Binomial Theorem

INTRODUCTION

Any algebraic expression consisting of only two different terms is known as binomial expression. The terms may consist of variables x, y etc. or constants or their mixed combinations.

For example: 2x + 3y, 4xy + 5 etc.

Terminology used in binomial theorem :

Factorial notation : |n| or n! is pronounced as factorial n and is defined as

$$n! = \begin{cases} n(n-1)(n-2)\dots 3.2.1 & ; & \text{if } n \in \mathbb{N} \\ 1 & ; & \text{if } n = 0 \end{cases}$$

Note :n! = n . (n-1)!; $n \in N$

Mathematical meaning of ${}^{n}C_{r}$: The term ${}^{n}C_{r}$ denotes number of combinations of r things choosen from n distinct things mathematically,

$${}^{n}C_{r} = \frac{n!}{(n-r)! r!}, n \in \mathbb{N}, r \in \mathbb{W}, 0 \le r \le n$$

Note: Other symbols of of ${}^{n}C_{r}$ are $\binom{n}{r}$ and C(n, r).

Properties related to "C, :

(i) ${}^{n}C_{r} = {}^{n}C_{n-r}$ **Note**: If ${}^{n}C_{x} = {}^{n}C_{y} \Rightarrow$ Either x = y or x + y = n(ii) ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$

(iii)
$$\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r}$$

(iv)
$${}^{n}C_{r} = \frac{n}{r} {}^{n-1}C_{r-1} = \frac{n(n-1)}{r(r-1)} {}^{n-2}C_{r-2} = \dots$$

= $\frac{n(n-1)(n-2)\dots(n-(r-1))}{r(r-1)(r-2)\dots(2.1)}$

(v) If n and r are relatively prime, then ⁿC_r is divisible by n. But converse is not necessarily true.

BINOMIAL THEOREM FOR POSITIVE INDEX

Binomial theorem gives a formula for the expansion of a binomial expression raised to any positive integral power. In general for a positive integer n

$$(x+y)^{n} = {}^{n}C_{0}x^{n} + {}^{n}C_{1}x^{n-1}y^{1} + {}^{n}C_{2}x^{n-2}y^{2} + \dots + {}^{n}C_{n}x^{0}y^{n},$$

where ${}^{n}C_{r} = \frac{n!}{(n-r)!r!}$

for $r = 0, 1, 2, \dots, n$ is called binomial coefficient.

Observations :

- (a) The number of terms in the expansion is (n + 1) i.e. one more than the index.
- (b) The sum of the indices of x & y in each term is n.
- (c) The binomial coefficients of the terms $({}^{n}C_{0}, {}^{n}C_{1}$) equidistant from the beginning and the end are equal.

Proof of binomial theorem

The Binomial theorem can be proved by mathematical induction

Let P(n) stands for the mathematical statement

$$(x+a)^{n} = x^{n} + {}^{n}C_{1} x^{n-1} a + {}^{n}C_{2} x^{n-2} a^{2} + \dots + {}^{n}C_{r} x^{n-r} a^{r} + \dots + a^{n} (i)$$
Note that there are (n + 1) terms in R.H.S. and all the terms are of the same degree in x and a together.
When n = 1, L.H.S. = x + a and R.H.S. = x + a (there are only 2 terms)
 $\therefore P(1)$ is verified to be true

Assume P(m) to be true

i.e.,
$$(x + a)^m = x^m + {}^mC_1 x^{m-1} a + {}^mC_2 x^{m-2} a_2 + ... + {}^mC_r x^{m-r} a^r + + a^m \dots (ii)$$

Multiplying equation (ii) by (x + a), we have

$$(x+a)^{m} (x+a) = (x+a) \{x^{m+m}C_{1} x^{m-1} a + {}^{m}C_{2} x^{m-2} a^{2} + \dots + {}^{m}C_{r} x^{m-r} a^{r} + \dots + a^{m} \}$$

i.e.,
$$(x+a)^{m+1} = x^{m+1} + ({}^{m}C_{1} + 1)x^{m}a + ({}^{m}C_{2} + {}^{m}C_{1})x^{m-1}a^{2} + \dots$$

$$\begin{array}{l} \dots + {\binom{m}{C_{r}} + {^{m}C_{r-1}} x^{m-r+1} a^{r} + \dots + a^{m+1}} \\ = x^{m+1} + {^{(m+1)}C_{1}} x^{m} a^{+(m+1)} C_{2} x^{m-1} a^{2} + \dots \\ + {^{m+1}C_{r}} x^{m+1-r} a^{r} + \dots a^{m+1} \qquad (iii) \\ (\text{using the formula } {^{n}C_{r}} + {^{n}C_{r-1}} = {^{(n+1)}C_{r}}) \\ \text{Equation (iii) implies that } P(m+1) \text{ is true and hence} \\ \text{by induction } P(n) \text{ is true.} \end{array}$$

Alternative method

By choosing *x* from all the brackets we get the term x^n . Choosing *x* from (n - 1) factors and '*a*' from the remaining factor we get x^{n-1} *a*. But the number of ways of doing this is equal to the number of ways of choosing one factor from *n* factors (i.e.,)ⁿC₁. Choosing *x* from (n - 2) factor and a from the remaining two factors, we get $x^{n-2} a^2$. But the number of ways of doing this is equal to the number of ways of choosing two factors from *n* factors. i.e., ⁿC₂. Finally choosing '*a*' from all the factors we get the term a^n .

 $\therefore (x+a)^n = x^n + {}^nC_1 x^{n-1} a + {}^nC_2 x^{n-2} a^2 + ... + {}^nC_r x^{n-r} a^r + + a^n$

SOLVED EXAMPLE

Example-1

The value of

$$\frac{(18^3 + 7^3 + 3.18.7.25)}{3^6 + 6.243.2 + 15.81.4 + 20.27.8 + 15.9.16 + 6.3.32 + 64}$$

is

Sol. The numerator is of the form $a^3 + b^3 + 3ab (a + b) = (a + b)^3$ where a = 18 and b = 7 $\therefore Nr = (18 + 7)^3 = (25)^3$. Denominator can be written as $3^6 + {}^6C_1 \cdot 3^5 \cdot 2^1 + {}^6C_2 \cdot 3^4 \cdot 2^2 + {}^6C_2 \cdot 3^3 \cdot 2^3 + 3^3 \cdot 2^3$

$${}^{6}C_{4}3^{2}.2^{4} + {}^{6}C_{5}3.2^{5} + {}^{6}C_{6}2^{6} = (3+2)^{6} = 5^{6} = (25)^{3}$$
$$\therefore \frac{Nr}{Dr} = \frac{(25)^{3}}{(25)^{3}} = 1$$

Example-2

Sol.

Expand
$$\left(x - \frac{1}{x}\right)^{6}$$

 $\left(x - \frac{1}{x}\right)^{6} = {}^{6}C_{0}x^{6} + {}^{6}C_{1}x^{5}\left(\frac{-1}{x}\right) + {}^{6}C_{2}x^{4}\left(\frac{-1}{x}\right)^{2}$
 $+ {}^{6}C_{3}x^{3}\left(\frac{-1}{x}\right)^{3} + {}^{6}C_{4}x^{2}\left(\frac{-1}{x}\right)^{4}$
 $+ {}^{6}C_{5}x\left(\frac{-1}{x}\right)^{5} + {}^{6}C_{6}x^{0}\left(\frac{-1}{x}\right)^{6}$
 $= x^{6} - 6x^{4} + 15x^{2} - 20 + \frac{15}{x^{2}} - \frac{6}{x^{4}} + \frac{1}{x^{6}}$

GENERAL TERM IN THE BINOMIAL EXPANSION

 $1\rangle^6$

The general term in the expansion of $(x+y)^n$ is $(r+1)^{th}$ term, given by $t_{r+1} = {}^nC_r x^{n-r} y^r$ where $r = 0, 1, 2 \dots n$.

- Every term in the expansion is of nth degree in variables x and y.
- The total number of terms in the expansion is n + 1.
- Binomial expansion can also be expressed as

$$\left(x+y\right)^{n} = \sum_{r=0}^{n} {}^{n}C_{r}x^{n-r}y^{r}$$

- The binomial coefficients of the expansion equidistant from the beginning and the end are equal. In other words ${}^{n}C_{r} = {}^{n}C_{n-r}$.
- **TERM INDEPENDENT OF x**: Term independent of x contains no x; Hence find the value of r for which the exponent of x is zero.

SOLVED EXAMPLE

Example-3

Find the 11th term in the expansion of
$$\left(3x - \frac{1}{x\sqrt{3}}\right)^{20}$$
.

20

$$= t_{r+1} = (-1)^{r \ 20} C_r (3x)^{20-r} \left(\frac{1}{x\sqrt{3}}\right)^r$$

For the 11th term, we must take r = 10

$$\therefore t_{11} = t_{10+1} = (-1)^{10} {}^{20}C_{10} (3x)^{20-10} \left(\frac{1}{x\sqrt{3}}\right)^{10}$$
$$= {}^{20}C_{10} 3^{10} x^{10} \frac{1}{x^{10} (\sqrt{3})^{10}} = {}^{20}C_{10} (\sqrt{3})^{10} = {}^{20}C_{10} 3^{5}$$

Example-4

Find the term independent of x in
$$\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$$

Sol. The general term =
$${}^{9}C_{r}\left(\frac{3x^{2}}{2}\right)^{9-r}\left(\frac{-1}{3x}\right)^{r}$$

$$= (-1)^{r} {}^{9}C_{r} \frac{3^{9-2r}}{2^{9-r}} \cdot x^{18-3r}$$

The term independent of x, (or the constant term) corresponds to x^{18-3r} being

 x^0 or 18 - 3r = 0 \Rightarrow r = 6

 \therefore the term independent of x is the 7th term and its value is

$$(-1)^{6-9}C_{6}\frac{3^{9-12}}{2^{9-6}} = {}^{9}C_{3}\frac{3^{-3}}{2^{3}} = \frac{9\cdot8\cdot7}{3\cdot2\cdot1}\cdot\frac{1}{(6)^{3}} = \frac{7}{18}$$

Example-5

Find the coefficient of x^7 in the expansion of $\left(ax^2 + \frac{1}{bx}\right)^{11}$

Sol. In the expansion of $\left(ax^2 + \frac{1}{bx}\right)^{11}$, the general terms is

$$T_{r+1} = {}^{11}C_r (ax^2)^{11-r} \left(\frac{1}{bx}\right)^r = {}^{11}C_r \cdot \frac{a^{11-r}}{b^r} \cdot x^{22-3r}$$

putting 22-3r=7 \Rightarrow 3r=15 \Rightarrow r=5

$$\therefore T_6 = {}^{11}C_5 \frac{a}{b^5} x^5$$

Hence the coefficient of x^7 in $\left(ax^2 + \frac{1}{bx}\right)^{11}$ is ¹¹C₅ a⁶b⁻⁵.

Example-6

Find the number of rational terms in the expansion of $(9^{1/4} + 8^{1/6})^{1000}$.

Sol. The general term in the expansion of $(9^{1/4} + 8^{1/6})^{1000}$ is

$$T_{r+1} = {}^{1000}C_r \left(9^{\frac{1}{4}}\right)^{1000-r} \left(8^{\frac{1}{6}}\right)^r = {}^{1000}C_r 3^{\frac{1000-r}{2}} 2^{\frac{r}{2}}$$

The above term will be rational if exponent of 3 and 2

are integers. i.e. $\frac{1000-r}{2}$ and $\frac{r}{2}$ must be integers

The possible set of values of r is {0, 2, 4,1000}. Hence, number of rational terms is 501

MIDDLE TERMS OF THE EXPANSION

In the binomial expansion of $(x + y)^n$

WHEN n IS ODD

There are (n + 1) i.e. even terms in the expansion and hence two middle terms are given by

$$t_{\frac{n+1}{2}} = {}^{n}C_{n-1}X^{\frac{n+1}{2}}y^{\frac{n-1}{2}} \text{ for } r = \frac{n-1}{2}$$

and $t_{\frac{n+3}{2}} = {}^{n}C_{\frac{n+1}{2}}X^{\frac{n-1}{2}}y^{\frac{n+1}{2}} \text{ for } r = \frac{n+1}{2}$

WHEN n IS EVEN

There are odd terms in the expansion and hence only one middle term is given by

$$t_{\frac{n}{2}+1} = {}^{n}C_{n/2} x^{n/2} y^{n/2}$$
 for $r = \frac{n}{2}$

Note : The greatest binomial coefficient in the expansion is always the binomial coefficient of middle term/terms.

Example-7

Sol.

Find the middle term in the expression of
$$(1-2x+x^2)^n$$
.
 $(1-2x+x^2)^n = [(1-x)^2]^n = (1-x)^{2n}$

Here 2n is even integer, therefore, $\left(\frac{2n}{2}+1\right)^{th}$

i.e.
$$(n+1)^{\text{th}}$$
 term will be the middle term.
Now $(n+1)^{\text{th}}$ term in $(1-x)^{2n} = {}^{2n}C_n(1)^{2n-n}(-x)^n$

$$= {}^{2n}C_n (-x)^n = \frac{(2n)!}{n!n!} (-x)^n$$

Example-8

Sol.

Find the middle term in the expansion of $\left(3x - \frac{x^3}{6}\right)^{9}$

The number of terms in the expansion of $\left(3x - \frac{x^3}{6}\right)^2$

is 10 (even). So there are two middle terms.

i.e. $\left(\frac{9+1}{2}\right)$ th and $\left(\frac{9+3}{2}\right)$ th two middle terms. They are given by T₅ and T₆

$$\therefore T_{5} = T_{4+1} = {}^{9}C_{4}(3x)^{5} \left(-\frac{x^{3}}{6}\right)^{4}$$

$${}^{9}C_{4}3^{5}x^{5} \cdot \frac{x^{12}}{6^{4}} = \frac{9 \cdot 8 \cdot 7 \cdot 6}{1 \cdot 2 \cdot 3 \cdot 4} \cdot \frac{3^{5}}{2^{4}3^{4}} x^{17} = \frac{189}{8} x^{17}$$
and $T_{6} = T_{5+1} = {}^{9}C_{5}(3x)^{4} \left(-\frac{x^{3}}{6}\right)^{5} = -{}^{9}C_{4}3^{4} \cdot x^{4} \frac{x^{15}}{6^{5}}$

$$= \frac{-9 \cdot 8 \cdot 7 \cdot 6}{1 \cdot 2 \cdot 3 \cdot 4} \cdot \frac{3^{4}}{2^{5} \cdot 3^{5}} x^{19} = -\frac{21}{16} x^{19}$$

Example-9

The term independent of x in
$$\left[\sqrt{\left(\frac{3}{2x^2}\right)} + \sqrt{\frac{x}{3}}\right]^{10}$$
 is

-10

Sol. General term in the expansion is

For constant term, $\frac{3r}{2} = 10$

 \Rightarrow r = $\frac{20}{3}$ which is not an integer. Therefore, there will be no constant term.

Example-10

If the coefficient of $(2r+4)^{th}$ term and $(r-2)^{th}$ term in the expansion of $(1+x)^{18}$ are equal, find *r*.

Since coefficient of $(2r+4)^{th}$ term in $(1+x)^{18} = {}^{18}C_{2r+3}$. Coefficient of $(r-2)^{th}$ term $= {}^{18}C_{r-3}$

$$\Rightarrow {}^{18}C_{2r+3} = {}^{18}C_{r-3}$$
$$\Rightarrow 2r+3+r-3 = 18$$
$$\Rightarrow 3r = 18$$
$$\Rightarrow r = 6.$$

GREATEST TERM IN THE EXPANSION

The numerically greatest term (absolute value) in the expansion of $(1 + x)^n$ is determined by the following process:

Let t_{r+1} be the numerically greatest term, then $|t_r| \le |t_{r+1}| \ge |t_{r+2}|$

Considering
$$\left| \frac{\mathbf{t}_{r+1}}{\mathbf{t}_r} \right| \ge 1 \Rightarrow \left| \frac{\mathbf{n} - \mathbf{r} + \mathbf{1}}{\mathbf{r}} \mathbf{x} \right| \ge 1$$

$$\Rightarrow \frac{\mathbf{n} - \mathbf{r} + \mathbf{1}}{\mathbf{r}} |\mathbf{x}| \ge 1 \Rightarrow (\mathbf{n} - \mathbf{r} + \mathbf{1}) |\mathbf{x}| \ge \mathbf{r}$$

$$\Rightarrow \mathbf{r} \le (\mathbf{n} + \mathbf{1}) \frac{|\mathbf{x}|}{\mathbf{1} + |\mathbf{x}|} \qquad \dots (\mathbf{i})$$
Also $\left| \frac{\mathbf{t}_{r+1}}{\mathbf{t}_{r+2}} \right| \ge \mathbf{1} \Rightarrow \left| \frac{\mathbf{r} + \mathbf{1}}{\mathbf{n} - \mathbf{r}} \frac{\mathbf{1}}{\mathbf{x}} \right| \ge \mathbf{1} \Rightarrow \mathbf{r} + \mathbf{1} \ge (\mathbf{n} - \mathbf{r}) |\mathbf{x}|$

$$\Rightarrow \mathbf{r} \ge \frac{\mathbf{n} |\mathbf{x}| - \mathbf{1}}{\mathbf{1} + |\mathbf{x}|}$$

$$\Rightarrow \mathbf{r} \ge (\mathbf{n} + \mathbf{1}) \frac{|\mathbf{x}|}{\mathbf{1} + |\mathbf{x}|} - \mathbf{1} \qquad \dots (\mathbf{i})$$

Thus from (i) and (ii) for t_{r+1} to be the greatest term,

$$r \le m$$
 and $r \ge m-1$ where $m = (n+1) \frac{|X|}{1+|X|}$

For expansion of $(a+b)^n$

Case - I When $\frac{n+1}{1+\left|\frac{a}{b}\right|}$ is an integer (say m), then

- (i) $T_{r+1} > T_r$ when r < m (r = 1, 2, 3, ..., m 1)i.e. $T_2 > T_1, T_3 > T_2, \dots, T_m > T_{m-1}$
- (ii) $T_{r+1} = T_r$ when r = mi.e. $T_{m+1} = T_m$ (iii) $T_{r+1} < T_r$ when r > m (r = m + 1, m + 2,n)i.e. $T_{m+2} < T_{m+1}$, $T_{m+3} < T_{m+2}$, $T_{n+1} < T_n$

Conclusion :

When
$$\frac{n+1}{1+\left|\frac{a}{b}\right|}$$
 is an integer, say m, then T_m and

 T_{m+1} will be numerically greatest terms (both terms are equal in magnitude) Case - II

When
$$\frac{n+1}{1+\left|\frac{a}{b}\right|}$$
 is not an integer (Let its integral

part be m), then

(i)
$$T_{r+1} > T_r$$
 when $r < \frac{n+1}{1+\left|\frac{a}{b}\right|}$ (r = 1, 2, 3,..., m-1, m)
i.e. $T_2 > T_1$, $T_3 > T_2$, ..., $T_{m+1} > T_m$
(ii) $T_{r+1} < T_r$ when $r > \frac{n+1}{1+\left|\frac{a}{b}\right|}$ (r=m+1, m+2,n)

i.e.
$$T_{m+2} < T_{m+1}$$
, $T_{m+3} < T_{m+2}$,, $T_{n+1} < T_{r}$

Cor

When $\frac{n+1}{1+\left|\frac{a}{b}\right|}$ is not an integer and its integral

part is m, then $\boldsymbol{T}_{m^{+1}}$ will be the numerically greatest term.

