2) \quad nf = 2 = 2$$

$$= 1$$

n factor of $Na_2S_4O_6 = 4(2.5 - 2)$

$$= 4 \times 0.5 = 2$$

Hence options 1, 2, 3 are correct.

15. Choose the correct statement regarding following reaction

$$HNO_2 \longrightarrow HNO_3 + NO \uparrow$$

- (1) It is an example of disproportionation reaction
- (2) Equivalent weight of HNO₃ = $\frac{3M}{2}$
- (3) Equivalent weight of HNO₃ = M
- (4) It is an example of intramolecular redox reaction

Sol. Answer (1, 2)

$$HNO_2 + HNO_2 \longrightarrow HNO_3 + NO_3$$

This is an example of disproportionation reaction.

- 31.26 ml of a 0.165 M solution of Ca(OH)₂ is required to just neutralise 25 ml of citric acid H₃C₆H₅O₇. Then correct regarding this is/are
 - (1) n-factor of citric acid is 3
 - (3) Molarity of citric acid is 0.029 M
- (2) Molarity of citric acid is 0.138 M
- (4) n-factor of citric acid is 2

Sol. Answer (1, 2)

Equivalent of acid = equivalents of base

$$\frac{31.26}{1000} \times 2 \times 0.165 = \frac{25}{1000} \times N \Rightarrow N = \frac{31.226}{25} \times 2 \times 0.165 = 0.412$$

- 17. With 4 mole of KI one mole of Cl₂ is treated to yield a solution, which is then treated with hypo solution, then correct regarding this is/are
 - (1) Equivalent weight of I_2 is $\frac{M}{1}$
 - (2) To react completely with a solution, 1 mole of hypo solution is required
 - (3) n-factor of hypo solution is 1
 - (4) n-factor of Cl_2 is 2

Sol. Answer (3, 4)

$$2KI + CI_2 \longrightarrow 2KCI + I_2$$
...(i)

 $I_2 + KI \rightleftharpoons KI_3$...(ii)

 $2Na_2S_2O_3 + I_2 \longrightarrow Na_2S_4O_6 + 2Nal$...(iii)

As per above reactions n-factor of Cl_2 (as per reaction (i), l_2 (as per reaction (iii) and $Na_2S_2O_3$ (as per reaction (iii)) is 2, 2 and 1 respectively.

18. Choose the correct regarding indicator

Fitration	Indicator

- (1) NaOH vs. CH₃COOH Phenolphthalein
- (2) KMnO₄ vs. FeC₂O₄ KMnO₄
- (3) I_2 vs. $Na_2S_2O_3$ Starch
- (4) $K_2Cr_2O_7$ vs. $FeSO_4$ $K_3[Fe(CN)_6]$ as external indicator

Sol. Answer (1, 2, 3, 4)

 $KMnO_4$ acts as self indicator.

SECTION - C

Linked Comprehension Type Questions

Comprehension-I

Redox is a reaction in which both oxidation and reduction will take place simultaneously. It is obvious that if one substance gives electron there must be another substance to accept these electrons. In some reactions same substance is reduced as well as oxidised, these reactions are termed as disproportionation reactions.

For calculating equivalent mass in redox reaction change in oxidation number is related to n-factor which is reciprocal of molar ratio.

1. This reaction is an example of

 $\operatorname{Br}_2 + \operatorname{OH}^- \to \operatorname{BrO}_3^- + \operatorname{H}_2\operatorname{O} + \operatorname{Br}^-$

- (1) Oxidation reaction only
- (3) Neutralization reaction

- (2) Reduction reaction only
- (4) Disproportionation reaction

Sol. Answer (4)

- \therefore Br₂ is oxidized and reduced both.
- ... It is disproportionation reaction.

- When P reacts with NaOH, the products are PH₃ and NaH₂PO₂, which of the following statement is correct? 2.
 - (1) P is oxidised only
 - (3) P is oxidised as well as reduced

- (2) P is reduced only
- (4)P is neither reduced nor oxidised

Sol. Answer (3)

3.

