PHYSICS/Class Test # 17

(A) 0

CLASS TEST

CLASS TEST # 17

SECTION-I

Single Correct Answer Type

PHYSICS

2.

1. Charge Q is distributed on a small hollow conducting sphere (radius r) as shown inside a spherical cavity of radius r_1 made inside a solid conducting sphere of radius r_2 as shown in the figure. The total energy of the system is :-

(A)
$$kQ^{2}\left(\frac{1}{2r_{2}}-\frac{1}{2r_{1}}+\frac{1}{2r}\right)$$
 (B) $kQ^{2}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{2r}\right)$
 $kQ^{2}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{2r}\right)$

(C) KQ
$$\left(\frac{1}{2r_1} + \frac{1}{4r_2} + \frac{1}{2r}\right)$$
 (D) KQ $\left(\frac{1}{4r_1} + \frac{1}{2r_2} + \frac{1}{2r}\right)$
The figure shows a charge q placed inside a cavity in an uncharged conductor.

Now if an external electric field is switched on then :

(A) only induced charge on outer surface will redistribute

- (B) only induced charge on inner surface will redistribute
- (C) Both induced charge on outer and inner surface will redistribute
- (D) force on charge q placed inside the cavity will change
- 3. There are two conducting concentric spherical thin shells of radius

 $\frac{3R}{4}$ and R. Thin shell of radius R is given a charge 4 Q. A point

charge –Q is also placed in the cavity at a distance R/2 from the centre as shown in figure. Find the electric potential at a distance 2R from the centre of concentric spherical shells along the line joining point charge :

(A)
$$\frac{1}{8\pi\varepsilon_0} \frac{5Q}{R}$$
 (B) $-\frac{1}{8\pi\varepsilon_0} \frac{5Q}{R}$ (C) $\frac{1}{8\pi\varepsilon_0} \frac{3Q}{R}$

A solid uncharged conducting sphere has radius 3a contains a hollowed 4. spherical region of radius 2a. A point charge +Q is placed at a position a distance a from the common center of the spheres. What is the magnitude of the electric field at the position r = 4a from the center of the spheres as

marked in the figure by P? $\left(k = \frac{1}{4\pi \epsilon_0}\right)$:-

- An isolated and charged spherical soap bubble has a radius 'r' and the pressure inside is 1 atmosphere. 5. If 'T' is the surface tension of soap solution, then charge on the soap bubble is :-
 - (B) $8\pi r \sqrt{2rT} \in_0$ (C) $8\pi r \sqrt{rT} \in_0$ (D) $8\pi r \sqrt{\frac{2rT}{\epsilon_0}}$ (A) $2\sqrt{\frac{2rT}{\epsilon}}$

(B) $\frac{kQ}{16a^2}$ (C) $\frac{3kQ}{16a^2}$

(D)
$$\frac{1}{2\pi\epsilon_0}\frac{Q}{3R}$$

(D) $\frac{kQ}{Qa^2}$

(

Multiple Correct Answer Type

6. In which of the cases we will get uniform charge distribution of (+q) on external spherical surface. Given every object is a conductor :

- 7. A long thin straight wire with linear charge density λ runs along axis of a thin hollow metal cylinder of radius R. The cylinder has a net linear charge density 2λ . Assume λ is positive. Mark correct options:-
 - (A) $\vec{E}(r > R) = \frac{3\lambda}{2\pi\epsilon_0} \frac{\hat{r}}{r}$ (B) $\vec{E}(r < R) = \frac{3\lambda}{2\pi\epsilon_0} \frac{\hat{r}}{r}$

(C) Linear charge density on inner surface of cylinder is $-\lambda$

(D) Linear charge density on outer surface of cylinder is 3λ

8. A point charge q is placed at P(0, 0, a). Then :-

(A) Flux through surface formed by joining points (0, 0, 0); (0, a, 0); (a, 0, 0) is greater than $\frac{q}{48\epsilon_0}$

-106₍

(B) Flux through surface formed by joining points (0, a, 0); (a, 0, 0); (a, a, 0) is greater than $\frac{q}{24\epsilon_0}$

(C) Flux through surface formed by joining points (0, a, 0); (0, -a, 0); (-a, -a, 0); (-a, a, 0) is equal to $\frac{q}{12\epsilon_0}$

(D) Flux through surface formed by joining points (0, 0, 0); (0, 0, a); (0, a, a); (0, a, 0) is equal to $\frac{4}{48\epsilon}$.

Linked Comprehension Type(1 Para × 3Q.) [3 M (-1)](Single Correct Answer Type)

Paragraph for Question No. 9 to 11

A spherical insulator of radius a is concentric with a conducting spherical shell having inner radius 3a and outer radius 5a as shown in the figure. The charge $+Q_1$ is uniformly distributed throughout the volume of the insulator, and the net charge on the conductor is $+Q_2$.

9. What is the magnitude of the electric field a distance of 2a from the center of the insulator? (A) $(Q_1 + Q_2)/4\pi\epsilon_0 a^2$ (B) $Q_1/16\pi\epsilon_0 a^2$ (C) $Q_1/4\pi\epsilon_0 a^2$ (D) None of these

3 Q. [4 M (-1)]

10. What is the flux of the electric field through a Gaussian sphere of radius 4*a* that is concentric with both the insulator and conducting shell?