Note: (i) In any binomial expansion, the middle term(s) has greatest binomial coefficient. In the expansion of $(a + b)^n$

If n	No. of greatest binomial coeff.	Greatest binomial coefficient				
Even	1	${}^{n}C_{n/2}$				
Odd	2	${}^{n}C_{(n-1)/2}$ and ${}^{n}C_{(n+1)/2}$				
(Values	s of both these coeff	ficients are equal)				

(ii) In order to obtain the term having numerically greatest coefficient, put a = b = 1, and proceed as discussed above.

In general, for the expansion
$$(a + x)^n$$
 or $a^n \left(1 + \frac{x}{a}\right)^n$

we can consider
$$m = (n+1)\frac{|x/a|}{1+|x/a|}$$

SOLVED EXAMPLE

Example-11

Sol.

Find the greatest term in the expansion of $(4 + 3x)^7$

when
$$x = \frac{2}{3}$$
.

Here the greatest term means the numerically greatest term.

$$\frac{\mathbf{t}_{r}+1}{\mathbf{t}_{r}} = \frac{{}^{7}\mathbf{C}_{r}4^{7-r}(3\mathbf{x})^{r}}{{}^{7}\mathbf{C}_{r-1}4^{8-r}(3\mathbf{x})^{r-1}} = \frac{8-r}{r}\frac{3\mathbf{x}}{4} = \frac{8-r}{2r}\operatorname{since} \mathbf{x} = 2/3$$

Now $|t_{r+1}| \ge |t_r|$ if $8 - r \ge 2r$ or $\frac{8}{3} \ge r$

This inequality is valid only for r = 1 or 2

Thus for
$$r = 1, 2$$
; $|t_{r+1}| > |t_r|$ and

for
$$r = 3, 4$$
; $|t_{r+1}| < |t_r|$

$$\therefore |t_1| < |t_2| < |t_3| > |t_4| > |t_5| > \dots$$

greatest term = $|t_3| = {}^{7}C_2 4^{5} . (3x)^2$ where $x = \frac{2}{3}$ $=21 \times 4^5 \times 2^2 = 86016$

SUMMATION OF SERIES INCLUDING BINOMIAL

COEFFICIENTS

In the binomial expansion of $(1 + x)^n$, let us denote the coefficients

 ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$,, ${}^{n}C_{r}$,..., ${}^{n}C_{n}$ by C_{0} , C_{1} , C_{2} , ..., C_{r} , ..., C_{n} respectively.

The sum of the binomial coefficients in the expansion of $(1 + x)^n$ is 2^n :

:
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$$

Putting x = 1

:. $2^n = C_0 + C_1 + C_2 + \dots + C_n$ (i)

or
$$\sum_{r=0}^{n} C_r = 2^n$$

The sum of the coefficients of the odd terms in the expansion of $(1 + x)^n$ is equal to the sum of the coefficients of the even terms and each is equal to 2^{n-1}

Since
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \dots + C_n x^n$$

Putting x = -1,

$$0 = C_0 - C_1 + C_2 - C_3 + \dots + (-1)^n C_n$$

and $2^n = C_0 + C_1 + C_2 + C_3 + \dots + C_n$ {from (i)}

Adding and subtracting these two equations, we get

$$2^{n} = 2 \left(C_{0} + C_{2} + C_{4} + \dots \right)$$

and $2^n = 2(C_1 + C_3 + C_5 + \dots)$

$$\therefore \quad C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots = 2^{n-1}$$

sum of coefficients of odd terms = sum of coefficients of even terms = 2^{n-1}

Some Results on Binomial Coefficients

(a)
$$C_0 + C_1 + C_2 + \dots + C_n = 2^n$$

(b) $C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots = 2^{n-1}$
(c) $C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2 = 2^n C_n = \frac{(2n)!}{n!n!}$
(2n)!

(d)
$$C_0 \cdot C_r + C_1 \cdot C_{r+1} + C_2 \cdot C_{r+2} + \dots + C_{n-r} \cdot C_n = \frac{(2n)!}{(n+r)!(n-r)!}$$

Remember : $(2n) ! = 2^{n} . n! [1.3.5....(2n-1)]$

SOLVED EXAMPLE

Example-12

Prove that the sum of the coefficients in the expansion of $(1 + x - 3x^2)^{2163}$ is -1. Sol. Putting x = 1 in $(1 + x - 3x^2)^{2163}$, the required sum of coefficients

$$=(1+1-3)^{2163}=(-1)^{2163}=-1$$

Example-13

Sol.

•

Sol.

If the sum of the coefficients in the expansion of $(\alpha x^2 - 2x + 1)^{35}$ is equal to the sum of the coefficients in the expansion of $(x - \alpha y)^{35}$, then find the value of α . Sum of the coefficients in the expansion of $(\alpha x^2 - 2x + 1)^{35}$ = Sum of the coefficients in the expansion of $(x - \alpha y)^{35}$

Putting x = y = 1 $\therefore \quad (\alpha - 1)^{35} = (1 - \alpha)^{35}$ $\Rightarrow \quad (\alpha - 1)^{35} = -(\alpha - 1)^{35}$ $\Rightarrow \quad 2(\alpha - 1)^{35} = 0$ $\therefore \quad \alpha - 1 = 0 \qquad \therefore \alpha = 1$

Differentiation can be used to solve series in which each term is a product of an integer and a binomial coefficient i.e. in the form *k*. *ⁿC_r*.

Example-14

Show that 3 . $C_0 + 7$. $C_1 + 11$. $C_2 + \dots + (4n + 3)$ $C_n = (2n + 3) 2^n$.

This problem can be done be differentiating the expansion of $x^3(1 + x^4)^n$ and putting x = 1.

$$x^{3} (1 + x^{4})^{n} = x^{3} (C_{0} + C_{1}x^{4} + C_{2}x^{8} + \dots + C_{n}x^{4n})$$

= $C_{0}x^{3} + C_{1}x^{7} + C_{2}x^{11} + \dots + C_{n}x^{4n+3}$

Differentiating we get,

$$\Rightarrow 3x^{2} (1 + x^{4})^{n} + x^{3}n (1 + x^{4})^{n-1} 4x^{3}$$

= $3x^{2}C_{0} + 7x^{6}C_{1} + 11x^{10}C_{2} + \dots + (4n+3)x^{4n+2}C_{n}$
Now substituting $x = 1$ in both sides.

$$\Rightarrow 3C_0 + 7C_1 + 11C_2 + \dots + (4n+3)C_n$$

= 3(2ⁿ) + 4n (2)ⁿ⁻¹ = (3+2n)2ⁿ

Example-15

	Show that
	$C_1 - 2 \cdot C_2 + 3 \cdot C_3 - 4 \cdot C_4 + \dots + (-1)^{n-1} n \cdot C_n = 0.$
Sol.	The problem can be done by differentiating the
	expansion of $(1 + x)^n$ and then putting $x = -1$.
	2 nd Method :
	L.H.S. = ${}^{n}C_{1} - 2 \cdot {}^{n}C_{2} + 3 \cdot {}^{n}C_{3} - \dots + (-1)^{n-1} \cdot n \cdot {}^{n}C_{n}$
	$= n \left\{ 1 - {}^{(n-1)}\dot{C}_1 + {}^{(n-1)}\dot{C}_2 - {}^{n-1}\dot{C}_3 + \dots + (-1)^{n-1} C_{n-1} \right\}^n$
	$= n (1-1)^{n-1} = n \times 0 = 0$

Integration can be used to solve series in which each term is a binomial coefficient divided by an integer

i.e. in the form
$$\frac{{}^{n}C_{r}}{k}$$
.

Example-16

Show that

$$2.C_0 + 2^2.\frac{C_1}{2} + 2^3.\frac{C_2}{3} + \dots + 2^{n+1}\frac{C_n}{n+1} = \frac{3^{(n+1)} - 1}{n+1}$$

Sol. Integrating the expansion of $(1 + x)^n$ between the limits 0 to 2.

$$\int_{0}^{2} (1+x)^{n} dx = \int_{0}^{2} (C_{0} + C_{1}x + ... + C_{n}x^{n}) dx$$
$$\implies \frac{(1+x)^{n+1}}{n+1} \Big|_{0}^{2} = C_{0}x + C_{1}\frac{x^{2}}{2} + ... + C_{n}\frac{x^{n+1}}{n+1} \Big|_{0}^{2}$$

$$\Rightarrow 2.C_0 + 2^2.\frac{C_1}{2} + 2^3.\frac{C_2}{3} + \dots + 2^{n+1}\frac{C_n}{n+1} = \frac{3^{(n+1)} - 1}{n+1}$$

2nd Method : L.H.S.

$$= \frac{1}{n+1} \left\{ {}^{(n+1)}C_{1} \cdot 2 + {}^{(n+1)}C_{2} \cdot 2^{2} + {}^{(n+1)}C_{3} \cdot 2^{3} + \dots + {}^{(n+1)}C_{n+1} \cdot 2^{(n+1)} \right\}$$

$$= \frac{1}{n+1} \left\{ 1 + {}^{(n+1)}C_{1} \cdot 2 + {}^{(n+1)}C_{2} \cdot 2^{2} + \dots + {}^{(n+1)}C_{n+1} \cdot 2^{(n+1)} - 1 \right\}$$

$$= \frac{1}{(n+1)} \left\{ (1+2)^{n+1} - 1 \right\} = \frac{3^{n+1} - 1}{n+1}$$

Product of two expansions can be used to solve some problems related to series of binomial coefficients in which each term is a product of two binomial coefficients.

Example-17

If $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$ then prove that $\sum_{0 \le i < j \le n} (C_i + C_j)^2 = (n - 1)^{2n} C_n + 2^{2n}$

$$\begin{split} \text{Sol.} \qquad & \text{L.H.S} \; \sum_{0 \leq i < j \leq n} \left(\text{C}_i + \text{C}_j \right)^2 = (\text{C}_0 + \text{C}_1)^2 + (\text{C}_0 + \text{C}_2)^2 + \dots \\ & \dots + (\text{C}_0 + \text{C}_n)^2 + (\text{C}_1 + \text{C}_2)^2 + (\text{C}_1 + \text{C}_3)^2 + \dots + (\text{C}_1 + \text{C}_n)^2 \\ & + (\text{C}_2 + \text{C}_3)^2 + (\text{C}_2 + \text{C}_4)^2 + \dots + (\text{C}_2 + \text{C}_n)^2 + \dots + (\text{C}_{n-1} + \text{C}_n)^2 \\ & = n \left(\text{C}_0^2 + \text{C}_1^2 + \text{C}_2^2 + \dots + \text{C}_n^2 \right) + 2 \sum_{0 \leq i < j \leq n} \text{C}_i \text{C}_j \\ & = n \cdot 2^n \text{C}_n + 2 \cdot \left\{ 2^{2n-1} - \frac{2n!}{2 \cdot n! \cdot n!} \right\} \\ & = n \cdot 2^n \text{C}_n + 2^{2n} - 2^n \text{C}_n = (n-1) \cdot 2^n \text{C}_n + 2^{2n} = \text{R.H.S.} \end{split}$$

IMPORTANT RESULTS

If $(\sqrt{P} + Q)^n = l + f$ where *I* and *n* are positive integers, *n* being odd, and $0 \le f \le 1$, then show that $(I+f)f = k^n$ where $P - Q^2 = k \ge 0$ and $\sqrt{P} - Q \le 1$.

Proof. Given $\sqrt{P} - Q < 1$

$$\therefore \quad 0 < (\sqrt{P} - Q)^n < 1$$

Now let
$$\left(\sqrt{P} - Q\right)^n = f'$$
 where $0 < f' < 1$

$$\therefore \quad l+f-f' = (\sqrt{P}+Q)^n - (\sqrt{P}-Q)^n$$

- \therefore RHS contains even powers of \sqrt{P} (\because *n* is odd)
- \Rightarrow RHS is an integer
- Since RHS and I are integers,
- $\therefore \quad f f' \text{ is also integer.} \\ \therefore \quad \Rightarrow f f' = 0$

$$\therefore \rightarrow 1 - 1 - 0$$

$$\therefore -1 < f - f' < 1$$

or
$$f = f'$$

$$\therefore (l+f)f = (l+f)f' = (\sqrt{P} + Q)^n (\sqrt{P} - Q)^n = (P - Q^2)^n = k^n$$

If $(\sqrt{P} + Q)^n = 1 + f$ where *I* and *n* are positive integer, *n* being even, and $0 \le f < 1$, then show that $(I+f)(1-f) = k^n$ where $P - Q^2 = k > 0$ and $\sqrt{P} - Q < 1$. **Proof**: If *n* is an even integer then

$$\left(\sqrt{P}+Q\right)^n + \left(\sqrt{P}-Q\right)^n = l+f+f'$$

Hence LHS and I are integer.

$$\begin{array}{ll} \therefore & f+f' \text{ is also integer.} \\ \Rightarrow & f+f'=1 & \because 0 < f+f' < 2 \\ \therefore & f'=(1-f) \\ \text{Hence} \end{array}$$

$$(l+f)(l-f) = (l+f)f' = (\sqrt{P}+Q)^n (\sqrt{P}-Q)^n$$

= $(P-Q^2)^n = k^n$.

SOLVED EXAMPLE

Example-18

- If $(2+\sqrt{3})^n = 1+f$ where I and n are positive integers and 0 < f < 1, show that (i) I is an odd integer and (ii) (1+f)(1-f) = 1.
- Sol. (i) Now $0 < 2 \sqrt{3} < 1$, since $2 \sqrt{3} = 0.268$ (approx.)

$$\therefore 0 < (2 - \sqrt{3})^n < 1;$$

we can take $(2-\sqrt{3})^n$ as f'.

Now
$$(2 + \sqrt{3})^n + (2 - \sqrt{3})^n = I + f + f'$$

$$= 2 \left\{ 2^{n} + {}^{n}C_{2}2^{n-2}(\sqrt{3})^{2} + {}^{n}C_{4}2^{n-4}(\sqrt{3})^{4} + \dots \right\} = an \quad \text{(iii)}$$

integer

(in fact an even integer)

 \therefore RHS. = I + f + f' = an even integer

Also f + f' = 1, since f and f' are both positive proper fractions.

$$\therefore$$
 I = an even integer -1 = an odd integer.

(ii)
$$(l+f)(1-f) = (l+f)(f') = (2+\sqrt{3})^n \cdot (2-\sqrt{3})^n$$

= $(4-3)^n = 1^n = 1$

MULTINOMIAL EXPANSION

If $n \in N$, then the general term of the multinomial expansion $(x_1 + x_2 + x_3 + \dots + x_k)^n$ is

$$\frac{n!}{a_1!a_2!a_3!\dots ak!} x_1^{a_1} x_2^{a_2} x_3^{a_3} \dots x_k^{a_k}$$

where $a_1 + a_2 + a_3 + \dots + a_k = n$
and $0 \le a \le n, i = 1, 2, 3, \dots, k$.

and the number of terms in the expansion are ${}^{n+k-1}C_{k-1}$.

The greatest coefficient in the expansion of

$$(a_1 + a_2 + a_3 + ... + a_m)^n$$
 is $\frac{n!}{(q!)^{m-r} ((q+1)!)^r}$

where q is the quotient and r is the remainder when n is divided by m.

SOLVED EXAMPLE

Example-19

Find the co-efficient of $a^2b^3c^5$ in the expansion of 10

$$(a+b+c)$$

Sol. General term is $\frac{10!}{a_1!a_2!a_3!}(a)^{a_1}(b)^{a_2}(c)^{a_3}$

$$\therefore$$
 $a_1 = 2, a_2 = 3, a_3 = 5$

$$\therefore \text{ Co-efficient of at } a^2 b^3 c^5 = \frac{10!}{2!3!5!}.$$

BINOMIAL THEOREM FOR ANY INDEX

If
$$n \in \mathbb{R}$$
, $-1 < x < 1$, then

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + ... + \frac{n(n-1)(n-2)...(n-r+1)}{r!}x^r + ...\infty$$

Note:

(i)

(ii)

In the expansion if $n \in \mathbf{R}$ and n > 0 then -1 < x < 1.

 ${}^{n}C_{r}$ can not be used because it is defined only for natural number.