4.

5.

(1) $2NO_2 \rightarrow N_2O_4$ (2) $NH_4OH \rightarrow NH_4^+ + OH^-$

(3)
$$2NO_2 + H_2O \rightarrow HNO_3 + HNO_2$$

(4) $N_2O_5 + H_2O \rightarrow 2HNO_3$

Sol. Answer (3)

$$NO_2 + H_2O \longrightarrow HNO_3 + HNO_2$$

This is an example of disproportionation reaction.

:. It is a redox reaction.

For converting one mole of nitrobenzene to aniline, how many moles of electrons are transferred?

(1) 2 (2) 3 (3) 6 (4) 8 Sol. Answer (3)

Comprehension-II

The strength of H_2O_2 is expressed in many ways like molarity, normality, % strength and volume strengths. But out of all these form of strengths, volume strength has great significance for chemical reactions.

The decomposition of H_2O_2 is shown as under :

$$H_2O_2(l) \to H_2O(l) + \frac{1}{2}O_2(g)$$

'x' volume strength of H_2O_2 means one volume (litre or ml) of H_2O_2 releases x volume (litre or ml) of O_2 at NTP.

1 litre H_2O_2 release x litre of O_2 at NTP

=
$$\frac{x}{22.4}$$
 moles of O₂

From the equation,

1 mole of O₂ produces from 2 moles of H₂O₂.

$$\frac{x}{22.4}$$
 moles of O₂ produces from $2 \times \frac{x}{22.4}$ moles of H₂O₂

$$= \frac{x}{11.2}$$
 moles of H₂O₂

So, molarity of
$$H_2O_2 = \frac{\frac{x}{11.2}}{1} = \frac{x}{11.2}M$$

Normality = n-factor × molarity

$$= 2 \times \frac{x}{11.2} = \frac{x}{5.6} N$$

1. What is the percentage strength of "15 volume" H_2O_2 ?

(1) 6.086% (2) 4.55% (3) 3.03% (4) 1.5%

Sol. Answer (2)

1 volume = 0.303% 15 volume = 15× 0.303

= 4.55%

2. 30 g Ba(MnO₄)₂ sample containing inert impurity is completely reacting with 100 ml of "28 volume" strength of H_2O_2 in acidic medium then what will be the percentage purity of Ba(MnO₄)₂ in the sample? (Ba = 137, Mn = 55, O = 16)

(1) 10% (2) 40% (3) 62.5% (4) 80%

 $N_{H_2O_2} = \frac{Volume \ strength}{5.6} = \frac{28}{5.6} = 5$

Eq. of H_2O_2 = Eq. of $Ba(MnO_4)_2$

$$5 \times \frac{100}{1000} = \frac{W}{375} \times 10$$

:. % purity =
$$\frac{18.75 \times 100}{30} = 62.5$$

- 3. What volume of H_2O_2 solution of "11.2 volume" strength is required to liberate 2240 ml of O_2 at NTP?
 - (1) 300 ml (2) 500 ml (3) 100 ml (4) 200 ml

Sol. Answer (4)

11.2 volume H_2O_2 means

1 vol H₂O₂ gives 11.2 vol O₂

 \Rightarrow 11.2 ml O₂ obtained from 1 ml H₂O₂

$$\Rightarrow$$
 2240 ml O₂ obtained from = $\frac{2240 \times 1}{11.2}$ = 200 ml

Comprehension-III

2 g of brass containing Cu and Zn only reacts with 3 M HNO₃ solution. Following are the reactions taking place Cu(s) + HNO₃ (aq) \rightarrow Cu²⁺ (aq) + NO₂(g) + H₂O(I)

 $Zn(s) + H^+(aq) + NO_3^-(aq) \rightarrow NH_4^+(aq) + Zn^{2+}(aq) + H_2O(I)$

The liberated NO₂(g) was found to be 1.04 L at 25°C and 1 atm [Cu = 63.5, Zn = 65.4]