(A) 0 (B) Q_1/ε_0 (C) $(Q_1+Q_2)/\varepsilon_0$ (D) None of these

11. What is the surface charge density on the outer surface of the conductor? (A) $Q_2/100\pi a^2$ (B) $(Q_1 + Q_2)/100\pi a^2$ (C) $3(Q_1 + Q_2)/100\pi a^2$ (D) None of these

Matching list based comprehension Type $(4 \times 4 \times 4)$ 1 Table \times 3 Q. [3(-1)] Single option correct (Three Columns and Four Rows)

Answer Q.12, Q.13 and Q.14 by appropriately matching the information given in the three columns of the following table.

Column-I & II represents the magnitude of electric field at points A & B respectively. Column-III represents the magnitude of potential difference between the two points. (Take potential at infinity to be

zero) $\left(k = \frac{1}{4\pi\varepsilon_0} \right)$								
	Column–I Electric field at point A		Column-II Electric field at point B		Column-III Potential difference between two points			
(I)	$\frac{\rho r_1}{2\epsilon_0}$	(i)	$\frac{\rho R^2}{4\epsilon_0 r_2}$	(P)	$ V_{A} - V_{B} = \frac{kQ}{2R} \left(3 - \frac{r_{1}^{2}}{R^{2}}\right) - \frac{kQ}{r_{2}}$			
(II)	$\frac{kQr_1}{R^3}$	(ii)	$\frac{\rho R^2}{2\epsilon_0 r_2}$	(Q)	$ V_A - V_B = \frac{3kQ}{2R} - \frac{kQ}{r_2}$			
(III)	0	(iii)	$\frac{\mathrm{k}\mathrm{Q}}{\mathrm{r}_2^2}$	(R)	$\left V_{\rm C}^{}-V_{\rm B}^{}\right =\frac{\rho R^2}{2\epsilon_0}\ell n\!\left(\frac{r_3}{r_2}\right)$			
(IV)	$\frac{\rho r_1}{4\epsilon_0}$	(iv)	$\frac{\mathrm{kQr}_2}{\mathrm{R}^3}$	(S)	$ V_{A} - V_{B} = \frac{kQ}{R} - \frac{kQ}{r_{2}}$			

12. Which of the following combination represents the situation due to a uniformly charged non-conducting solid sphere having total charge Q & radius R :-

 $(A) (II) (iii) (Q) \qquad (B) (III) (iii) (S) \qquad (C) (II) (iii) (P) \qquad (D) (III) (iv) (P)$

13. Which of the following combination represents the situation due to a uniformly charged non-conducting hollow thin sphere having total charge Q & radius R.

PHYSICS/Class Test # 17

14. Which of the following combination represents the situation due to a uniformly charged infinite solid cylinder of radius R and charge density ρ.

Numerical Grid Type (Ranging from 0 to 9)

5 Q. [4 M (0)]

- 1. An arrangement of source charges produces the electric potential $V = 5000 x^2$ along the x-axis, where V is in volts and x is in meters. If a charge particle of mass 1g and charge 1nC is present in this field and its turning points are at ± 8.0 cm? What is the particle's maximum speed (in mm/s).
- 2. Figure shows two concentric spherical shell having radii 1 m and 2 m respectively. Outer spherical surface has charge -3.2×10^{-15} Coulomb. If inner surface is now earthed by closing the switch then $x \times 10^{+y}$ number of electron move towards earth, then x + y will be $(x, y \in I, 0 \le x, y \le 9)$.

3. Figure shows a cylindrical conducting rod of diameter d and length $\ell >> d$ uniformly charged in vacuum such that electric field near its surface and far from its ends is E_0 . Electric field at $r >> \ell$ on the d

ar ne d

axis of the cylinder is $\frac{3E_0\ell d}{2Nr^2}$. Then find the value of N.

4. A spherical conductor of radius 4cm carries a charge of $\frac{10}{9} \times 10^{-10}$ C. At what distance (in cm) from of

sphere should a point charge of $\frac{40}{9} \times 10^{-10}$ C should be placed so that the potential of the conductor

becomes 75 V. Assume potential is zero at infinity.

5. Two metal balls of radii R and 2R are connected to a long thin conducting wire and has total charge $Q = 21 \ \mu\text{C}$. Then the ball of radius R is placed inside a grounded metal sphere of radius 3R as shown. What charge (in μ C) will flow through the thin wire in this process ?

CLASS TEST # 17			ANSWER KEY					
SECTION-I								
Single Correct An	swer Type		5 Q. [3 M (-1)]					
1. Ans. (A)	2. Ans. (A)	3. Ans. (C)	4. Ans. (B)					
5. Ans. (B)								
Multiple Correct A	Answer Type		3 Q. [4 M (-1)]					
6. Ans. (A, C)	7. Ans. (A, C, D)	8. Ans. (A,C)						
Linked Comprehe	nsion Type	(1 Para × 3Q.)	(1 Para × 3Q.) [3 M (-1)]					
(Single Correct Ar	iswer Type)							
9. Ans. (B)	10. Ans. (A)	11. Ans. (B)						
Matching list base	d comprehension Type	$e (4 \times 4 \times 4)$	1 Table × 3 Q. [3(–1)]					
Single option correct (Three Columns and Four Rows)								
12. Ans. (C)	13. Ans. (A)	14. Ans. (D)						
	SECT	ΓΙΟΝ-ΙΙΙ						
Numerical Grid T	5 Q. [4 M (0)]							
1. Ans. 8	2. Ans. 5	3. Ans. 6	4. Ans. 8					
5. Ans. 2								