If x be so small then its square and higher powers may be neglected, then approximate value of $(1+x)^n = 1 + nx$.

Important results:

$$(1 + x)^{-1} = 1 - x + x^2 - x^3 + \dots + (-1)^r x^r + \dots$$

 $(1-x)^{-1} = 1 + x + x^2 + x^3 + \dots + x^r + \dots$

$$(1+x)^{-2} = 1 - {}^{2}C_{1}x + {}^{3}C_{2}X^{2} - {}^{4}C_{3}x^{3} + \dots + (-1)^{r+1}C_{r}x^{r} + \dots$$

- $(1-x)^{-2} = 1 + {}^{2}C_{1}x + {}^{3}C_{2}x^{2} + {}^{4}C_{3}x^{3} + \dots + {}^{r+1}C_{r}x^{r} + \dots + (1+x)^{-3} = 1 {}^{3}C_{1}x + {}^{4}C_{2}x^{2} {}^{5}C_{3}x^{3} + \dots + (-1)^{r}{}^{r+2}C_{r}x^{r}$
- $(1+x)^{-3} = 1 {}^{3}C_{1}x + {}^{4}C_{2}x^{2} {}^{5}C_{3}x^{3} + \dots + (-1)^{r+2}C_{r}x^{r}$ +
- $(1-x)^{-3} = 1 + {}^{3}C_{1}x + {}^{4}C_{2}x^{2} + {}^{5}C_{3}x^{3} + \dots + {}^{r+2}C_{r}x^{r} + \dots$ In general, the coefficient of x^{n} in $(1-x)^{-k}$ is ${}^{n+k-1}C_{k-1}$

APPROXIMATIONS

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{1.2}x^2 + \frac{n(n-1)(n-2)}{1.2.3}x^3 + \dots$$

If x < 1, the terms of the above expansion go on decreasing and if x be very small, a stage may be reached when we may neglect the terms containing higher powers of x in the expansion. Thus, if x be so small that its squares and higher powers may be neglected then $(1 + x)^n = 1 + nx$, approximately,

This is an approximate value of $(1 + x)^n$

SOLVED EXAMPLE

Example-20

If x is so small such that its square and higher powers may be neglected then find the approximate value of

$$\frac{(1-3x)^{1/2} + (1-x)^{5/3}}{(4+x)^{1/2}}$$

Sol.

$$\frac{(1-3x)^{1/2} + (1-x)^{5/3}}{(4+x)^{1/2}} = \frac{1-\frac{3}{2}x+1-\frac{5x}{3}}{2\left(1+\frac{x}{4}\right)^{1/2}}$$

$$=\frac{1}{2}\left(2-\frac{19}{6}x\right)\left(1+\frac{x}{4}\right)^{-1/2} = \frac{1}{2}\left(2-\frac{19}{6}x\right)\left(1-\frac{x}{8}\right)$$
$$=\frac{1}{2}\left(2-\frac{x}{4}-\frac{19}{6}x\right) = 1-\frac{x}{8}-\frac{19}{12}x = 1-\frac{41}{24}x$$

Example-21

The value of cube root of 1001 upto five decimal places is

Sol.
$$(1001)^{1/3} = (1000+1)^{1/3} = 10\left(1+\frac{1}{1000}\right)^{1/3}$$

$$=10\left\{1+\frac{1}{3}\cdot\frac{1}{1000}+\frac{1/3(1/3-1)}{2!}\frac{1}{1000^{2}}+\dots\right\}$$

 $= 10 \{1 + 0.0003333 - 0.00000011 + \dots\} = 10.00333$

EXPONENTIAL SERIES

- (a) e is an irrational number lying between 2.7 & 2.8. Its value correct upto 10 places of decimal is 2.7182818284.
- (b) Logarithms to the base 'e' are known as the Napierian system, so named after Napier, their inventor. They are also called **Natural** Logarithm.

(c)
$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots \infty;$$
 where x may be

any real or complex number &
$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

(d) $a^{x} = 1 + \frac{x}{1!} \ell n a + \frac{x^{2}}{2!} \ell n^{2} a + \frac{x^{3}}{3!} \ell n^{3} a + \dots \infty$ where a > 0

(e)
$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots \infty$$

LOGARITHMIC SERIES

- (a) $\ell n (1 + x) = x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + \dots \infty$ where $-1 \le x \le 1$
- **(b)** $ln(1-x) = -x \frac{x^2}{2} \frac{x^3}{3} \frac{x^4}{4} + \dots \infty$ where $-1 \le x < 1$
- **Remember**: (i) $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots = \ell n 2$ (ii) $e^{\ell n x} = x$ (iii) $\ell n 2 = 0.693$ (iv) $\ell n 10 = 2.303$

EXERCISE-I

General Term

Q.1
$$6^{th}$$
 term in expansion of $\left(2x^2 - \frac{1}{3x^2}\right)^{10}$ is
(1) $\frac{4580}{17}$ (2) $-\frac{896}{27}$
(3) $\frac{5580}{17}$ (4) None of these

- Q.2 If the coefficients of r^{th} term and $(r + 4)^{th}$ term are equal in the expansion of $(1 + x)^{20}$, then the value of *r* will be (1) 7 (2) 8 (3) 9 (4)10
- Q.3 16th term in the expansion of $(\sqrt{x} \sqrt{y})^{17}$ is (1) 136xy⁷ (2) 136xy (3) -136xy^{15/2} (4) -136xy²
- Q.4 In $\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{3}}\right)^n$ if the ratio of 7th term from the beginning to the 7th term from the end is 1/6, then n is equal to (1)7 (2)8 (3)9 (4)5
- Q.5 If x⁴ occurs in the rth term in the expansion of $\left(x^{4} + \frac{1}{x^{3}}\right)^{15}$, then r = (1)7 (2)8 (3)9 (4)10
- **Q.6** If the third term in the binomial expansion of $(1+x)^m$ is
 - $-\frac{1}{8}X^2$, then the rational value of *m* is (1)2 (2)1/2 (3)3 (4)4
- Q.7 Coefficient of x in the expansion of $\left(x^2 + \frac{a}{x}\right)^5$ is (1) 9a² (2) 10a³ (3) 10a² (4) 10a
- **Q.8** In the expansion of $\left(x \frac{1}{x}\right)^6$, the constant term is (1)-20 (2)20 (3)30 (4)-30

- **Q.9** In the expansion of $(x^2 2x)^{10}$, the coefficient of x^{16} is
 - (1)-1680 (2)1680 (3)3360 (4)6720
- Q.10 The coefficient of x^{32} in the expansion of $\left(x^4 \frac{1}{x^3}\right)^{15}$ is

(1) ${}^{15}C_5$ (2) ${}^{15}C_6$ (3) ${}^{15}C_4$ (4) ${}^{15}C_7$

- Q.11 If the coefficients of x^7 and $x^8 \ln \left(2 + \frac{x}{3}\right)^n$ are equal, then *n* is (1)56 (2)55 (3)45 (4)15
- Q.12 In the expansion of $\begin{pmatrix} 3x^2 & -\frac{1}{3x} \\ 2 & -\frac{1}{3x} \end{pmatrix}^9$, the term independent of x is

(1)
$${}^{9}C_{3} \cdot \frac{1}{6^{3}}$$
 (2) ${}^{9}C_{3} \left(\frac{3}{2}\right)^{3}$
(3) ${}^{9}C_{3}$ (4) ${}^{9}P_{2} \left(\frac{3}{2}\right)^{3}$

Q.13 The term independent of x in the expansion of $\left(x^2 - \frac{3\sqrt{3}}{x^3}\right)^{10}$ is

 $(1) 153090 \quad (2) 150000 \quad (3) 150090 \quad (4) 153180$

Q.14 The term independent of x in the expansion of $(1+x)^n \left(1+\frac{1}{x}\right)^n$ is (1) $C_0^2 + 2C_1^2 + \dots + (n+1)C_n^2$ (2) $(C_0 + C_1 + \dots + C_n)^2$ (3) $C_0^2 + C_1^2 + \dots + C_n^2$ (4) $C_0^2 + 2C_1^2 + \dots + nC_n^2$

Middle Term / Numerically greatest term and Algebrically greatest & least term

Q.15 If the middle term in the expansion of
$$\left(x^2 + \frac{1}{x}\right)^n$$
 is

 $924x^6$, then n =(1)10 (2)12 (3)14 (4)16

Q.16 The middle term in the expansion of $(1 + x)^{2n}$ is

Q.18 The middle term in the expansion of $\left(x + \frac{1}{2x}\right)^{2n}$, is

(1)
$$\frac{1.3.5...(2n-3)}{n!}$$
 (2) $\frac{1.3.5...(2n-1)}{n!}$

- (3) $\frac{1.3.5...(2n+1)}{n!}$ (4) $\frac{1.3.5...(2n+3)}{n!}$
- Q.19 In the expansion of $(1 + 3x + 2x^2)^6$ the coefficient of x^{11} is (1) 144 (2) 288 (3) 216 (4) 576

Properties of Binomial Coefficient

Q.20
$$C_0C_r + C_1C_{r+1} + C_2C_{r+2} + \dots + C_{n-r}C_n =$$

(1)
$$\frac{(2n)!}{(n-r)!(n+r)!}$$
 (2) $\frac{n!}{(-r)!(n+r)!}$

(3)
$$\frac{n!}{(n-r)!}$$
 (4) $\frac{2n!}{(n-r)!}$

Q.21
$$\frac{C_0}{1} + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} =$$
(1) $\frac{2^n}{n+1}$
(2) $\frac{2^n - 1}{n+1}$
(3) $\frac{2^{n+1} - 1}{n+1}$
(4) $\frac{2^{n+1} + 1}{n+1}$

Q.22
$$\frac{1}{1!(n-1)!} + \frac{1}{3!(n-3)!} + \frac{1}{5!(n-5)!} + \dots =$$

(1) $\frac{2^n}{n!}$; for all even values of *n*
(2) $\frac{2^{n-1}}{n!}$; for all values of *n i.e.*, all even odd values
(3) 0
(4) $\frac{2n}{n!}$; for all odd value of n

- Q.23 The sum of all the coefficients in the binomial expansion of $(x^2 + x - 3)^{319}$ is (1) 1 (2) 2 (3) -1 (4) 0
- Q.24 The sum of the coefficients of even power of x in the expansion of $(1 + x + x^2 + x^3)^5$ is (1)256 (2)128 (3)512 (4)64
- **Q.25** The value of ${}^{15}C_0^2 {}^{15}C_1^2 + {}^{15}C_2^2 \dots {}^{15}C_{15}^2$ is (1)15 (2)-15 (3)0 (4)51

Application of Binomial theorem

- Q.26 The greatest integer which divides the number $101^{100} 1$, is (1) 100 (2)1000 (3) 10000 (4) 100000
- Q.27 The last digit in 7^{300} is (1) 7 (2) 9 (3) 1 (4) 3

Multinomial theorem and other index

- Q.28 The number 111.....1 (91 times) is (1) Not a prime (2) An even number (3) Not an odd number (4) Prime Number
- Q.29 In the expansion of $\left(\frac{1+x}{1-x}\right)^2$, the coefficient of x^n will be [where |x| < 1] (1) 4n (2) 4n-3(3) 4n+1 (4) 4n-1

Q.30 The coefficient of two consecutive terms in the expansion of $(1 + x)^n$ will be equal, if

- (1) n is any integer (2) n is an odd integer
- (3) n is an even integer (4) n is prime number

EXERCISE-II

Q.1 The
$$(m+1)^{th}$$
 term of $\left(\frac{x}{y} + \frac{y}{x}\right)^{2m+1}$ is:

- (1) independent of x
- (2) a constant
- (3) depends on the ratio x/y and m
- (4) none of these
- Q.2The total number of terms in the expansion of, $(x + a)^{100} + (x a)^{100}$ after simplification is :
(1) 50
(2) 202
(3) 51(2) 202
(4) none of these
- Q.3 If the 6th term in the expansion of the binomial $\left[\frac{1}{x^{8/3}} + x^2 \log_{10} x\right]^8$ is 5600, then x =

- Q.4 If the second term of the expansion $\left[a^{1/13} + \frac{a}{\sqrt{a^{-1}}}\right]^{n}$ is 14a^{5/2}, then the value of $\frac{{}^{n}C_{3}}{{}^{n}C_{2}}$ is: (1)4 (2)3 (3)12 (4)6
- Q.5 The co-efficient of x in the expansion of

$$(1-2x^3+3x^5)\left(1+\frac{1}{x}\right)^8$$
 is:
(1) 56 (2) 65 (3) 154 (4) 62

- Q.6 In the expansion of $(7^{1/3} + 11^{1/9})^{6561}$, the number of Q.14 terms free from radicals is: (1) 730 (2) 729 (3) 725 (4) 750
- Q.7 The term independent of x in the expansion of

$$\left(x - \frac{1}{x}\right)^4 \left(x + \frac{1}{x}\right)^3 \text{ is:}$$
(1)-3 (2)0 (3)1 (4)3

Q.8 The value of m, for which the coefficients of the $(2m + 1)^{\text{th}}$ and $(4m + 5)^{\text{th}}$ terms in the expansion of $(1 + x)^{10}$ are equal, is (1) 3 (2) 1 (3) 5 (4) 8

Q.9 If the coefficients of $x^7 \& x^8$ in the expansion of $\left[2 + \frac{x}{3}\right]^n$ are equal, then the value of n is (1) 15 (2) 45 (3) 55 (4) 56

Q.10 Number of rational terms in the expansion of

$$\left(\sqrt{2} + \sqrt[4]{3}\right)^{100}$$
 is
(1)25 (2)26 (3)27 (4)28

Q.11 If $n \in N \& n$ is even, then

$$\frac{1}{1.(n-1)!} + \frac{1}{3!(n-3)!} + \frac{1}{5!(n-5)!} + \dots + \frac{1}{(n-1)!1!}$$

equals
(1) 2ⁿ (2) $\frac{2^{n-1}}{n!}$
(3) 2ⁿ n! (4) none of these

- Q.12 If $k \in R$ and the middle term of $\left(\frac{k}{2} + 2\right)^{\circ}$ is 1120, then value of k is: (1) 3 (2) 2 (3) - 3 (4) - 4
- Q.13 The sum of the binomial coefficients of $\begin{bmatrix} 2x + \frac{1}{x} \end{bmatrix}^n$ is equal to 256. The constant term in the expansion is (1)1120 (2)2110 (3)1210 (4) none
 - 14 The sum of the co-efficients in the expansion of $(1 2x + 5x^2)^n$ is 'a' and the sum of the co-efficients in the expansion of $(1 + x)^{2n}$ is b. Then (1) a = b (2) $a = b^2$ (3) $a^2 = b$ (4) ab = 1
- Q.15 The binomial expansion of $\left(x^k + \frac{1}{x^{2k}}\right)^{3n}$, $n \in N$ contains a term independent of x (1) only if k is an integer (2) only if k is a natural number (3) only if k is rational
 - (4) for any real k

- If the expansion of $(3x + 2)^{-1/2}$ is valid in ascending Q.16 powers of x, then x lies in the interval.
 - (1)(-2/3,2/3)(2)(-3/2, 3/2)
 - (3)(-1/3, 2/3) $(4)(-\infty, -3/2) \cup (3/2, \infty)$
- Coefficient of α^t in the expansion of $(\alpha+p)^{m-1}+(\alpha+p)^{m-2}$ Q.17 $(\alpha+q) + (\alpha+p)^{m-3} (\alpha+q)^2 +(\alpha+q)^{m-1}$ where $\alpha \neq -q$ and $p \neq q$ is

(1)
$$\frac{{}^{m}C_{t}(p^{t}-q^{t})}{p-q}$$
 (2) $\frac{{}^{m}C_{t}(p^{m-t}-q^{m-t})}{p-q}$
(3) $\frac{{}^{m}C_{t}(p^{t}+q^{t})}{p-q}$ (4) $\frac{{}^{m}C_{t}(p^{m-t}+q^{m-t})}{p-q}$

- The greatest terms of the expansion $(2x + 5y)^{13}$ when x Q.18 = 10, y = 2 is (2) ${}^{13}C_6$. 20⁷. 10⁴ (4) none of these $(1)^{13}C_5 \cdot 20^8 \cdot 10^5$ $(3)^{13}C_{4}^{3} \cdot 20^{9} \cdot 10^{4}$
- Q.19 Find numerically greatest term in the expansion of $(2+3x)^9$, when x = 3/2. $(2) {}^{9}C_{3} \cdot 2^{9} \cdot (3/2)^{6}$ $(1) {}^{9}C_{6} \cdot 2^{9} \cdot (3/2)^{12}$ $(4) {}^{9}C_{4} \cdot 2^{9} \cdot (3/2)^{8}$ $(3) {}^{9}C_{5} \cdot 2^{9} \cdot (3/2)^{10}$ **O.20** The numerically greatest term in the expansion of
- $(2x+5y)^{34}$, when x = 3 & y = 2 is : (1) T_{21} (2) T_{22} (3) T_{23} $(4) T_{24}$ $\sum_{n} \sum_{n+n} \sum_{n+n} \sum_{n} \sum_{n}$ Q.21

(1)
$$\frac{n}{2}$$
 (2) $\frac{n+1}{2}$

(3)
$$(n+1) \frac{n}{2}$$
 (4) $\frac{n(n-1)}{2(n+1)}$

Set of values of r for which, ${}^{18}C_{r-2} + 2.{}^{18}C_{r-1} + {}^{18}C_{r} \ge {}^{20}C_{13}$ Q.22 contains (1) 4 elements (2) 5 elements (3) 7 elements (4) 10 elements