1. The percentage by mass of Cu in brass was

(1) 67% (2) 70% (3) 80% (4) 90%

Sol. Answer (1)

 $Cu + 4HNO_3 \longrightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O_3$

$$n_{NO_2} = \frac{PV}{RT} = \frac{1 \times 1.04}{0.0821 \times 298} = 0.042$$

158	Redox Reactions					Solutions of	Assignment (Lev	el-II)
	∴ n _{cu} = 0.021							
	∴ W _{cu} = 1.335 g							
	$\therefore \% \text{ Cu} = \frac{1.335 \times 100}{2} =$	= 66.67	′ %					
2.	The volume of HNO ₃ con	sumed	during the read	tion with bra	ass is			
	(1) 9.52 ml	(2)	14.5 ml	(3)	16.25 ml	(4)	10.5 ml	
Sol.	Answer (2)							
3.	How many grams of NH_4	NO ₃ w	Il be obtained in	the above	reaction?			
	(1) 0.405 g	(2)	0.0428 g	(3)	0.2018 g	(4)	0.358 g	
Sol.	Answer (3)							
	$NO_3^- \xrightarrow{[H]} NH_3$							
	$NH_3 + H^+ \longrightarrow NH_4^+$							
			SE	CTION -	D			
			Matrix-Mat	ch Type Qu	uestions	ion		
1.	Match Column-I with Colu	mn-ll				130		
	Column-I				Column-II	inites		
	(A) CaOCl ₂			(p)	+ 6, + 6	ILCOS T		
	(Oxidation state of Cl)			1 5°			
	(B) S ₂ O ₃ ²⁻			(q)	+1, -1			
	(Oxidation state of S)				EN FOR			
	(C) NH ₄ NO ₃			(r)	Peroxy linkag	e is present		
	(Oxidation state of N)			Consol				
	(D) H_2SO_5 and $H_2S_2O_8$		Ner	(s)	-3, + 5			
	(Oxidation state of S)							
				(t)	–2, + 6			
Sol.	Answer A(q), B(t), C(s), E	D(p, r)						
	(A) Structure of $CaOCl_2$ i	S						
	$0 - Cl^{+1}$							
	(B) $S_2 O_3^{2-}$, $2x - 6 = -2$							
	x = +2							
	(C) NH_4NO_3 may written	as NH	+ 1 ',					
	∴ oxidation no. of N	1 = - 3	³ and in NO ₃ ⁻, o	xidation no.	of N = +5			

peroxide linkage

and oxidation no. = +6

For H₂S₂O₈, structure is

$$HO - S - O - O - S - O - H$$

and oxidation no. = +6

2. Match the following

Column-I

(A)
$$XI_2 + YNO_3^{\ominus} \longrightarrow IO_3^- + NO_2$$

(Acidic med)

- (B) $X CIO^{-} + Y Cr O_2^{-} \rightarrow CI^{-} + CrO_4^{-}$ (alkaline)
- (C) $XN_2O_4 + YBrO_3^{\ominus} \rightarrow Br^- + NO_3^-$ (Acidic)

(D)
$$XAsO_3^{-3} + YMnO_4^{-} \rightarrow AsO_4^{-3} + MnO_2^{-3}$$

(Acidic)

Column-II

- (p) X > Y
- X < Y(q)
- (r) n-factor (oxidant) > n-factor (Reductant)
- (s) n-factor (Reductant) > n-factor (Oxidant)
- Oxidant has highest O.N. among the (t) oxidants involved in the reactions

Sol. Answer A(q, s), B(p, s), C(p, r), D(p, r, t)

