# Physics Notes for Class 12 Chapter 13 Nuclei

#### **Nucleus**

The entire positive charge and nearly the entire mass of atom is concentrated in a very small space called the nucleus of an atom.

The nucleus consists of protons and neutrons. They are called nucleons.

#### Terms Related to Nucleus

- (i) **Atomic Number** The number of protons in the nucleus of an atom of the element is called atomic number (Z) of the element.
- (ii) **Mass Number** The total number of protons and neutrons present inside the nucleus of an atom of the element is called mass number (A) of the element.
- (iii) **Nuclear Size** The radius of the nucleus  $R \propto A^{1/3}$

$$\Rightarrow$$
 R = R<sub>o</sub> A<sup>1/3</sup>

where,  $R_0 = 1.1 * 10^{-15}$  m is an empirical constant.

(iv) **Nuclear Density** Nuclear density is independent of mass number and therefore same for all nuclei.

 $\rho$  = mass of nucleus / volume of nucleus  $\Rightarrow \rho = 3 \text{m} / 4 \pi R_0^3$ 

where, m = average mass of a nucleon.

(v) **Atomic Mass Unit** It is defined as 1 / 12th the mass of carbon nucleus.

It is abbreviated as arnu and often denoted by u. Thus

$$1 \text{ amu} = 1.992678 * 10^{-26} / 12 \text{ kg}$$

$$= 1.6 * 10^{-27} \text{ kg} = 931 \text{ Me V}$$

# **Isotopes**

The atoms of an element having same atomic number but different mass numbers. are called isotopes.

e.g., <sub>1</sub>H<sup>1</sup>, <sub>1</sub>H<sup>2</sup>, <sub>1</sub>H<sup>3</sup> are isotopes of hydrogen.

#### **Isobars**

The atoms of different elements having same mass numbers but different atomic numbers, are called isobars.

e.g., 
$$_{1}H^{3}$$
,  $_{2}He^{3}$  and  $_{10}Na^{22}$ ,  $_{10}Ne^{22}$  are isobars.

#### **Isotones**

The atoms of different elements having different atomic numbers and different mass numbers but having same number of neutrons, are called isotones.

e.g., 
$${}_{1}H^{3}$$
,  ${}_{2}He^{4}$  and  ${}_{6}C^{14}$ ,  ${}_{8}O^{16}$  are isobars.

#### **Isomers**

Atoms having the same mass number and the same atomic number but different radioactive properties are called isomers,

#### **Nuclear Force**

The force acting inside the nucleus or acting between nucleons is called nuclear force.

Nuclear forces are the strongest forces in nature.

- It is a very short range attractive force.
- It is non-central. non-conservative force.
- It is neither gravitational nor electrostatic force.
- It is independent of charge.
- It is 100 times that of electrostatic force and  $10^{38}$  times that of gravitational force.

According to the Yukawa, the nuclear force acts between the nucleon due to continuous exchange of meson particles.

### **Mass Defect**

The difference between the sum of masses of all nucleons (M) mass of the nucleus (m) is called mass defect.

Mass Defect (
$$\Delta m$$
) =  $M - m = [Zm_p + (A - Z)m_n - m_n]$ 

# **Nuclear Binding Energy**

The minimum energy required to separate the nucleons up to an infinite distance from the nucleus, is called nuclear binding energy.

Nuclear binding energy per nucleon = Nuclear binding energy / Total number of nucleons

Binding energy, 
$$E_b = [Zm_p + (A - Z) m_n - m_N]c^2$$

# **Packing Fraction (P)**

p = (Exact nuclear mass) - (Mass number) / Mass number

$$= M - A / M$$

The larger the value of packing friction. greater is the stability of the nucleus.

The nuclei containing even number of protons and even number of neutrons are **most stable.** 

The nuclei containing odd number of protons and odd number of neutrons are **most instable.**]

# Radioactivity

The phenomena of disintegration of heavy elements into comparatively lighter elements by the emission of radiations is called radioactivity. This phenomena was discovered by Henry Becquerel in 1896.

## Radiations Emitted by a Radioactive Element

Three types of radiations emitted by radioactive elements

- (i) α-rays
- (ii) β-rays
- (iii) γ rays

 $\alpha$ -rays consists of  $\alpha$ -particles, which are doubly ionised helium ion.

 $\beta$ -rays are consist of fast moving electrons.

 $\gamma$  – rays are electromagnetic rays.