- **Q.23** $\frac{C_0}{1} + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_{10}}{11} =$ (1) $\frac{2^{11}}{11}$ (2) $\frac{2^{11}-1}{11}$ (3) $\frac{3^{11}}{11}$ (4) $\frac{3^{11}-1}{11}$
- The value of the expression ${}^{47}C_4 + \sum_{i=1}^{5} {}^{52-i}C_3$ is Q.24 equal to: $(1)^{47}C_{5}$ $(2) {}^{52}C_5$ $(4) {}^{49}C_4$ $(3)^{52}C_{4}$
- The value of $\binom{50}{0}\binom{50}{1}$ $+\binom{50}{1}\binom{50}{2}$ Q.25 +.....+ $\binom{50}{49}\binom{50}{50}$ is, where ${}^{n}C_{r} = \binom{n}{r}$ $(1)\begin{pmatrix}100\\50\end{pmatrix}\quad(2)\begin{pmatrix}100\\51\end{pmatrix}\quad(3)\begin{pmatrix}50\\25\end{pmatrix}\quad(4)\begin{pmatrix}50\\25\end{pmatrix}^2$
- The remainder when 2^{2003} is divided by 17 is : Q.26 (1)1(2)2(4) none of these (3)8
- The last two digits of the number 3400 are: Q.27 (3) 29 (1)81(2)43(4)01
- Q.28 The greatest integer less than or equal to $(\sqrt{2} + 1)^6$ (1) 196 (2) 197 (3) 198 (4) 199 Let $(5 + 2\sqrt{6})^n = p + f$, where $n \in N$ and $p \in N$ and Q.29 0 < f < 1, then the value of $f^2 - f + pf - p$ is : (1) a natural number (2) a negative integer (3) a prime number (4) an irrational number The co-efficient of x^4 in the expansion of $(1 - x^2 + 2)^{-1}$ **O.30**

The co-efficient of
$$x^4$$
 in the expansion of $(1 - x + 2x^2)$
is
 $(1)^{12}C_3$ (2) $^{13}C_3$

$$(2) C_3 (4) {}^{12}C_3 + 3 {}^{13}C_3 + {}^{14}C_2$$

EXERCISE-III

MCQ/COMPREHENSION/MATCHING/NUMERICAL

- In the expansion of $\left(\sqrt[3]{4} + \frac{1}{4/6}\right)^{20}$ Q.1
 - (A) the number of irrational terms is 19
 - (B) middle term is irrational
 - (C) the number of rational terms is 2
 - (D) 9th term is rational

Q.2

is

 $(3)^{14}C_{4}$

In the expansion of $\left(X^{2/3} - \frac{1}{\sqrt{x}}\right)^{30}$, a term containing

the power x13

- (A) does not exist
- (B) exists & the co-efficient is divisible by 29
- (C) exists & the co-efficient is divisible by 63
- (D) exists & the co-efficient is divisible by 65

Q.3 In the expansion of
$$\left(X^3 + 3.2^{-\log \sqrt{2}\sqrt{x^3}}\right)^{11}$$

- (A) there appears a term with the power x^2
- (B) there does not appear a term with the power x^2
- (C) there appears a term with the power x^{-3}

(D) the ratio of the co-efficient of
$$x^3$$
 to that of x^{-3} is $\frac{1}{3}$

Q.4 If the 6th term in the expansion of
$$\left(\frac{3}{2} + \frac{x}{3}\right)^n$$
 when x = 3

is numerically greatest then the possible integral value(s) of n can be (A) 11 (B) 12 (C) 13 (D) 14

Q.5 Let $(1 + x^2)^2 (1 + x)^n = A_0 + A_1 x + A_2 x^2 + \dots$ If A_0, A_1, A_2 are in A.P. then the value of n is (A) 2 (B) 3 (C) 5 (D) 7

Q.6 $If(9 + \sqrt{80})^n = I + f$, where I, n are integers and 0 < f < 1, then :

(A) I is an odd integer (B) I is an even integer

(C)
$$(I + f) (1 - f) = 1$$
 (D) $1 - f = (9 - \sqrt{80})^n$

- Q.7 The number 101¹⁰⁰ 1 is divisible by (A) 100 (B) 1000 (C) 10000 (D) 100000
- **Q.8** $7^9 + 9^7$ is divisible by : (A) 16 (B) 24 (C) 64 (D) 72
- Q.9 If recursion polynomials $P_k(x)$ are defined as $P_1(x) = (x-2)^2$, $P_2(x) = ((x-2)^2-2)^2$ $P_3(x) = ((x-2)^2-2)^2 - 2)^2$ (In general $P_k(x)$ $= (P_{k-1}(x) - 2)^2$, then the constant term in $P_k(x)$ is (A) 4 (B) 2 (C) 16 (D) a perfect square

Q.10 If
$$(1 + 2x + 3x^2)^{10} = a_0 + a_1x + a_2x^2 + \dots + a_{20}x^{20}$$
, then
:
(A) $a_1 = 20$ (B) $a_2 = 210$
(C) $a_4 = 8085$ (D) $a_{20} = 2^2$. 3⁷. 7

Comprehension #1 (Q. No. 11 to 13)

If m, n, r are positive integers and if r < m, r < n, then ^mC_r + ^mC_{r-1}. ⁿC₁ + ^mC_{r-2}. ⁿC₂ + ... + ⁿC_r = Coefficient of x^r in $(1 + x)^m (1 + x)^n$ = Coefficient of x^r in $(1 + x)^{m+n}$ = ^{m +n}C

On the basis of the above information, answer the following questions.

- Q.11 The value of ${}^{n}C_{0} \cdot {}^{n}C_{n} + {}^{n}C_{1} \cdot {}^{n}C_{n-1} + \dots + {}^{n}C_{n} \cdot {}^{n}C_{0}$ is (A) ${}^{2n}C_{n-1}$ (B) ${}^{2n}C_{n}$ (C) ${}^{2n}C_{n+1}$ (D) ${}^{2n}C_{2}$
- Q.12 The value of r for which ${}^{30}C_r \cdot {}^{20}C_0 + {}^{30}C_{r-1} \cdot {}^{20}C_1 + ... + {}^{30}C_0$. ${}^{20}C_r$ is maximum, is (A) 10 (B) 15 (C) 20 (D) 25
- Q.13 The value of $r(0 \le r \le 30)$ for which ${}^{20}C_r \cdot {}^{10}C_0 + {}^{20}C_{r-1} \cdot {}^{10}C_1 + ... + {}^{20}C_0 \cdot {}^{10}C_r \text{ is minimum, is}$ (A) 0 (B) 1 (C) 5 (D) 15

Comprehension #2 (Q. No. 14 to 16)

We know that if ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$,, ${}^{n}C_{n}$ be binomial coefficients, then $(1 + x)^{n} = C_{0} + C_{1}x + C_{2}x^{2} + C_{3}x^{3} + \dots + C_{n}x^{n}$. Various relations among binomial coefficients can be derived by putting x = 1, -1, i,

$$\omega \left(\text{ where } i = \sqrt{-1}, \, \omega = -\frac{1}{2} + \frac{i\sqrt{3}}{2} \right)$$

Q.14 The value of
$${}^{n}C_{0} - {}^{n}C_{2} + {}^{n}C_{4} - {}^{n}C_{6} + \dots$$
 must be

(A)
$$2^{n/2} \cos \frac{n\pi}{2}$$
 (B) $2^{n/2} \sin \frac{n\pi}{2}$
(C) $2^{n/2} \cos \frac{n\pi}{4}$ (D) $2^{n/2} \sin \frac{n\pi}{4}$

Q.15 The value of expression $({}^{n}C_{0} - {}^{n}C_{2} + {}^{n}C_{4} - {}^{n}C_{6} +)^{2} + ({}^{n}C_{1} - {}^{n}C_{3} + {}^{n}C_{5})^{2}$ must be (A) 2^{2n} (B) 2^{n} (C) $2^{n^{2}}$ (D) None of these

Q.16 The value of
$${}^{n}C_{0} + {}^{n}C_{3} + {}^{n}C_{6} + \dots$$
 must be

(A)
$$\frac{2^{n}}{3}$$
 (B) $\frac{1}{3}\left(2^{n} + \cos\frac{n\pi}{3}\right)$
(C) $\frac{1}{3}\left(2^{n} + 2\cos\frac{n\pi}{3}\right)$ (D) $\frac{1}{3}\left(2^{n} + 2\sin\frac{n\pi}{3}\right)$

Q.17 MATCH THE COLUMN:

Column-I

Column-II (A) If $(r + 1)^{th}$ term is the first negative term in the expansion (p) divisible by 2 of $(1 + x)^{7/2}$, then the value of r (where |x| < 1) is (B) The coefficient of y in the expansion of $(y^2 + 1/y)^5$ is (q) divisible by 5 (C) ${}^{n}C_{r}$ is divisible by n, $(1 \le r \le n)$ if n is (r) divisible by 10 (D) The coefficient of x^4 in the expression (s) a prime number $(1+2x+3x^2+4x^3+...,up \text{ to }\infty)^{1/2}$ is c, $(c \in N)$, then

c+1 (where |x| < 1) is

Q.18 MATCH THE COLUMN: Column - I

Column - II

- (A) If $x = (7 + 4\sqrt{3})^{2n} = [x] + f$, then x(1 f) =(p)6
- (B) If second, third and fourth terms in the expansion of (q) 1 $(x + a)^n$ are 240, 720 and 1080 respectively, then n is equal to
- (C) value of ${}^{4}C_{0}{}^{4}C_{4} {}^{4}C_{1}{}^{4}C_{3} + {}^{4}C_{2}{}^{4}C_{2} {}^{4}C_{3}{}^{4}C_{1} + {}^{4}C_{4}{}^{4}C_{0}$ is (r) 2 (D) If x is very large as compare to y, then (s) 5

the value of k in
$$\sqrt{\frac{x}{x+y}}$$
 $\sqrt{\frac{x}{x-y}} = 1 + \frac{y^2}{kx^2}$

INTEGER TYPE

6th term in the expansion of If the Q.19 $\left[\frac{1}{x^{8/3}} + x^2 \log_{10} x\right]^{*}$ is 5600, then x =

- The value of p, for which coefficient of x^{50} in the Q.20 expression $(1+x)^{1000} + 2x (1+x)^{999} + 3x^2 (1+x)^{998} + \dots + 1001$ x^{1000} is equal to ${}^{1002}C_p$, is :
- The index 'n' of the binomial $\left(\frac{x}{5} + \frac{2}{5}\right)^n$ if the 9th Q.21

term of the expansion has numerically the greatest coefficient ($n \in N$), is :

- Q.22 The number of values of 'r' satisfying the equation, ${}^{39}C_{3r-1} - {}^{39}C_{r^2} = {}^{39}C_{r^2-1} - {}^{39}C_{3r}$ is :
- 2^{60} when divided by 7 leaves the remainder Q.23

The last digit of the number 3^{400} is equal to ... Q.24

Q.25 If n is even then the middle term in the expansion of

$$\left(x^2 + \frac{1}{x}\right)^n$$
 is 924x⁶, then n is equal to

Q.26 The term independent of x in
$$\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^3$$
 is

Q.27 The sum
$$\sum_{i=0}^{m} {10 \choose i} {20 \choose m-i}$$
, (where ${p \choose q} = 0$ if $P < q$) is maximum when m is

How many term's in the expansion of $\left(y^{\frac{1}{3}} + x^{\frac{1}{10}}\right)^{5}$ Q.28

are free from radical sign.

EXERCISE-IV

JEE-MAIN PREVIOUS YEAR'S

If the number of terms in the expansion of 0.1 $\left(1-\frac{2}{r}+\frac{4}{r^2}\right)^n, x \neq 0$, is 28, then the sum of the coefficients of all the terms in this expansion, is: [JEE Main-2016] (2)2187 (3)243 (1)64(4)729The value of $({}^{21}C_1 - {}^{10}C_1) + ({}^{21}C_2 - {}^{10}C_2) + ({}^{21}C_3 - {}^{10}C_3) + ({}^{21}C_4 - {}^{10}C_4) + \dots + ({}^{21}C_{10} - {}^{10}C_{10})$ is - [JEE Main-2017] (1) $2^{20} - 2^{10}$ (2) $2^{21} - 2^{11}$ (3) $2^{21} - 2^{10}$ (4) $2^{20} - 2^{9}$ Q.2 The sum of the co-efficients of all odd degree terms in Q.3 the expansion of $\left(x + \sqrt{x^3 - 1}\right)^5 + \left(x - \sqrt{x^3 - 1}\right)^5$, (x > 1) is -[JEE Main-2018] (1)0(2)1 (3)2 (4) - 1If the fractional part of the number $\frac{2^{403}}{15}$ is $\frac{k}{15}$, then k is Q.4 equal to : [JEE Main - 2019 (January)] (1)6(2)8(3)4(4)14The coefficient of t⁴ in the expansion of $\left(\frac{1-t^6}{1-t}\right)^3$ is Q.5 [JEE Main - 2019 (January)] (1)12(2)15(3)10(4)14If $\sum_{i=1}^{20} \left(\frac{{}^{20}C_{i-1}}{{}^{20}C_{i} + {}^{20}C_{i-1}} \right)^{3} = \frac{k}{21}$, then k equals: Q.6 [JEE Main - 2019 (January)] (1)400(3)200(2)50(4)100**Q.7** If the third term in the binomial expansions of $(1 + x^{\log_2 x})^{3}$ equals 2560, then a possible value of x is: [JEE Main - 2019 (January)] (1) $\frac{1}{4}$ (2) $4\sqrt{2}$ (3) $\frac{1}{8}$ (4) $2\sqrt{2}$ The positive value of λ for which the co-efficient of x^2 Q.8 in the expression $x^2 \left(\sqrt{x} + \frac{\lambda}{x^2}\right)^{10}$ is 720, is : [JEE Main - 2019 (January)] (2) $2\sqrt{2}$ (3) $\sqrt{5}$ (1)4(4) 3

Q.9 If $\sum_{r=0}^{25} \{ {}^{50}C_r . {}^{50-r}C_{25-r} \} = K({}^{50}C_{25})$, then K is equal to

 $[JEE Main - 2019 (January)] (1) (25)^2 (2) 2^{25} - 1 (3) 2^{24} (4) 2^{25}$

Q.10 Let
$$S_n = 1 + q + q^2 + ... + q^n$$
 and $T_n = 1 + \left(\frac{q+1}{2}\right) + q^n$

 $+\left(\frac{q+1}{2}\right)^{2} + ... + \left(\frac{q+1}{2}\right)^{n} \text{ where } q \text{ is a real number and}$ $q \neq 1. \text{ If } {}^{101}\text{C}_{1} + {}^{101}\text{C}_{2}. \text{ S}_{1} + ... + {}^{101}\text{C}_{101}. \text{ S}_{100} = \alpha\text{T}_{100} \text{ then } \alpha$ is equal to : [JEE Main - 2019 (January)] (1) 2⁹⁹ (2) 202 (3) 200 (4) 2¹⁰⁰

Q.11 Let $(x+10)^{50} + (x-10)^{50} = a_0 + a_1 x + a_2 x^2 + ... + a_{50} x^{50}$,

for $x \in R$: then $\frac{a_2}{a_0}$ is equal to:

[JEE Main - 2019 (January)]

- (1) 12.50 (2) 12.00 (3) 12.25 (4) 12.75
- Q.12 The value of r for which ${}^{20}C_{r}{}^{20}C_{0} + {}^{20}C_{r-1}{}^{20}C_{1} + {}^{20}C_{r-2}{}^{20}C_{2} + \dots {}^{20}C_{0}{}^{20}C_{r}$ is maximum is : [JEE Main - 2019 (January)] (1) 15 (2) 20 (3) 11 (4) 10
- Q.13 The sum of the real values of x for which the middle
 - term in the binomial expansion of $\left(\frac{x^3}{3} + \frac{3}{x}\right)^8$ equals 5670 is:- [JEE Main - 2019 (January)] (1) 0 (2) 6 (3) 4 (4) 8
- Q.14 A ratio of the 5th term from the beginning to the 5th term from the end in the binomial expansion of

$$\left(2^{\frac{1}{3}} + \frac{1}{2(3)^{\frac{1}{3}}}\right)^{10}$$
 is : [JEE Main - 2019 (January)]

$$(1) 1: 2(6)^{\frac{1}{3}} \qquad (2) 1: 4(16)^{\frac{1}{3}}$$

(3) $4(36)^{\frac{1}{3}}:1$ (4) $2(36)^{\frac{1}{3}}:1$

The total number of irrational terms in the binomial Q.15 expansion of $(7^{\frac{1}{5}} - 3^{\frac{1}{10}})^{60}$ is : [JEE Main - 2019 (January)] (1)55(2)49(3)48(4)54If ${}^{n}C_{4}$, ${}^{n}C_{5}$, and ${}^{n}C_{6}$ are in A.P., then n can be : Q.16

- [JEE Main 2019 (January)] (1)9(2)14(4)12(3)11 The sum of the series $2 \cdot {}^{20}C_0 + 5 \cdot {}^{20}C_1 + 8 \cdot {}^{20}C_2 + 11 \cdot {}^{20}C_3 + \dots + 62 \cdot {}^{20}C_{20}$ is equal to : [JEE Main-2019(April)] (1) 2^{24} (2) 2^{25} (3) 2^{26} (4) 2^{23} Q.17
- Q.18 The sum of the co-efficients of all even degree terms in in the expansion of х

$$(x + \sqrt{x^3 - 1})^6 + (x - \sqrt{x^3 - 1})^6$$
, $(x > 1)$ is equal to :
[JEE Main-2019(April)]
(1) 32 (2) 26 (3) 29 (4) 24

If the fourth term in the binomial expansion of Q.19

$$\left(\sqrt{\frac{1}{x^{1+\log_{10}x}}} + x^{\frac{1}{12}}\right)^6$$
 is equal to 200, and $x > 1$, then the

[JEE Main-2019(April)] value of x is : $(1)10^{3}$ (2)100 $(3)10^4$ (4)10

If the fourth term in the binomial expansion of Q.20 $\left(\frac{2}{v} + x^{\log_8 x}\right)^6 (x > 0)$ is 20×8^7 , then a value of x [**JEE Main-2019(April**)] (3) 8⁻² (4) 8³ (1)8 $(2)8^{2}$