(A)
$$I_2 + 10NO_3^- + 8H^+ \longrightarrow 2IO_3^- + 10NO_2^- + 4H_2O_3^-$$

- (B) $3CIO^{-} + 2CrO_{2}^{-} + 2OH^{-} \longrightarrow 3CI^{-} + 2CrO_{4}^{--} + H_{2}O$
- (C) $3N_2O_4 + BrO_3^- + 3H_2O \longrightarrow 6NO_3^- + Br^- + 6H^{\oplus}$
- (D) $3AsO_3^{-3} + 2MnO_4^{-} \longrightarrow 3AsO_4^{-3} + 2MnO_2 + 2H_2O_4^{-3}$
- 3. Match the following

Column-I

	Column-I		Column-II (n-factor)
(A)	KMnO ₄ in acidic medium	(p)	10
(B)	$Ba(MnO_4)_2$ in acidic medium	(q)	6
(C)	$S_2O_3^{2-}$ in alkaline medium	(r)	5
(D)	K ₂ Cr ₂ O ₇ in acidic medium	(s)	8

So, total 3 e⁻ are loosed by one molecule of FeC_2O_4 . Hence, n-factor for FeC_2O_4 is 3.

So, total 8 e⁻ are loosed by one molecule of Cu_2S . Hence, n-factor for Cu_2S is 8.

5. 3.48 g of MnO₂ is added to 500 ml of 0.1 M oxalic acid solution. The resulting solution is then titrated against either 0.02 M KMnO₄ or 0.02 M $K_2Cr_2O_7$ solution.

Column I Column II (A) KMnO₄ solution (p) N = 0.1(B) MnO_2 (q) $n_{factor} = 2$ (r) Vol = 167 ml (C) Oxalic acid (D) K₂Cr₂O₇ solution (s) Vol = 200 ml (t) $n_{factor} = 6$ **Sol.** Answer A(p, s), B(q), C(q), D(r, t) $MnO_2 \rightarrow Mn^{2+} + 2e^{-1}$ $2e^{-} + H_2C_2O_4 \longrightarrow CO_2 + H_2O_2$ \therefore n_f (MnO₂ and oxalic acid) = 2 Equivalent of MnO₂ = $\frac{3.48}{87} \times 2 = 0.08$ Equivalent of oxalic acid = 0.1 Equivalents of oxalic acid left = 0.02 Equivalents of oxalic acid = Equivalents of KMnO $0.02 = 0.02 \times 5 \times V$ $V_{KMnO_4} = \frac{1}{5}$ litre = 200 ml. Volume of $K_2Cr_2O_7$ required = 1/6 L = 167 ml

SECTION - E

Assertion-Reason Type Questions

STATEMENT-1 : $KMnO_4 \xrightarrow{acidic medium} Mn^{2+}$, n factor of $KMnO_4$ is 5. 1. and

STATEMENT-2 : Equivalent mass of KMnO₄ in acidic medium is $\frac{M}{5}$ (M = molecular mass of KMnO₄).

Equivalent mass = $\frac{\text{Molar mass}}{n - \text{factor}}$ $MnO_4^- + 5e^- + 8H^+ \longrightarrow Mn^{2+} + 4H_2O$:. n-factor = 5 and equivalent mass = $\frac{M}{r}$

2. STATEMENT-1 : $H_2O_2 \longrightarrow H_2O + \frac{1}{2}O_2$. This is an example of disproportionation reaction.

and

STATEMENT-2 : H_2O_2 can act as a oxidising as well as reducing agent. Sol. Answer (1)

- \therefore H₂O₂ is oxidized as wall as reduced.
- :. Its an example of disproportionation reaction.
- 3. STATEMENT-1 : Oxidation number of oxygen in OF₂ compound is +2.

and

STATEMENT-2 : An element has a fixed oxidation state.

Sol. Answer (3)

 $\ln OF_{2}, x - 2 = 0$

x = +2

and an element can have variable oxidation state.

4. STATEMENT-1 : Oxidation state of carbon in its compound is always +4.

and

STATEMENT-2 : An element can show variable oxidation numbers

Sol. Answer (4)

Carbon can show -4 and many more oxidation states also

e.g., CH_4 , CO, CH_2CI_2 etc.