[When an  $\alpha$  – particle is emitted by a nucleus its atomic number decreases by 2 and mass number decreases by 4.

$$_{Z}X^{A} \xrightarrow{\alpha \text{-particle}} _{Z-2}Y^{A-4}$$

When a  $\beta$  -particle is emitted by a nucleus its atomic number is Increases by one and mass number remains unchanged.

$$Z^{X^A} \xrightarrow{\beta\text{-particle}} Z_{+1}Y^A$$

When a  $\gamma$  – particle is emitted by a nucleus its atomic number and mass number remain unchanged

## **Radioactive Decay law**

The rate of disintegration of radioactive atoms at any instant is directly proportional to the number of radioactive atoms present in the sample at that instant.

Rate of disintegration  $(-dN/dt) \propto N$ 

$$-dN/dt = \lambda N$$

where  $\lambda$  is the decay constant.

The number of atoms present undecayed in the sample at any instant  $N = N_0 e^{-\lambda t}$ 

where,  $N_0$  is number of atoms at time t = 0 and N is number of atoms at time t.

#### Half-life of a Radioactive Element

The time is which the half number of atoms present initially in any sample decays, is called half-life (T) of that radioactive element.

Relation between half-life and disintegration constant is given by

$$T = \log_e^2 / \lambda = 0.6931 / \lambda$$

# **Average Life or Mean Life(τ)**

Average life or mean life  $(\tau)$  of a radioactive element is the ratio of total life time of all the atoms and total number of atoms present initially in the sample.

Relation between average life and decay constant  $\tau = 1 / \lambda$ 

Relation between half-life and average life  $\tau = 1.44 \text{ T}$ 

The number of atoms left undecayed after n half-lifes is given by

$$N = N_o (1/2)^n = N_o (1/2)^{t/T}$$

where, n = t / T, here t = total time.

# **Activity of a Radioactive Element**

The activity of a radioactive element is equal to its rate of disintegration.

Activity 
$$R = (-dN/dt)$$

Activity of the sample after time t,

$$R = R_o e^{-\lambda t}$$

Its SI unit is Becquerel (Bq).

Its other units are Curie and Rutherford.

1 Curie = 
$$3.7 * 10^{10} \text{ decay/s}$$

1 Rutherford =  $10^6$  decay/s

# **Nuclear Fission**

The process of the splitting of a heavy nucleus into two or more lighter nuclei is called nuclear fission.

When a slow moving neutron strikes with a uranium nucleus ( $_{92}U^{235}$ ), it splits into  $_{56}Ba^{141}$  and  $_{36}Kr^{92}$  along with three neutrons and a lot of energy.

$$_{92}\mathrm{U}^{235} + _{0}n^{1} \longrightarrow _{56}\mathrm{Ba}^{141} + _{36}\mathrm{Kr}^{92} = 3_{0}n^{1} + \mathrm{energy}$$

#### **Nuclear Chain Reaction**

If the particle starting the nuclear fission reaction is produced as a product and further take part in the nuclear fission reaction, then a chain of fission reaction started, which is called nuclear chain reaction.

Nuclear chain reaction are of two types

- (i) Controlled chain reaction
- (ii) Uncontrolled chain reaction

#### **Nuclear Reactor**

The main parts of a nuclear reactor are following



- (i) **Fuel** Fissionable materials like  $_{92}U^{235}$ ,  $_{92}U^{238}$ ,  $_{94}U^{239}$  are used as fuel.
- (ii) **Moderator** Heavy water, graphite and beryllium oxide are used to slower down fast moving neutrons.
- (iii) **Coolant** The cold water, liquid oxygen, etc. are used to remove heat generated in the fission process.
- (iv) **Control rods** Cadmium or boron rods are good absorber of neutrons and therefore used to control the fission reaction.

Atom bomb working is based on uncontrolled chain reaction.

#### **Nuclear Fusion**

The process of combining of two lighter nuclei to form one heavy nucleus, is called nuclear fusion.

Three deuteron nuclei (1H<sup>2</sup>) fuse, 21.6 MeV is energy released and nucleus of helium (2He<sup>4</sup>) is formed.

$$_{1}H^{2} + _{1}H^{2} + _{1}H^{2} \longrightarrow _{2}He^{4} + _{1}H^{1} + _{0}n^{1} + 21.6 \text{ MeV}$$

In this process, a large amount of energy is released.

Nuclear fusion takes place at very high temperature approximately about  $10^7~\rm K$  and at very high pressure  $10^6~\rm atmosphere$ .

Hydrogen bomb is based on nuclear fusion.

The source of Sun's energy is the nuclear fusion taking place at sun.

# **Thermonuclear Energy**

The energy released during nuclear fusion is know as thermonuclear energy. Protons are needed for fusion while neutrons are needed for fission process.