- Q.21 If some three consecutive terms in the binomial expansion of $(x + 1)^n$ is powers of x are in the ratio 2:15:70, then the average of these three coefficient is [JEE Main-2019(April)] :-(1)964 (2)625(3)227(4)232
- Q.22 The smallest natural number n, such that the coefficient

of x in the expansion of $\left(x^2 + \frac{1}{x^3}\right)^n$ is ${}^{n}C_{23}$, is : [JEE Main-2019(April)] (3)23(1)35(2)38(4)58

Q.23 If the coefficients of x^2 and x^3 are both zero, in the expansion of the expression $(1+ax+bx^2)$ $(1-3x)^{15}$ in powers of x, then the ordered pair (a, b) is equal to :

[JEE Main-2019(April)]

(1)(28,315)	(2)(-54,315)
(3)(-21,714)	(4)(24,861)

- Q.24 The coefficient of \mathbf{X}^{18} in the product $(1+x)(1-x)^{10}(1+x+x^2)^9$ is:
 - [JEE Main-2019(April)] (4) - 126(1) - 84(2)84(3)126
- Q.25 The term independent of x in the expansion of

$$\left(\frac{1}{60}-\frac{x^8}{81}\right)\cdot\left(2x^2-\frac{3}{x^2}\right)^6$$
 is equal to:

(1)36(2) - 108

(4) - 36

Q.26 If the sum of the coefficients of all even powers of x in the product $(1 + x + x^2 + ... + x^{2n})(1 - x + x^2 - x^3 + ... +$ x^{2n}) is 61, then n is equal to

(3) - 72

[JEE Main-2020 (January)]

Q.27 The number of ordered pairs (r, k) for which 6. ${}^{35}C_r =$ (k^2-3) . ³⁶C_{r+1}, where k is an integer, is:

- The coefficient of x^7 in the expression $(1+x)^{10} + x(1+x)^9$ Q.28 $+x^{2}(1+x)^{8}+....+x^{10}$ is: (1)210(2)330(3)420(4)120
- If a, b and c are the greatest values of ${}^{19}C_p$, ${}^{20}C_q$ and Q.29 ²¹C_r respectively, then

[JEE Main-2020 (January)]

(1)
$$\frac{a}{10} = \frac{b}{11} = \frac{c}{42}$$
 (2) $\frac{a}{10} = \frac{b}{11} = \frac{c}{21}$
(3) $\frac{a}{11} = \frac{b}{22} = \frac{c}{42}$ (4) $\frac{a}{11} = \frac{b}{22} = \frac{c}{21}$

Q.30 The coefficient of x^4 in the expansion of $(1 + x + x^2)^{10}$ [JEE Main-2020 (January)] is.....

Q.31 In the expansion of
$$\left(\frac{x}{\cos\theta} + \frac{1}{x\sin\theta}\right)^{16}$$
, if I_1 is the least

value of the term independent of x when $\frac{\pi}{8} \le \theta \le \frac{\pi}{4}$ and I_{2} is the least value of the term independent of x when

$$\frac{\pi}{16} \le \theta \le \frac{\pi}{8}$$
, then the ratio I₂ : I₁ is equal to :
[JEE Main-2020 (January)]
(1) 1 : 8 (2) 1 : 16 (3) 8 : 1 (4) 16 : 1

- **Q.32** If $C_r = {}^{25}C_r$ and $C_0 + 5.C_1 + 9.C_2 + + (101).C_{25} = 2{}^{25}.k$, then k is equal to [JEE Main-2020 (January)]
- Q.33 For a positive integer n, $\left(1+\frac{1}{x}\right)^n$ is expanded in increasing powers of x. If three consecutive coefficients in this expansion are in the ratio, 2 : 5 : 12, then n is equal to . [JEE Main-2020 (September)]
- **Q.34** Let $\alpha > 0$, $\beta > 0$ be such that $\alpha^3 + \beta^2 = 4$. If the maximum value of the term independent of x in the binomial expansion of $(\alpha x^{1/9} + \beta x^{-1/6})^{10}$ is 10 K, then K is equal to : [JEE Main-2020 (September)] (1)84 (2)176 (3)336 (4)352
- Q.35 If the term independent of x in the expansion of

$$\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9 \text{ is k, then 18k is equal to :}$$

(1)9 (2)11 (3)5 (4)7

- Q.36 If the number of integral terms in the expansion of $(3^{1/2} + 5^{1/8})^n$ is exactly 33, then the least value of n is: [JEE Main-2020 (September)] (1)264 (2)128 (3)256 (4)248
- Q.37 The value of $(2.{}^{1}P_{0} 3.{}^{2}P_{1} + 4.{}^{3}P_{2} ...$ up to 51^{th} term) + (1! 2! + 3! ... up to 51^{th} term) is equal to : [JEE Main-2020 (September)] (1) 1 (2) 1 + (52)! (3) 1 - 51(51)! (4) 1 + (51)!
- **Q.38** If for some positive integer n, the coefficients of three consecutive terms in the binomial expansion of $(1 + x)^{n+5}$ are in the ratio 5:10:14, then the largest coefficient in this expansion is :

[JEE Main-2020 (September)] (1) 252 (2) 462 (3) 792 (4) 330 20

Q.39 The value of $\sum_{r=0}^{20} {}^{50-r}C_6$ is equal to :

[JEE Main-2020 (September)]

(1)
$${}^{51}C_7 - {}^{30}C_7$$
 (2) ${}^{50}C_7 - {}^{30}C_7$
(3) ${}^{51}C_7 + {}^{30}C_7$ (4) ${}^{50}C_6 - {}^{30}C_6$

Q.40 The coef ficient of x^4 in the expansion of $(1 + x + x^2 + x^3)^6$ in powers of x, is _____. [JEE Main-2020 (September)]

Q.41 The natural number m, for which the coefficient of x in the binomial expansion of $\left(x^{m} + \frac{1}{x^{2}}\right)^{22}$ is 1540, is ______. [JEE Main-2020 (September)] Q.42 If the constant term in the binomial expansion of

$$\left(\sqrt{x} - \frac{k}{x^2}\right)^{10}$$
 is 405, then |k| equals :
[JEE Main-2020 (September)]
(1) 2 (2) 3 (3) 9 (4) 1

JEE-ADVANCED PREVIOUS YEAR'S

- Q.1 For r = 0, 1,, 10, let A_r , B_r and C_r denote, respectively, the coefficient of x^r in the expansions of $(1 + x)^{10}$, $(1 + x)^{20}$ and $(1 + x)^{30}$. Then $\sum_{r=1}^{10} A_r (B_{10}B_r - C_{10}A_r) \text{ is equal to [IIT JEE - 2010]}$ (A) $B_{10} - C_{10}$ (B) $A_{10} (B_{10}^2 - C_{10}A_{10})$ (C) 0(D) $C_{10} - B_{10}$
- Q.2 The coefficients of three consecutive terms of $(1 + x)^{n+5}$ are in the ratio 5 : 10 : 14. Then n =

[JEE Advanced-2013]

- Q.3 Coefficient of x^{11} in the expansion of $(1 + x^2)^4 (1 + x^3)^7$ (1 + x^4)¹² is [JEE Advanced-2014] (A) 1051 (B) 1106 (C) 1113 (D) 1120
- Q.4 The coefficient of x^9 in the expansion of (1 + x) $(1 + x^2)(1 + x^3).....(1 + x^{100})$ is[JEE Advanced-2015]
- **Q.5** Let *m* be the smallest positive integer such that the coefficient of x^2 in the expansion of $(1+x)^2 + (1+x)^3 + ... + (1+x)^{49} + (1+mx)^{50}$ is $(3n + 1)^{51}C_3$ for some positive integer *n*. Then the value of *n* is **[JEE Advanced-2016]**

Q.6 Let
$$X = ({}^{10}C_1)^2 + 2({}^{10}C_2)^2 + 3({}^{10}C_3)^2 + ... + 10({}^{10}C_{10})^2$$
,

where ${}^{10}C_r, r \in \{1, 2, ..., 10\}$ denote binomial

coefficients. Then, the value of $\frac{1}{1430}X$ is

[JEE Advanced-2018]

Suppose

Q.7

$$\det \begin{bmatrix} \sum_{k=0}^{n} k & \sum_{k=0}^{n} C_{k} k^{2} \\ \sum_{k=0}^{n} C_{k} K & \sum_{k=0}^{n} C_{k} 3^{k} \end{bmatrix} = 0, \text{ holds for some}$$

positive integer n. Then
$$\sum_{k=0}^{n} \frac{{}^{n}C_{k}}{k+1}$$
 equals

[JEE Advanced -2019]

Q.8 For non-negative integers s and r, let

$$\binom{s}{r} = \begin{cases} \frac{s!}{r!(s-r)!} & \text{if } r \le s, \\ 0 & \text{if } r > s. \end{cases}$$

For positive integers m and n, let

$$(m,n)\sum_{p=0}^{m+n}\frac{f(m,n,p)}{\binom{n+p}{p}}$$

where for any nonnegative integer p,

$$f(m,n,p) = \sum_{i=0}^{p} \binom{m}{i} \binom{n+i}{p} \binom{p+n}{p-i}$$

[JEE(Advanced) - 2020]

Then which of the following statements is/are TRUE? (A) (m,n)=g(n,m) for all positive integers m,n(B) (m,n+1)=g(m+1,n) for all positive integers m,n(C) (2m,2n)=2g(m,n) for all positive integers m,n(D) $(2m,2n)=(g(m,n))^2$ for all positive integers m,n

Answer Key

				EXE	RCISE-I				
Q.1 (2) Q.11 (2)	Q.2 (3) Q.12 (1)	Q.3 (3) Q.13 (1)	Q.4 (3) Q.14 (3)	Q.5 (3) Q.15 (2)	Q.6 (2) Q.16 (3)	Q.7 (2) Q.17 (2)	Q.8 (1) Q.18 (2)	Q.9 (3) Q.19 (4)	Q.10 (3) Q.20 (1)
Q.21 (3)	Q.22 (2)	Q.23 (3)	Q.24 (3)	Q.25 (3)	Q.26 (3)	Q.27 (3)	Q.28(1)	Q.29(1)	Q.30(2)
				EXEI	RCISE-II				
Q.1 (3)	Q.2 (3)	Q.3 (1)	Q.4 (1)	Q.5 (3)	Q.6 (1)	Q.7 (2)	Q.8 (2)	Q.9 (3)	Q.10(2)
Q.11 (2)	Q.12 (2)	Q.13 (1)	Q.14(1)	Q.15(4)	Q.16(1)	Q.17 (2)	Q.18 (3)	Q.19(1)	Q.20(2)
Q.21 (1)	Q.22 (3)	Q.23 (2)	Q.24 (3)	Q.25 (2)	Q.26 (3)	Q.27 (4)	Q.28 (2)	Q.29 (2)	Q.30(4)

EXERCISE-III

MCQ/COMPREHENSION/MATCHING/NUMERICAL

Q.1 (A, B, C	C, D)	Q.2 (B,C,D) Q.3 (B,C,D) Q.4 (B, C, I))	Q.5 (A, B)	Q.6 (A, C, I))	Q.7 (A,B,C)
Q.8 (A, C)	Q.9 (A, D)	Q.10 (A, B, C)	Q.11 (B)	Q.12 (D)	Q.13 (A)	Q.14(C)	Q.15 (B)	Q.16 (C)
$Q.17 (A) \rightarrow$	$(q, s), (B) \rightarrow$	$(p, q, r), (C) \rightarrow (s), (D)$	→(p, s)	$Q.18(A) \rightarrow$	$(q), (B) \rightarrow ($	(s), (C) \rightarrow (p	$(D) \rightarrow (r)$	
Q.19 [10]	Q.20 [50]	Q.21 [n = 12]	Q.22 [2]	Q.23 [0001]	Q.24 [0001]	Q.25 [0012]	Q.26 [0007]	Q.27 [0015]
Q.28 [0006]								

EXERCISE-IV

JEE-WAIN									
PREVIOU	S YEAR'S								
Q.1 (Bonus) Q.2 (1)	Q.3 (3)	Q.4 (2)	Q.5 (2)	Q.6 (4)	Q.7 (1)	Q.8 (1)	Q.9 (4)	Q.10 (4)
Q.11 (3)	Q.12 (2)	Q.13 (1)	Q.14 (3)	Q.15 (4)	Q.16 (2)	Q.17 (2)	Q.18 (4)	Q.19 (Bon	us) Q.20 (2)
Q.21 (4)	Q.22 (2)	Q.23 (1)	Q.24 (2)	Q.25 (4)	Q.26 [30]	Q.27 (3)	Q.28(2)	Q.29 (3)	Q.30 [615]
Q.31 (4)	Q.32 [51]	Q.33 [118]	Q.34 (3)	Q.35 (4)	Q.36 (3)	Q.37 (2)	Q.38(2)	Q.39 (1)	
Q.40 [120]	Q.41 [13]	Q.42 (2)							
JEE-ADVA	NCED								
PREVIOU	S YEAR'S								
Q.1 (D)	Q.2 [6]	Q.3 (C)	Q.4 [8]	Q.5 [5]	Q.6 [646]	Q.7 [6.20]	Q.8 (A,B,D))	

EXERCISE (Solution)

EXERCISE-I

Applying $T_{r+1} = {}^{n}C_{r}x^{n-r}a^{r}$ for $(x+a)^{n}$ $T_{c} = {}^{10}C_{c}(2x^{2})^{5} \left(-\frac{1}{x^{2}}\right)^{5}$

(2)

Q.1

Hence
$$T_6 = {}^{10}C_5(2x^2)^5 \left(-\frac{1}{3x^2}\right)$$
$$= -\frac{10!}{5!5!}32 \times \frac{1}{243} = -\frac{896}{27}$$

Q.2 (3)
$${}^{20}C_{r-1} = {}^{20}C_{r+3} \Rightarrow 20 - r + 1 = r + 3 \Rightarrow r = 9.$$

Q.3 (3)

$$T_{16} = {}^{17}C_{15}(\sqrt{x})^2(-\sqrt{y})^{15}$$

 $= -\frac{17 \times 16}{2 \times 1} \times xy^{15/2} = -136xy^{15/2}$
Q.4 (3)

$$\frac{1}{6} = \frac{{}^{n}C_{6}(2^{1/3})^{n-6}(3^{-1/3})^{6}}{{}^{n}C_{n-6}(2^{1/3})^{6}(3^{-1/3})^{n-6}} \text{ or } 6^{-1} = 6^{-4} \cdot 6^{n/3} = 6^{n/3-4}$$
$$\therefore \frac{n}{3} - 4 = -1 \implies n = 9.$$

Q.5 (3)

Q.4

$$T_r = {}^{15}C_{r-1}(x^4)^{16-r} \left(\frac{1}{x^3}\right)^{r-1} = {}^{15}C_{r-1}x^{67-7r}$$

$$\Rightarrow 67 - 7r = 4 \Rightarrow r = 9.$$

Q.6

(2)

(2)

We have $(1+x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + ...$ By hypothesis, $\frac{m(m-1)}{2}x^2 = -\frac{1}{8}x^2$

 $\Rightarrow 4m^2 - 4m = -1 \Rightarrow (2m - 1)^2 = 0 \Rightarrow m = \frac{1}{2}.$

In the expansion of $\left(x^2 + \frac{a}{x}\right)^5$ the general term is $T_{r+1} = {}^{5}C_{r}(x^{2})^{5-r}\left(\frac{a}{r}\right)^{r} = {}^{5}C_{r}a^{r}x^{10-3r}$

Here, exponent of x is $10 - 3r = 1 \implies r = 3$ $\therefore T_{2+1} = {}^{5}C_{3}a^{3}x = 10a^{3}.x$ Hence coefficient of x is $10a^3$.

In the expansion of $\left(x - \frac{1}{x}\right)^{6}$, the general term is

$${}^{6}C_{r}x^{6-r}\left(-\frac{1}{x}\right)^{r} = {}^{6}C_{r}(-1)^{r}x^{6-2r}$$

For term independent of $x, 6 - 2r = 0 \Rightarrow r = 3$ Thus the required coefficient $= (-1)^3 \cdot {}^6C_3 = -20$.

Q.9 (3)

> The coefficient of x^{16} in the expansion of $(x^2 - 2x)^{10}$ = The coefficient of x^{16} in $x^{10}(x-2)^{10}$ = The coefficient of x^6 in $(x - 2)^{10}$ f $= {}^{10}C_4.2^4$, $(: T_{r+1} = {}^{n}C_r x^{n-r} a^r)$ $= 210 \times 16 = 3360$.

(3) Q.10

Let T_{r+1} term containing x^{32} .