5. STATEMENT-1 : Equivalent mass of $KMnO_4$ in different mediums are different.

and

STATEMENT-2 : KMnO₄ can act as a oxidising agent.

Sol. Answer (2)

In acidic medium $KMnO_4$ is reduced to Mn^{2+} .

:. It is an oxidising agent.

6. STATEMENT-1 : In the reaction : $Cl_2 + OH^- \longrightarrow Cl^- + ClO_4^-$ chlorine is oxidised only. and

STATEMENT-2 : Oxidation and reduction cannot take place alone.

Sol. Answer (4)

0
Cl₂+OH⁻ \longrightarrow Cl+ClO₄⁻¹ $^{+7}$ Cl+ClO₄⁻

In above reaction, Cl_2 is oxidized as well as reduced both because for redox reaction both oxidation and reduction reactions are required.

7. STATEMENT-1 : The equivalent mass of KMnO₄ in acidic medium is $\frac{M}{5}$ where M = Molecular mass of KMnO₄.

and

STATEMENT-2 : Equivalent mass is equal to product of molecular mass and change in oxidation number. **Sol.** Answer (3)

$$K \overset{+7}{MnO_4} \xrightarrow{\text{acidic}} Mn^{+2}$$

$$nf = 7 - 2 = 5$$

$$E = \frac{M}{nf} = \frac{M}{5}$$

Equivalent mass = $\frac{\text{Molecular mass}}{\text{Total change in oxidation number}}$

8. STATEMENT-1 : For the reaction NaOH + $H_2CO_3 \rightarrow NaHCO_3 + H_2O$ equivalent weight of H_2CO_3 is 62. and

STATEMENT-2 : n factor of H_2CO_3 is 1 (in above reaction) and equivalent mass = $\frac{Molecular mass}{n factor}$

Sol. Answer (1)

 $NaOH + H_2CO_3 \longrightarrow NaHCO_3 + H_2O$

Since only one H atom is being replaced from H2CO3 in above reaction hence

n factor of $H_2CO_3 = 1$

 $E = \frac{M}{1} = \frac{2 \times 1 + 12 + 3 \times 16}{1} = \frac{62}{1} = 1 \text{ equivalent mass} = \frac{\text{Molecular mass}}{n \text{ factor}}$

SECTION - F

Integer Answer Type Questions

1. 0.144 g of pure FeC_2O_4 was dissolved in dilute H_2SO_4 and the solution was diluted to 100 ml. What volume in ml of 0.1 M KMnO₄ will be needed to oxidise FeC_2O_4 solution?

Sol. Answer (6)

meq. of
$$FeC_2O_4 = meq$$
 of $KMnO_2$

$$\frac{1000}{E} \times 1000 = \text{N.V.}$$
or, $\frac{0.144}{144/3} \times 1000 = 0.1 \times 5 \times \text{V}$
or V = 6 ml

2.48 g of Na₂S₂O₃. xH₂O is dissolved per litre solution. 20 ml of this solution required 10 ml 0.01 M iodine solution. What is value of x?

Meq. of $Na_2S_2O_3 \times H_2O$ = meq of I_2

$$\frac{2.48}{M} \times 20 = 10 \times 0.01 \times 2$$

$$\Rightarrow M = 248$$

$$\Rightarrow 248 = 158 + 18x$$

$$\Rightarrow x = 5$$

- 1.245 g of CuSO₄.xH₂O was dissolved in water and H₂S was passed into it till CuS was completely precipitated. The H₂SO₄ produced in the filtrate required 10 ml of N-NaOH solution for complete neutralisation. What is value of x?
- Sol. Answer (5)

$$CuSO_{4}.xH_{2}O \xrightarrow{H_{2}S} CuS + H_{2}SO_{4}$$

$$H_{2}SO_{4} \equiv NaOH$$
Meq. of CuSO₄ xH₂O = meq. of H₂SO₄ = meq. of NaOH
$$W \times 1000 = NW$$

$$\frac{1.245 \times 2}{159.5 \pm 18x} = 10 \times 1 \quad \text{or } x = 5$$

4. In the reaction VO + $Fe_2O_3 \rightarrow FeO + V_2O_5$, what is the n-factor for V_2O_5 ?

Sol. Answer (6)

$$V_{\underline{O}}^{+2} + Fe_2O_3 \xrightarrow{} FeO + V_2O_5 = 6$$

$$\underbrace{V_{\underline{O}}^{+2} + Fe_2O_3}_{6e^- \text{ involved per mole}}, \text{ nF } (V_2O_5) = 6$$