Therefore ${}^{15}C_r x^{4r} \left(\frac{-1}{x^3}\right)^{15-r}$ $\Rightarrow x^{4r}x^{-45+3r} = x^{32} \Rightarrow 7r = 77 \Rightarrow r = 11$ Hence coefficient of x^{32} is ${}^{15}C_{11}$ or ${}^{15}C_4$

(2)Q.11

> x^7 , x^8 will occur in T_8 and T_9 . Coefficients of T_8 and T_9 are equal.

$$\therefore {}^{n}C_{7}2^{n-7}\left(\frac{1}{3}\right)^{7} = {}^{n}C_{8}2^{n-8}\left(\frac{1}{3}\right)^{8} \Rightarrow n = 55.$$

Q.12 (1)

In the expansion of $\left(\frac{3x^2}{2} + \frac{1}{3x}\right)^9$, the general term is

$$T_{r+1} = {}^{9}C_{r} \left(\frac{3x^{2}}{2}\right)^{9-r} \left(-\frac{1}{3x}\right)^{r} = {}^{9}C_{r} \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right)^{r} x^{18-3r}$$

For the term independent of x, 18-3r=0 r=6This gives the independent term

$$T_{6+1} = {}^{9}C_{6} \left(\frac{3}{2}\right)^{9-6} \left(-\frac{1}{3}\right)^{6} = {}^{9}C_{3} \cdot \frac{1}{6^{3}}$$

Q.13 (1)

$$T_{r+1} = {}^{10}C_r (x^2)^{10-r} \left(\frac{-3\sqrt{3}}{x^3}\right)^r$$

For term independent of x, $20 - 2r - 3r = 0 \implies r = 4$

$$\therefore T_{4+1} = {}^{10}C_4 (-3)^4 (\sqrt{3})^4 = 153090.$$

Q.14 (3)

As in Previous question, obviously the term independent of x will be

$${}^{n}C_{0}.{}^{n}C_{0} + {}^{n}C_{1}.{}^{n}C_{1} + \dots {}^{n}C_{n}.{}^{n}C_{n} = C_{0}^{2} + C_{1}^{2} + \dots + C_{n}^{2}$$

Q.15 (2)

Since *n* is even therefore $\left(\frac{n}{2}+1\right)^{th}$ term is middle term,

hence
$${}^{n}C_{n/2}(x^{2})^{n/2}\left(\frac{1}{x}\right)^{n/2} = 924x^{6}$$

 $\Rightarrow x^{n/2} = x^{6} \Rightarrow n = 12.$

Q.16 (3)

Middle term = $T_{\frac{2n+2}{2}} = T_{n+1} = {}^{2n}C_n x^n = \frac{2n!}{(n!)^2} \cdot x^n$.

Q.17 (2)

Greatest coefficient of $(1 + x)^{2n+2}$ is

$$=^{(2n+2)}C_{n+1} = \frac{(2n+2)!}{\{(n+1)!\}^2}$$

Q.18 (2)

Obviously the middle term

$={}^{2n}C_n(x)^n \cdot \left(\frac{1}{2x}\right)^n = \frac{2n!}{n! \cdot n! \cdot 2^n} = \frac{1 \cdot 3 \cdot 5 \dots \cdot (2n-1)}{n!} \cdot$

Q.19 (4)

$$\begin{aligned} (1+3x+2x^2)^6 &= [1+x(3+2x)]^6 \\ &= 1+{}^6C_1x(3+2x)+{}^6C_2x^2(3+2x)^2 \\ &+{}^6C_3x^3(3+2x)^3+{}^6C_4x^4(3+2x)^4 \\ &+{}^6C_5x^5(3+2x)^5+{}^6C_6x^6(3+2x)^6 \end{aligned}$$

Only
$$x^{11}$$
 gets from ${}^{6}C_{6}x^{6}(3+2x)^{6}$
 $\therefore {}^{6}C_{6}x^{6}(3+2x)^{6} = x^{6}(3+2x)^{6}$
 \therefore Coefficient of $x^{11} = {}^{6}C_{5}3^{1}2^{5} = 576$.
(1)

We know that : $(1 + x)^n = {^nC_0} + {^nC_1}x + \dots {^nC_n}x^n$

Q.20

Also,
$$\left(1 + \frac{1}{x}\right)^{n} = {}^{n}C_{0} + {}^{n}C_{1}\left(\frac{1}{x}\right) + \dots {}^{n}C_{n}\left(\frac{1}{x}\right)^{n}$$

The summation aksed above

$$= \text{coefficient of } x^{r} \text{ in } (1+x)^{n} \left(1+\frac{1}{x}\right)^{n}$$
$$= \text{coefficient of } x^{r} \text{ in } (1+x)^{n} \left(\frac{x+1}{x}\right)^{n}$$
$$= \text{coefficient of } x^{r} \text{ in } \frac{(1+x)^{2n}}{x^{n}}$$
$$= \text{coefficient of } x^{r+1} \text{ in } (1+x)^{2n}$$
$$= \frac{2^{n}}{n+r} C$$
$$= \frac{2n!}{(n+r)!(2n-n-r)!}$$
$$= \frac{2n!}{(n+r)!(n-r)!}$$

Q.21 (3)

Proceeding as above and putting n+1=N. So given term can be written as

$$\frac{1}{N} \left\{ {}^{N}C_{1} + {}^{N}C_{2} + {}^{N}C_{3} + \dots \right\}$$
$$= \frac{1}{N} \left\{ 2^{N} - 1 \right\} = \frac{1}{n+1} (2^{n+1} - 1) \qquad (\because N = n+1)$$

Q.22 (2)

Multiplying each term by n! the question reduces to

$$\frac{n!}{1!(n-1)!} + \frac{1}{3!} \cdot \frac{n!}{(n-3)!} + \frac{1}{5!} \cdot \frac{n!}{(n-5)!} + \dots$$
$$= {}^{n}C_{1} + {}^{n}C_{3} + {}^{n}C_{5} + \dots = 2^{n-1}.$$
Thus $\frac{1}{1!(n-1)!} + \frac{1}{3!(n-3)!} + \frac{1}{5!(n-5)!} + \dots = \frac{1}{n!} 2^{n-1}.$

Q.23 (3)

Putting x = 1 in $(x^2 + x - 3)^{319}$ We get the sum of coefficient = $(1 + 1 - 3)^{319} = -1$

Q.24 (3)

 $(1 + x + x^{2} + x^{3})^{5} = (1 + x)^{5}(1 + x^{2})^{5}$ = $(1 + 5x + 10x^{2} + 10x^{3} + 5x^{4} + x^{5})$ $\times (1 + 5x^{2} + 10x^{4} + 10x^{6} + 5x^{8} + x^{10})$ Therefore the required sum of coefficients = $(1 + 10 + 5) \cdot 2^{5} = 16 \times 32 = 512$

Note: $2^n = 2^5 =$ Sum of all the binomial coefficients in the 2^{nd} bracket in which all the powers of *x* are even.

Q.25 (3)

As we know that

ⁿ $C_0^2 - {}^nC_1^2 + {}^nC_2^2 - {}^nC_3^2 + \dots + (-1)^n \cdot {}^nC_n^2 = 0$ (if *n* is odd) and in the question *n* =15 (odd).

Q.26 (3)

Q.27 (3)

We have $7^2 = 49 = 50 - 1$ Now, $7^{300} = (7^2)^{150} = (50 - 1)^{150}$ $= {}^{150}C_0(50)^{150}(-1)^0 + {}^{150}C_1(50)^{149}(-1)^1 + \dots + {}^{150}C_{150}(50)^0(-1)^{150}$

Thus the last digits of 7^{300} are ${}^{150}C_{150}$.1.1 *i.e.*, 1.

Q.28 (1)

111.....1 (91 times)
= 1+10+10² ++10⁹⁰
=
$$\frac{10^{91}-1}{10-1} = \frac{(10^{7})^{13}-1}{10-1} = \frac{t^{13}-1}{9}$$
, where $t = 10^{7}$
= $\left(\frac{t-1}{9}\right)(t^{12}+t^{11}+....+t+1)$
= $\left(\frac{10^{7}-1}{10-1}\right)(1+t+t^{2}+....+t^{12})$
= $(1+10+10^{2}+....+10^{6})(1+t+t^{2}+...+t^{12})$
∴ 111.....1(91 times) is a composite number.

Q.29 (1)

Given term can be written as $(1 + x)^2 (1 - x)^{-2}$ = $(1 + 2x + x^2)[1 + 2x + 3x^2 + + (n - 1)x^{n-2} + nx^{n-1} + (n + 1)x^n +]$ = $x^n (n + 1 + 2n + n - 1) +$ Therefore coefficient of x^n is 4n.

Q.30 (2)

Let consecutive terms are ${}^{n}C_{r}$ and ${}^{n}C_{r+1}$

$$\Rightarrow \frac{n!}{(n-r)!r!} = \frac{n!}{(n-r-1)!(r+1)!}$$
$$\Rightarrow \frac{1}{(n-r)(n-r-1)!r!} = \frac{1}{(n-r-1)!(r+1)r!}$$
$$\Rightarrow r+1 = n-r \Rightarrow n = 2r+1 \text{ . Hence } n \text{ is odd.}$$

EXERCISE-II

$$^{2m+1}C_{m}\left(\frac{x}{y}\right)^{m+1}\left(\frac{y}{x}\right)^{m} = {}^{2m+1}C_{m}\left(\frac{x}{y}\right)^{m}$$

Dependent upon the ratio $\frac{x}{y}$ and m.

(3) $(x+a)^{100} + (x-a)^{100}$ $= 2 \left({}^{100} C_0 x^{100} + {}^{100} C_2 x^{98} a^2 + \dots + {}^{100} C_{100} a^{100} \right)$ Number of terms = 51 terms

Q.3 (1)

Q.2

$$T_6 = {}^8C_5 \left(\frac{1}{x^{8/3}}\right)^3 (x^2 \log_{10} x)^5 = 5600$$

$$\Rightarrow \frac{1}{x^8} x^{10} (\log_{10} x)^5 = 100$$
$$\Rightarrow x = 10$$

(1)

$$T_2 = {}^{n}C_1 (a^{1/13})^{n-1} (a^{3/2}) = 14a^{5/2}$$

 $\Rightarrow n = 14$
 $\therefore \frac{{}^{n}C_3}{{}^{n}C} = 4$

Q.5

(3)

Q.4

$$(1-2x^3+3x^5)\left(1+\frac{1}{x}\right)^8$$

Co-efficient of x = -2. ${}^8C_2 + 3.{}^8C_4 = 154$

Q.6 (1)

$$T_{r+1} = {}^{6561}C_r (7)^{\frac{6561-r}{3}} (11^{1/9})^r$$

Here r should be multiple of 9 r=0, 9, 18....6561Number of terms = 730

Q.7 (2)

$$\left(\mathbf{x} - \frac{1}{\mathbf{x}}\right) \left(\mathbf{x}^2 - \frac{1}{\mathbf{x}^2}\right)^3 = \left(\mathbf{x} - \frac{1}{\mathbf{x}}\right) ({}^3\mathbf{C}_0 \mathbf{x}^6 - {}^3\mathbf{C}_1 \mathbf{x}^2 + {}^3\mathbf{C}_2 \mathbf{x}^-$$

$${}^2 - {}^3\mathbf{C}_3 \mathbf{x}^{-6})$$

There is no term independent of x

Q.8 (2)

$$\begin{bmatrix} T_{2m+1} \Rightarrow^{10} C_{2m} \\ T_{4m+5} \Rightarrow^{10} C_{4m+4} \end{bmatrix} \text{ equal}$$

$$2m+4m+4=10; 6m+4=10$$

m=1

Q.9 (3)

$$T_{r+1} = {}^{n}C_{r}(2)^{n-r} \left(\frac{x}{3}\right)^{r} = {}^{n}C_{r} \frac{2^{n-r}}{3^{r}} x^{r}$$

Coeff $T_{8} = T_{9} \Rightarrow {}^{n}C_{7} \frac{2^{n-7}}{3^{7}} = {}^{n}C_{8} \frac{2^{n-8}}{3^{8}}$
$$\Rightarrow \frac{{}^{n}C_{8}}{{}^{n}C_{7}} = \frac{3.2}{1} \Rightarrow \frac{n-8+1}{8} = 6$$
$$\Rightarrow n-7 = 48 \Rightarrow n = 55$$

Q.10 (2)

G.T. is $T_{r+1} = {}^{100}C_r(2)^{\frac{100-r}{2}}(3)^{\frac{r}{4}}$

The above term will be rational if exponent of 2 & 3 are integers.

i.e.
$$\frac{100 - r}{2}$$
 and $\frac{r}{4}$ must be integers

the possible set of r is = $\{0, 4, 8, 16, \dots, 100\}$ no. of rational terms is 26

Q.11 (2)

If $n \in N$ & n is even then

$$\frac{1}{1 \cdot (n-1)!} + \frac{1}{3!(n-3)} + \frac{1}{5!(n-5)} + \dots + \frac{1}{(n-1)!} \frac{1}{1!}$$
$$= \frac{1}{n!} \Big[{}^{n}C_{1} + {}^{n}C_{3} + {}^{n}C_{5} + \dots + {}^{n}C_{n-1} \Big]$$

 $\begin{array}{l} n \text{ is even} \Rightarrow n-1 \text{ is odd} \\ {}^n\!C_{n-1} \text{ second Binomail coeff. from the end} \end{array}$

$$= \frac{1}{n!} \left[C_1 + C_3 + C_5 + \dots + C_{n-1} \right]$$
$$= \frac{1}{n!} \cdot 2^{n-1} = \frac{2^{n-1}}{n!}$$

(2) middle term = T_5 $T_5 = T_{4+1} = {}^8C_4 \cdot k^4 = 1120$ $\Rightarrow k = 2$

Q.13 (1)

Q.12

 $C_0 + C_1 + C_2 + \dots + C_n = 2^n = 256$ $\Rightarrow 2^n = 2^8 \Rightarrow n = 8$

$$T_{r+1} = {}^{8}C_{r} \left(2x\right)^{8-r} \left(\frac{1}{x}\right)^{r} = {}^{8}C_{r} 2^{8-r} x^{8-2r}$$

For Constant term $\Rightarrow 8 - 2r = 0 \Rightarrow r = 4$

$$= {}^{8}C_{4}2^{4} = \frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2}2^{4} = 70 \times 16 = 1120$$

sum of coeff of
$$(1-2x+5x^2)^n = a$$

sum of coeff of $(1+x)^{2n} = b$
put $x = y = 1$
 $a = (1-2+5)^n = 4^n \& b = (1+1)^{2n} = 2^{2n} = 4^n$
 $a = b$

Q.15 (4)

$$\begin{pmatrix} x^{k} + \frac{1}{x^{2k}} \end{pmatrix}^{3n}, n \in N \text{ Independent of } x$$

$$T_{r+1} = {}^{3n}C_r \left(x^k \right) {}^{3n-r} \left(\frac{1}{x^{2k}} \right)^r$$

$$= {}^{3n}C_r x^{3nk-rk-2kr} = {}^{3n}C_r x^{3k(n-r)}$$
For Constant term $\Rightarrow 3k (n-r) = 0 \Rightarrow n = r$

$$\therefore T_{r+1} = {}^{3n}C_n \text{ true for any real } k \text{ or } K \in R$$

Q.16 (1)

$$(3x+2)^{-1/2}$$
 has infinite expansion when $\left|\frac{3x}{2}\right| < 1$
 $\Rightarrow x \in \left(-\frac{2}{3}, \frac{2}{3}\right)$

Q.17 (2)

Coeff of α^{t} in $(\alpha + p)^{m-1} + (\alpha + p)^{m-2} (\alpha + q) + (\alpha + p)^{m-3} (\alpha + q)^{2} \dots + (\alpha + q)^{m-1}$ $\therefore a \neq -q, p \neq q$ Let $\alpha + P = x \& \alpha + q = y$ $= x^{m-1} + x^{m-2} y + x^{m-3} y^{2} + \dots + y^{m-1}$ $= x^{m-1} \left[1 - \left(\frac{y}{x}\right) + \left(\frac{y}{x}\right)^{2} + \dots + \left(\frac{y}{x}\right)^{m-1} \right]$

$$= x^{m-1} \frac{\left[1 - \left(\frac{y}{x}\right)^{m}\right]}{\left(1 - \frac{y}{x}\right)}$$

$$= \frac{x^{m-1}}{x^{m}} \frac{x^{m} - y^{m}}{x - y} \cdot x = \frac{(\alpha + p)^{m} - (\alpha + q)^{m}}{\alpha + p - \alpha - q}$$
$$= \frac{1}{(p - q)} \left[(\alpha + p)^{m} - (\alpha + q)^{m} \right]$$
$$= \text{coeff of } \alpha^{t} = \left(\frac{{}^{m} C_{t} p^{m-t} - {}^{m} C_{t} q^{m-t}}{p - q} \right)$$

Q.18 (3)

$$(2x + 5y)^{13} \text{ greatest form for } x = 10, y = 2$$

$$\frac{n+1}{\left|\frac{x}{y}\right| + 1} - 1 \le r \le \frac{n+1}{\left|\frac{x}{y}\right| + 1}$$

$$\Rightarrow \frac{14}{\left|\frac{2x}{5y}\right| + 1} - 1 \le r \le \frac{14}{\left|\frac{2x}{5y}\right| + 1}$$

$$\Rightarrow \frac{14}{3} - 1 \le r \le \frac{14}{3} \Rightarrow \frac{11}{3} \le r \le \frac{14}{3}$$

$$\Rightarrow 3.66 \dots r \le 4.666 \Rightarrow r = 4$$

$$\Rightarrow T_5 = {}^{13}C_4(20)^9(10)^4$$

Q.19 (1)

For numerically greatest term
$$r = \left[\frac{n+1}{1+\left|\frac{x}{a}\right|}\right]$$

$$= \left[\frac{9+1}{1+\left| \frac{4}{9} \right|} \right] \implies r = 6$$

Numerically greatest term $T_{r+1} = {}^{9}C_{6}(2)^{3} \left(\frac{9}{2}\right)^{6}$

Q.20 (2)

For numerically greatest term
$$\mathbf{r} = \left[\frac{\mathbf{n}+1}{1+\left|\frac{\mathbf{x}}{\mathbf{a}}\right|}\right] = \left[\frac{34+1}{1+\left|\frac{6}{10}\right|}\right]$$

 \Rightarrow r = 21.

Q.21 (1)

$$\sum_{r=0}^{n-1} \frac{{}^{n}C_{r}}{{}^{n}C_{r} + {}^{n}C_{r+1}} = \sum_{r=0}^{n-1} \frac{r+1}{n+1}$$
$$= \frac{1}{n+1} [1+2+\dots+n] = \frac{1}{n+1} \times \frac{n(n+1)}{2} = \frac{n}{2}$$

$$\begin{array}{l} {}^{18}\mathrm{C}_{\mathrm{r-2}} + 2 \cdot {}^{18}\mathrm{C}_{\mathrm{r-1}} + {}^{18}\mathrm{C}_{\mathrm{r}} \geq {}^{20}\mathrm{C}_{13} \\ \Rightarrow {}^{18}\mathrm{C}_{\mathrm{r-2}} + {}^{18}\mathrm{C}_{\mathrm{r-1}} + {}^{18}\mathrm{C}_{\mathrm{r-1}} + {}^{18}\mathrm{C}_{\mathrm{r}} \geq {}^{20}\mathrm{C}_{13} \\ \Rightarrow {}^{19}\mathrm{C}_{\mathrm{r-1}} + {}^{19}\mathrm{C}_{\mathrm{r}} \geq {}^{20}\mathrm{C}_{13} \Rightarrow {}^{20}\mathrm{C}_{\mathrm{r}} \geq {}^{20}\mathrm{C}_{13} \\ \therefore {}^{20}\mathrm{C}_{10} > {}^{20}\mathrm{C}_{11} > {}^{20}\mathrm{C}_{12} > {}^{20}\mathrm{C}_{13} \\ \& {}^{20}\mathrm{C}_{10} > {}^{20}\mathrm{C}_{9} > {}^{20}\mathrm{C}_{8} > {}^{20}\mathrm{C}_{7} \\ \mathrm{r} = 7, 8, 9, 10, 11, 12, 13 \Rightarrow \mathrm{Total}\, 7\,\mathrm{elements} \end{array}$$

Q.23 (2)

$$\begin{aligned} \frac{C_0}{1} + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_{10}}{11} \\ \sum_{r=0}^{10} T_{r+1} &= \sum_{r=0}^{10} \frac{{}^{10}C_r}{r+1} \\ &= \sum_{r=0}^{10} \frac{1}{(10+1)} \cdot \frac{10+1}{r+1} \cdot {}^{10}C_r = \frac{1}{11} \sum_{r=0}^{10} {}^{11}C_{r+1} \\ &= \frac{1}{11} \Big[{}^{11}C_1 + {}^{11}C_2 + \dots + {}^{11}C_{11} \Big] \\ &= \frac{1}{11} \Big[{}^{11}C_0 + {}^{11}C_1 + {}^{11}C_2 + \dots + {}^{11}C_{11} - {}^{11}C_0 \Big] \\ &= \frac{1}{11} \Big[{}^{2^{11}}-1 \Big] = \frac{2^{11}-1}{11} \end{aligned}$$

- **Q.24** (3) ${}^{47}C_4 + {}^{51}C_3 + {}^{50}C_3 + {}^{49}C_3 + {}^{48}C_3 + {}^{47}C_3 = {}^{52}C_4$
- Q.25 (2) ${}^{50}C_0 \times {}^{50}C_1 + {}^{50}C_1 \times {}^{50}C_2 + \dots + {}^{50}C_{49} \times {}^{50}C_{50}$ $= {}^{50}C_0 \times {}^{50}C_{49} + {}^{50}C_1 \times {}^{50}C_{48} + \dots + {}^{50}C_{49} \times {}^{50}C_0$ $= \text{co-eff. of } x^{49} \text{ in } (1 + x)^{100} = {}^{100}C_{49}$
- Q.26 (3) $2^{2003} = 8.(16)^{500}$ $= 8(17-1)^{500}$ \therefore Remainder = 8

- Q.27 (4) $3^{400} = (10-1)^{200}$ ${}^{200}C_0(10)^{200} + \dots + {}^{200}C_{199}(10)(-1) + {}^{200}C_{200}$ Last two digits = 01
- Q.28 (2)

 T_{22} is the numerically greatest term. $(\sqrt{2}+1)^6 = I + f$ $(\sqrt{2}-1)^6 = f^6$

 $\overline{2[{}^{6}C_{0} + {}^{6}C_{2} \cdot 2 + {}^{6}C_{4} (2)^{2} + \dots}] = I + f + f'$ f+f = 1 or f' = 1 - f $I = 2[{}^{6}C_{0} + {}^{6}C_{2} \cdot 2 + {}^{6}C_{4} \cdot 4 + {}^{6}C_{6} \cdot 8] - 1$ I = 2[1 + 30 + 60 + 8] - 1 = 197

Q.29 (2)

Q.30

 $\left(5+2\sqrt{6}\right)^n = p+f$

$$(5-2\sqrt{6})^{n} = f' \implies 0 < f + f' < 2$$

$$p + f + f' = 2 \text{ [integer]}$$

so $f + f' = \text{integer} = 1$
 $\therefore n \in \mathbb{N}$
 $(f-1)(p+f) = -f'(p+f) = -(+1)^{n} = -1$
(4)
coef of x^{4} in $(1-x+2x^{2})^{12}$
 $= {}^{12}C_{0}(1-x)^{12}(2x^{2})^{0} + {}^{12}C_{1}(1-x)^{11}(2x^{2}) + {}^{12}C_{2}(1-x)^{10}$
 $(2x^{2})^{2} + \text{above } x^{4}$ powers terms of x^{4}

$$= {}^{12}C_{0} \cdot {}^{12}C_{4} (-x)^{4} + {}^{12}C_{1} \, {}^{11}C_{2} (-x)^{2} \, 2x^{2} + {}^{12}C_{2} \, {}^{10}C_{0} \, 4x^{4}$$

$$= {}^{12}C_{4} + 12 \cdot {}^{11}C_{2} \cdot 2 + {}^{12}C_{2} \cdot 4$$

$$= {}^{12}C_{4} + 2.3 \cdot \frac{12}{3} \, {}^{11}C_{2} + {}^{12}C_{2} \cdot 4$$

$$= {}^{12}C_{3} + {}^{12}C_{2} + 3({}^{12}C_{2} + {}^{12}C_{3}) + {}^{12}C_{3} + {}^{12}C_{3} + {}^{12}C_{4}$$

$$= {}^{12}C_{3} + 3({}^{12}C_{2} + {}^{12}C_{3}) + {}^{12}C_{2} + {}^{12}C_{3} + {}^{12}C_{4}$$

$$= {}^{12}C_{3} + 3({}^{12}C_{2} + {}^{12}C_{3}) + {}^{12}C_{2} + {}^{12}C_{3} + {}^{12}C_{4}$$

$$= {}^{12}C_{3} + 3{}^{13}C_{3} + {}^{13}C_{3} + {}^{13}C_{4}$$

$$= {}^{12}C_3 + 3{}^{13}C_3 + {}^{14}C_4$$

EXERCISE-III

Q.1 A, B, C, D

$$\left(4^{1/3} + \frac{1}{6^{1/4}}\right)^{20}$$

T_{r+1} = ²⁰C_r(4^{1/3})^{20-r}(6^{-1/4})^r
For rational terms
20 - r = 3k & r = 4p, where k, p ∈ I

 $\Rightarrow r = 20 \& r = 8$ $\therefore \text{ no. of rational terms} = 2$ $\therefore \text{ no. of irrational terms} = 19$

Q.2 B,C,D

$$\begin{pmatrix} x^{2/3} - \frac{1}{\sqrt{x}} \end{pmatrix}^{30} \operatorname{term} x^{13} \\ T_{r+1} = {}^{30}C_r x^{\frac{2}{3}(30-r)} (+x)^{-\frac{1}{2}r} (-1)^r = {}^{30}C_r (-1)^r x^{\frac{120-7r}{6}} \\ \frac{120-7r}{6} = 13 \implies \frac{120-78}{7} = r \implies r = 6 \\ = {}^{30}C_6 = \frac{30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} \\ \text{which is divisibe by 29, 63, 65}$$

Q.3 B,C,D

$$\begin{pmatrix} x^3 + 3.2^{-\log_{\sqrt{2}}\sqrt{x^3}} \end{pmatrix}^{11} = \begin{pmatrix} x^3 + \frac{3}{x^3} \end{pmatrix}^{11}$$

$$T_{r+1} = {}^{11}C_r (x^3)^{11-r} \quad 3^r (x^3)^{-r} = {}^{11}C_r \quad 3^r (x^3)^{11-2r}$$

$$= {}^{11}C_r \quad 3^r (x^3)^{11-2r} = {}^{11}C_r \quad 3^r \quad x^{33-6r}$$

$$(A) \quad 33 - 6r = 2 \Rightarrow \frac{31}{6} = r \Rightarrow \text{ Not possible}$$

$$(B) \quad x^2 \text{ doesn't appear}$$

$$(C) \quad 33 - 6r = -3 \Rightarrow 36 = 6r \Rightarrow r = 6$$

$$(x^{-3}) \text{ term exist/appear in exp.}$$

$$(D) \quad \text{for } x^3, r = 5, \& x^{-3}, r = 6$$

$$\frac{T_6}{T_7} = \frac{{}^{11}C_5 \quad 3^5}{{}^{11}C_6 \quad 3^6} = \frac{1}{3}$$

Q.4 B, C, D

 $6^{th} \text{ term in the Expension of } \left[\frac{3}{2} + \frac{x}{3}\right]^{n} \text{ for } x = 3$ is numerically greatest $\frac{n+1}{\left|\frac{x}{y}\right| + 1} - 1 \leqslant r \leqslant \frac{n+1}{\left|\frac{x}{y}\right| + 1}$ $\Rightarrow \frac{n+1}{3} - 1 \leqslant 5 \leqslant \frac{n+1}{3} + 1$ $\Rightarrow \frac{2(n+1)}{5} - 1 \le 5 \le \frac{2(n+1)}{5}$ $\Rightarrow \frac{2(n+1)}{5} \leqslant 6 \text{ and } \frac{2(n+1)}{5} \geqslant 5$ $\Rightarrow n+1 \leqslant 15 \text{ and } n+1 \geqslant \frac{25}{2}$ $\Rightarrow n \leqslant 14 \text{ and } n+1 \geqslant \frac{23}{2}$ $\begin{array}{l} \Rightarrow \ 11.4 \leqslant n \leqslant 14 \\ n \in N \Rightarrow n = 12, 13, 14 \\ \text{for these value of } n \ 6^{th} \ term \ is \ greatest \ term \end{array}$

Q.5 A,B

 $\begin{aligned} &(1+x^2)^2 \, (1+x)^n = A_0 + A_1 x + A_2 x^2 \dots \\ &\text{If } A_0, A_1, A_2 \text{ are in A.P.} \\ & \Rightarrow \, (1+x^4+2x^2) \, (1+x)^n = A_0 + A_1 x + A_2 x^2 \dots \\ &\text{If } A_0, A_1, A_2 \text{ are in A.P.} \end{aligned}$

$$\Rightarrow (1 + x^{4} + 2x^{2}) \left[1 + nx + \frac{n(n-1)x^{2}}{2!} + \frac{n(n-1)(n-2)}{3!}x^{3} + \dots \right]$$

$$= A_{0} + A_{1}x + A_{2}x^{2} + \dots$$
by comparism
$$A_{0} = 1$$

$$A_{1} = n \& A_{2} = \frac{n(n-1)}{2!} + 2 = \frac{n^{2} - n + 4}{2}$$

$$2A_{1} = A_{0} + A_{2}$$

$$\Rightarrow 2n = 1 + \frac{n^{2} - n + 4}{2}$$

$$\Rightarrow 4n = 2 + n^{2} - n + 4$$

$$\Rightarrow n^{2} - 5n + 6 = 0$$

$$\Rightarrow (n-2)(n-3) = 0$$

 \Rightarrow n=2 or n=3

Q.6 A, C, D

$$(9 + \sqrt{80})^n = I + f (9 - \sqrt{80})^n = f' 2[{}^nC_0 (9)^n + {}^nC_2 (9)^{n-2} (\sqrt{80})^2 +] = I + f + f' \therefore I = 2(integer) - 1 (:: f + f' = 1) \therefore (I + f) (1 - f) = 1$$

Q.7 A,B,C

$$\begin{split} &101^{100} - 1 = (1+100)^{100} - 1 \\ &= {}^{100}\text{C}_0 + {}^{100}\text{C}_1(100)^1 + {}^{100}\text{C}_2\ (100)^2 + \ldots + {}^{100}\text{C}_{100} \\ &(100)^{100} - 1 \\ &= 100 \times 100 + {}^{100}\text{C}_2\ (100)^2 + \ldots + {}^{100}\text{C}_{100}\ 100^{100} \\ &= 10000\ [1 + {}^{100}\text{C}_2 + {}^{100}\text{C}_3(100) + \ldots + {}^{100}\text{C}_{100}\ 100^{98}] \\ &= 10000\ [\text{Integer}] \\ \text{which is divisible by 100, 1000, 10000} \end{split}$$

Q.8 A, C

 $7^{9} + 9^{7} = (8 - 1)^{9} + (8 + 1)^{7} = {}^{9}C_{0}(8)^{9} - {}^{9}C_{1}(8)^{8} + {}^{9}C_{2}(8)^{7}$+ ${}^{9}C_{8}(8) - {}^{9}C_{9} + {}^{7}C_{0}(8)^{7} + \dots + {}^{7}C_{6}(8) + {}^{7}C_{7}$ This is divisible by 64 & 16

Q.9 A, D

Constant term in $P_1(x)$ is 4 If the constant term in $P_k(x)$ is also 4, then $P_k(x) = 4 + a_1x + a_2x^2 + \dots$ and $P_{k+1}(x) = (P_k(x) - 2)^2 = (a_1x + a_2x^2 + \dots + 2)^2$

Q.10 A, B, C

General term =
$$\frac{10!}{r_1!r_2!r_3!}(1)^{r_1}(2x)^{r_2}(3x^2)^{r_3}$$

 $a_1 = \text{Coeff. of } x$
 $r_2 + 2r_3 = 1 \Rightarrow r_2 = 1, r_1 = 9, r_3 = 0$
 $\therefore a_1 = \frac{10!}{1!9!}(2)^1 = 20$
 $a_2 = \text{Coeff. of } x^2$
 $r_2 + 2r_3 = 2 \Rightarrow r_2 = 2, r_1 = 8, r_3 = 0$
 $r_2 = 0, r_1 = 9, r_3 = 1$
 $a_2 = \frac{10!}{2!8!}(2)^2 + \frac{10!}{9!1!}(3) = 210$
 $a_4 = \text{coeff. of } x^4$
 $r_2 + 2r_3 = 4 \Rightarrow r_2 = 4, r_1 = 6, r_3 = 0$
 $r_2 = 0, r_1 = 8, r_3 = 2$
 $a_4 = \frac{10!}{4!6!}(2)^4 + \frac{10!}{2!7!1!}(2)^2(3) + \frac{10!}{8!2!}(3)^2$
=8085
 $a_{20} = 3^{10}$

Q.11 B

Required sum = coefficient of x^n in $(1+x)^n (1+x)^n$ = coefficient of x^n in $(1+x)^{2n} = {}^{2n}C_n$

Q.12 D

$$\begin{array}{l} \because {}^{30}C_{r}, {}^{20}X_{0} + {}^{30}C_{r-1}, {}^{20}C_{1}, + \dots, + {}^{30}C_{0}, {}^{20}C_{r} \\ = \text{coefficient of } x^{r} (1+x)^{30} (1+x)^{20} \\ = \text{coefficient of } x^{r} \text{ in } (1+x)^{50} \\ = {}^{50}C_{r} \text{ is maximum} \\ \\ \therefore r = \frac{50}{2} = 25 \end{array}$$

Q.13

А

 $\therefore {}^{20}C_r \cdot {}^{10}C_0 + {}^{20}C_{r-1} \cdot {}^{10}C_1 + \dots + {}^{20}C_0 \cdot {}^{10}C_r$ = coefficient of x^r in(1 + x)²⁰ (1 + x)¹⁰ = coefficient of x^r (1 + x)³⁰ = {}^{30}C_r $\therefore {}^{30}C_r \text{ is minimum}$ $\therefore r = 0$

Q.14 C

$$(1+i)^{n} = C_{0} + C_{1}i + C_{2}i^{2} + C_{3}i^{3} + \dots$$

$$\Rightarrow (1+i)^{n} = (C_{0} - C_{2} + C_{4} - C_{6} + \dots) + i(C_{1} - C_{3} + C_{5} - \dots) - \dots(i)$$

$$\Rightarrow C_{0} - C_{2} + C_{4} - C_{6} + \dots = \text{Real part of } (1+i)^{n}$$

$$= \text{Real part of } \left(\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)\right)^{n}$$

$$= \text{Real part of } 2^{n/2}\left(\cos\frac{n\pi}{4} + i\sin\frac{n\pi}{4}\right) = 2^{n/2}\cos\frac{n\pi}{4}.$$

Q.15 **(B)**

From the previous question on taking modulus of equation(i)

$$(C_0 - C_2 + C_4 - \dots)^2 + (C_1 - C_3 + C_5 - \dots)^2 = ((\sqrt{2})^n)^2$$

= 2ⁿ

Q.16 **(C)** Add the expansion of $(1+1)^n$, $(1+\omega)^n$ and $(1+\omega^2)^n$ \n

$$(1+\omega)^{n} = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{n} = \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^{n}$$
$$(1+\omega^{2})^{n} = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^{n} = \left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)^{n}$$

Q.17 (A)
$$\rightarrow$$
 (q, s), (B) \rightarrow (p, q, r), (C) \rightarrow (s), (D) \rightarrow (p, s)
(A) We have, T_{r+1}
$$= \frac{\frac{7}{2} \left(\frac{7}{2} - 1\right) \left(\frac{7}{2} - 2\right) \dots \left(\frac{7}{2} - r + 1\right) x^{r}}{r!}$$

This will be the first negative term when $\frac{7}{2} - r + 1$

$$<0$$
 i.e. $r > \frac{9}{2}$
Hence $r = 5$.