5. In the reaction $A^{+x} + MnO_4^{\ominus} \longrightarrow AO_3^{\ominus} + Mn^{++} + \frac{1}{2}O_2$, if one mole of MnO_4^{\ominus} oxidises 1.67 moles of

 A^{+x} to AO_3^{\ominus} , then what will be the value of x?

Sol. Answer (2)

 $MnO_4^- + 5e^- \longrightarrow Mn^{++}$

These 5 moles of e^- are lost by A^{+x} ion & gained by MnO_4^{Θ} .

 \therefore 1 mole A^{+x} will lose e⁻ = 5/1.67 = 3 moles (approx.)

Now $A^{+x} \rightarrow AO_3^{\ominus}$

... Oxidation state of A,

$$x = +5 - 3 = +2$$

6. A 0.1 mol of a metal is burnt in air to form oxide. The same oxide is then reduced by 0.05 M, 4 litre $S_2O_3^{2-}$ (acidic medium) to +3 oxidation state of metal. What is the oxidation state of metal in oxide?

```
Sol. Answer (5)
```

```
M_{1} + O_{2} \xrightarrow{M^{x+}} M_{0.1 \text{ mol}}^{x+}
0.1 \times n = 0.05 \times 1 \times 4
n = 2
\therefore x = +5
```

- 7. 100 ml of $Na_2S_2O_3$ solution is divided into two equal parts A and B. A part requires 12.5 ml of 0.2 M I₂ solution (acidic medium) and part B is diluted x times and 50 ml of diluted solution requires 5 ml of 0.8 M I₂ solution in basic medium. What is value of x?
- Sol. Answer (5)

Part A

 $1 \times M \times 50 = 2 \times 12.5 \times 0.2$...(1)

Part B

 $8 \times M_1 \times 50 = 2 \times 5 \times 0.8$

Dividing (1) by (2) we get

$$\frac{M}{8M_1} = \frac{12.5 \times 2}{5 \times 8} \qquad M = 5M$$

- ... M is 5 times diluted.
- 8. For a given reductant, ratio of volumes of 0.2 M KMnO₄ and 1 M K₂Cr₂O₇ in acidic medium will be

.(2)

Sol. Answer (6)

 $V_1M_1n_1(KMnO_4) = V_2M_2n_2(K_2Cr_2O_7)$

 $\frac{V_1}{V_2} = \frac{M_2 n_2}{M_1 n_1} = \frac{1 \times 6}{0.2 \times 5} = 6$

9. A solution contains 2 g of NaOH, 0.53 g of Na₂CO₃ and 0.42 g NaHCO₃. The solution is titrated with 1.3 N HCl in presence of methyl orange indicator. What is the volume of HCl in ml required for the titration?

Foundation

Sol. Answer (50)

meq of NaOH =
$$\frac{2}{40} \times 1000 = 50$$

meq of Na₂CO₃ = $\frac{0.53}{106} \times 2 \times 1000 = 10$
meq of NaHCO₃ = $\frac{0.42}{84} \times 1000 = 5$
meq of Base = meq of Acid
65 = 1.3 × V
V = 50 ml

- 10. Chromate ion on reaction with H_2O_2 in the acidic medium and the basic medium respectively produce CrO_5 and $Cr_3O_8^{3-}$. The oxidation number of Cr in CrO_5 is x and $Cr_3O_8^{3-}$ is y. The value of (x + y) is
- Sol. Answer (11)