(B) We have,
$$T_{r+1} = {}^{5}C_{r} (y^{2})^{5-r} \left(\frac{1}{y}\right)^{r} = {}^{5}C_{r} y^{10-3r}$$

Now, $10 - 3r = 1 \Rightarrow r = 3$
So, coefficient of $y = {}^{5}C_{3} = 10$
(C) Obviously a prime number.

(D) We have : $(1 + 2x + 3x^2 + 4x^3 +)^{1/2}$ $= [(1-x)^{-2}]^{1/2} = (1-x)^{-1} = 1 + x + x^{2} + \dots + x^{n} + \dots$ Hence, coefficient of $x^4 = 1$ c = 1, hence c + 1 = 2

Q.18 (A)
$$\rightarrow$$
 (q), (B) \rightarrow (s), (C) \rightarrow (p), (D) \rightarrow (r)
(A) I + f = (7 + 4 $\sqrt{3}$)²ⁿ
Here (7 - 4 $\sqrt{3}$)²ⁿ = f = 1 - f
(I + f) (1 - f) = 1
(B) T₂ = ⁿC₁ (x)ⁿ⁻¹ . a = 240(i)
T₃ = ⁿC₂ (x)ⁿ⁻² a² = 720(ii)
T₄ = ⁿC₃ (x)ⁿ⁻³ a³ = 1080(iii)
From (i) and (ii)
Here $\frac{^{n}C_{1}(x)^{n-1}a}{^{n}C_{2}x^{n-2}a^{2}} = \frac{2x}{(n-1)a} = \frac{240}{720} = \frac{1}{3}$
 $\Rightarrow 6x = (n-1)a$
From (ii) and (iii)
 $9x = 2(n-2)a$
On dividing $\frac{3}{2} = \frac{2(n-2)}{(n-1)} \Rightarrow 3n - 3 = 4n - 8 \Rightarrow n = 5$
(C)C₀C₄-C₁C₃+C₂C₂-C₃C₁+C₄C₀=2-2.4.4+6.6=6

(D)
$$\sqrt{\frac{x}{x+y}} \sqrt{\frac{x}{x-y}} = \left(\frac{1}{1+\frac{y}{x}}\right)^{1/2} \left(\frac{1}{1-\frac{y}{x}}\right)^{1/2}$$

= $\left(1-\frac{y^2}{x^2}\right)^{-1/2} = 1 + \frac{1}{2} \cdot \frac{y^2}{x^2} \implies k=2$

5

NUMERICAL VALUE BASED

Q.19 [10]

$$T_6 = {}^{8}C_5 \left(\frac{1}{x^{8/3}}\right)^3 (x^2 \log_{10} x)^5 = 5600 \implies \frac{1}{x^8} x^{10} (\log_{10} x)^5 = 100 \implies x = 10$$

Q.20 [50]
Co-efficient of
$$x^{50}$$

 $S = (1+x)^{1000} + 2x(1+x)^{999} + 3x^2(1+x)^{998} + \dots + 1001x^{1000}$
....(i)
 $\frac{xS}{1+x} = x(1+x)^{999} + 2x^2(1+x)^{998} \dots + 1000x^{1000} + \frac{1001x^{1001}}{(1+x)} \dots$ (ii)

$$\frac{S}{1+x} = (1+x)^{1000} + x(1+x)^{999} + \dots + x^{1000} - \frac{1001 x^{1001}}{1+x}$$

$$\Rightarrow \frac{S}{1+x} = (1+x)^{1000} \left[\frac{1 - \left(\frac{x}{1+x}\right)^{1001}}{1 - \frac{x}{1+x}} \right] - \frac{1001 x^{1001}}{(1+x)}$$

$$\Rightarrow S = (1+x)^{1002} - x^{1001}(1+x) - 1001 x^{1001}$$

Co-efficient of $x^{50} = {}^{1002}c_{50}$

Г

٦

For T₉ to be the numerically greatest term,
$$r = \left[\frac{n+1}{1+\left|\frac{x}{a}\right|}\right] =$$

$$\left\lfloor \frac{n+1}{1+\left|\frac{1}{2}\right|} \right\rfloor = 8 \Longrightarrow 8 < \frac{2(n+1)}{3} < 9 \Longrightarrow 11 < n < 12.5 \Longrightarrow n = 12$$

Q.22 [2]
$${}^{39}C_{3r-1} - {}^{39}C_{r^2} = {}^{39}C_{r^2-1} - {}^{39}C_{3r}$$

 $r^2 = 3r$ or $r = 0, 3$

Q.23 [0001]

$$2^{60} = (1+7)^{20}$$

 $= {}^{20}C_0 + {}^{20}C_1 \cdot 7 + {}^{20}C_2 \cdot 7^2 + \dots + {}^{20}C_{20} \cdot 7^{20}$
 \therefore The remainder $= {}^{20}C_0 = 1$.
Q.24 [0001]
 $3^{400} = (3^4)^{100} = (81)^{100} = (1+80)^{100}$

$$= 1 + {}^{100} C_1(80) + {}^{100} C_2(80)^2 + ... + {}^{100} C_{100}(80)^{100}$$

= 1 + 8000 + (Last digit in each term is 0)
∴ Last digit = 1.

Since , n is even therefore $\left(\frac{n}{2}+1\right)$ th term is the middle terms

$$\therefore \quad T_{\frac{n}{2}+1} = {}^{n} C_{n/2} \left(x^{2}\right)^{n/2} \left(\frac{1}{x}\right)^{n/2} = 924x^{6}$$
$$\Rightarrow x^{n/2} = x^{6} \Rightarrow n = 12$$

Q.26 [0007] The general term $= {}^{9} C_{r} \left(\frac{3x^{2}}{2}\right)^{9-r} \left(\frac{-1}{3x}\right)^{r} = (-1)^{r} {}^{9} C_{r} \frac{3^{9-2r}}{2^{9-r}} \cdot x^{18-3r}$

The term independent of x, (or the constant term) corresponds to x^{18-3r} being $x^{0}or18-3r=0 \Rightarrow r=6$

Q.27 [0015]

$$\begin{split} S &= \sum_{i=0}^{m} {}^{10}C_i \;\; {}^{20}C_{m-i} \\ (1+x)^{10} &= {}^{10}C_0 + {}^{10}C_1x + ... + {}^{10}C_{10} \; x^{10}...(1) \\ (1+x)^{20} &= {}^{20}C_0 + {}^{20}C_1x + ... \; {}^{20}C_{20} x^{20}...(2) \\ \therefore \;\; S \; represents \; coefficient \; of \; x^m \; in \; (1) \times (2) \\ \; Coefficient \; x^m \; in \; (1+x)^{30} &= {}^{30}C_m \\ \therefore \;\; For \; this \; to \; be\; maximum \; m = 15 \end{split}$$

Q.28 [0006]

General term :
$${}^{55}C_r(y^{1/3})^{55-r} \cdot \left(x^{\frac{1}{10}}\right)^r$$

 $: {}^{55}C_r \cdot y^{\frac{55-r}{3}} \cdot x^{\frac{r}{10}}.$

Terms free from radical sign, wehn

r=0, $\frac{55-0}{3} = \frac{55}{3}$ (Not possible) r=10, $\frac{55-10}{3} = 15$ r=20, $\frac{55-20}{3} = \frac{35}{3}$ (Not possible) r=40, $\frac{55-40}{3} = 5$ r=50, $\frac{55-50}{3} = \frac{5}{3}$ (Not possible)

Terms free from radical sign = 2.

EXERCISE-IV

JEE-Main PREVIOUS YEAR'S

Q.1

(Bonus) Number of terms = ${}^{n+3-1}C_{3-1} = 28 \implies n = 6$ Sum of coefficients = $(1-2+4)^6 = 729$

Q.2 (1)
$$({}^{21}C_1 + {}^{21}C_2 \dots + {}^{21}C_{10}) - ({}^{10}C_1 + {}^{10}C_2 \dots {}^{10}C_{10})$$

$$= \frac{1}{2} \left[({}^{21}C_1 + \dots + {}^{21}C_{10}) + ({}^{21}C_{11} + \dots {}^{21}C_{20}) \right]$$
$$- (2^{10} - 1)$$
$$= \frac{1}{2} \left[2^{21} - 2 \right] - (2^{10} - 1)$$
$$= (2^{20} - 1) - (2^{10} - 1) = 2^{20} - 2^{10}$$

Q.3

Q.4

(3)

using $(x + a)^{5} + (x - a)^{5}$ $=2[{}^{5}C_{0}x^{5} + {}^{5}C_{2}x^{3} \cdot a^{2} + {}^{5}C_{4}x \cdot a^{4}]$

 $\left(x + \sqrt{x^3 - 1}^5 + (x) - \sqrt{x^3 - 1}^5\right)$ $=2[{}^{5}C_{0}x^{5} + {}^{5}C_{2}x^{3}(x^{3} - 1) + {}^{5}C_{4}x(x^{3} - 1)^{2}]$ $\Rightarrow 2[x^{5} + 10x^{6} - 10x^{3} + 5x^{7} - 10x^{4} + 5x]$ considering odd degree terms, $2[x^5+5x^7-10x^3+5x]$ \therefore sum of coefficients of odd terms is 2 (2)

$$\frac{2^{403}}{15} = \frac{2^3 \cdot 2^{400}}{15} = \frac{8 \cdot (1+15)^{100}}{15}$$
$$= \frac{8 \binom{100}{C_0} C_0 + \frac{100}{C_1} C_1 (15) + \frac{100}{C_2} C_2 (15)^2 + \dots}{15}$$
$$\frac{8}{15} + 8 \binom{100}{C_1} C_1 (15) + \frac{100}{C_2} C_2 (15)^2 + \dots$$

Remainder is 8.

(2) $(1-t^6)^3 (1-t)^{-3}$ $(1-t^{18}-3t^6+3t^{12})(1-t)^{-3}$ \Rightarrow coefficient of t⁴ in $(1 - t)^{-3}$ is ${}^{3+4-1}C_4 = {}^{6}C_2 = 15$

Q.6 (4)

Q.5

$$\sum_{i=1}^{20} \left(\frac{{}^{20}C_{i-1}}{{}^{20}C_{i} + {}^{20}C_{i-1}} \right)^{3}$$

Now $\frac{{}^{20}C_{i-1}}{{}^{20}C_{i} + {}^{20}C_{i-1}} = \frac{{}^{20}C_{i-1}}{{}^{21}C_{1}} \frac{I}{21}$

Let given sum be S, so

$$S = \sum_{i=1}^{20} \frac{(i)^3}{21^3} = \frac{1}{(21)^3} \left(\frac{20.21}{2}\right)^2 = \frac{100}{21}$$

Given S = $\frac{k}{21} \Rightarrow k = 100$

Q.7 (1)

> In the expansion of $(1 + x^{\log_2 x})^5$ third term say $T_3 = {}^{5}C_2 (x^{\log_2 x})^2 = 2560$ $\Rightarrow \left(x^{\log_2 x}\right)^2 = 256$ taking logarithm to the base 2 on both sides $\Rightarrow 2(\log_2 x)^2 = 8 \Rightarrow (\log_2 x) = \pm 2$ \Rightarrow x = 4, $\frac{1}{4}$ Here $x = \frac{1}{4}$ (1)

Q.8

$$x^2 \left(\sqrt{x} + \frac{\lambda}{x^2}\right)^{10}$$

Consider constant term

$${}^{10}C_{r}\left(\sqrt{x}\right)^{10-r}\left(\frac{\lambda}{x^{2}}\right)^{r}$$
$$\frac{10-r}{2}-2r=0$$
$$10-5r=0$$
$$r=2$$
$$\Rightarrow {}^{10}C_{2} \times \lambda^{2} = 720 \Rightarrow \lambda = 4$$

Q.9

(4)

=

$$\sum_{r=0}^{25} \frac{|50|}{|r|50-r|} \times \frac{|50-r|}{|25-r|25|}$$
$$= \sum_{r=0}^{25} \frac{|50|}{|r|25-r|25|}$$

$$= \frac{|50|}{|25|} \sum_{r=0}^{25} \frac{1}{|r| |25 - r|}$$
$$= \frac{50}{|25| |25|} \sum_{r=0}^{25} \sum_{r=0}^{25} C_r = {}^{50} C_{25} (2^{25}).$$

Q.10 (4)

$$\sum_{r=1}^{101} {}^{101}C_r S_{r-1}$$
$$= \sum_{r=1}^{101} {}^{101}C_r \frac{q^r - 1}{q - 1}$$

$$= \frac{1}{q-1} \Biggl(\sum_{r=1}^{101} {}^{101}C_r q^r - \sum_{r=1}^{101} {}^{101}C_r \Biggr]$$

$$= \frac{1}{q-1} ((1+q)^{101} - 1 - 2^{101} + 1)$$

$$= \frac{\alpha}{2^{100}} \Biggl(\frac{(1+q)^{101} - 2^{101}}{q-1} \Biggr)$$

$$\Rightarrow \alpha = 2^{100}$$
(3)
(10+x)^{50} + (10-x)^{50}
$$a_0 = (10^{50}) (2)$$

$$a_2 = {}^{50}C_2 (10)^{48} (2)$$

$$\frac{a_2}{a_0} = \frac{{}^{50}C_2(10)^{48}(2)}{10^{52}(2)} = 12.25$$

Q.12 (2) ${}^{20}C_r \cdot {}^{20}C_0 + {}^{20}C_{r-1} \cdot {}^{20}C_1 + \dots + {}^{20}C_0 \cdot {}^{20}C_r =$ Selecting r student from 20 boys and 20 girls = ${}^{40}C_r$ ${}^{40}C_r$ will be maximum if r = 20.

Q.13 (1) 5^{th} term will be the middle term.

$$t_{4+1} = {}^{8}C_{4} \left(\frac{x^{3}}{3}\right)^{4} \left(\frac{3}{x}\right)^{4} = 5670$$
$$= {}^{8}C_{4} \cdot x^{8} = 5670$$
$$= \frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2} x^{8} = 5670$$
$$= x^{8} = \frac{567}{7} = 81 = x^{8} - 81 = 0$$

 \Rightarrow Real value of $x=\pm\sqrt{3}$

Q.14 (3)

Q.11

$$\frac{5^{\text{th}} \text{ term from begining}}{5^{\text{th}} \text{ term from end}} = \frac{{}^{10}\text{C}_4 \left(\frac{1}{2(3^{1/3})}\right)^4 2^{6/3}}{{}^{10}\text{C}_4(2)^{4/3} \left(\frac{1}{2(3^{1/3})}\right)^6}$$
$$= \frac{2^2 2^{-2} 3^{-4/3}}{2^4 2^{(4/3)-6} 3^{-2}} = 3^{2/3} \cdot 2^{8/3} = 4 \cdot (36)^{1/3}$$

Q.15 (4)

General term $T_{r+1} = {}^{60}C_r, 7^{\frac{60-r}{5}}3^{\frac{r}{10}}$ ∴ for rational term, r = 0, 10, 20, 30, 40, 50, 60⇒ number of rational terms = 7 ∴ number of irrational terms = 54

2.
$${}^{n}C_{5} = {}^{n}C_{4} + {}^{n}C_{6}$$

2. $\frac{|\underline{n}|}{|\underline{5}|\underline{n}-\underline{5}|} = \frac{|\underline{n}|}{|\underline{4}|\underline{n}-\underline{4}|} + \frac{|\underline{n}|}{|\underline{6}|\underline{n}-\underline{6}|}$
 $\frac{2}{|\underline{1}|} = \frac{1}{|\underline{1}|} + \frac{1}{|\underline{1}|}$

$$\frac{1}{5} \cdot \frac{1}{n-5} = \frac{1}{(n-4)(n-5)} + \frac{1}{30}$$

n = 14 satisfying equation

Q.17 (2)

$$2 \cdot {}^{20}C_{0} + 5 \cdot {}^{20}C_{1} + 8 \cdot {}^{20}C_{2} + 11 \cdot {}^{20}C_{3} + \dots + 62 \cdot {}^{20}C_{20}$$

$$= \sum_{r=0}^{20} (3r+2) \cdot {}^{20}C_{r}$$

$$= 3\sum_{r=0}^{20} r \cdot {}^{20}C_{r} + 2\sum_{r=0}^{20} \cdot {}^{20}C_{r}$$

$$= 3\sum_{r=0}^{20} r \left(\frac{20}{r}\right) \cdot {}^{19}C_{r-1} + 2 \cdot 2^{20} = 60 \cdot 2^{19} + 2 \cdot 2^{20} = 2^{25}$$

Q.18 (4)

$$\left(x + \sqrt{x^3 - 1} \right)^6 + \left(x - \sqrt{x^3 - 1} \right)^6$$

= 2[⁶C₀x⁶ + ⁶C₂x⁴ (x³ - 1) + ⁶C₄x² (x³ - 1)² + ⁶C₆(x³ - 1)³]
= 2[⁶C₀x⁶ + ⁶C₂x⁷ - ⁶C₂x⁴ + ⁶C₄x⁸ + ⁶C₄x² - 2⁶C₄x⁵ + (x⁹ - 1)
- 3x⁶ + 3x³]

 $\Rightarrow \text{ Sum of coefficient of even powers of x} = 2[1-15+15+15-1-3] = 24$

Q.19 (Bonous)

$$200 = {}^{6}C_{3} \left(x^{\frac{1}{1 + \log_{10} x}} \right)^{\frac{3}{2}} \times x^{\frac{1}{4}}$$
$$\Rightarrow 10 = x^{\frac{3}{2(1 + \log_{10} x)} + \frac{1}{4}}$$
$$\Rightarrow 1 = \left(\frac{3}{2(1 + t)} + \frac{1}{4} \right) t$$

where
$$t = \log_{10} x$$

 $\Rightarrow t^2 + 3t - 4 = 0$
 $\Rightarrow t = 1, -4$
 $\Rightarrow x = 10, 10^{-4}$
 $\Rightarrow x = 10(As x > 1)$

Q.20 (2)

$$T_{4} = T_{3+1} = {\binom{6}{3}} {\binom{2}{x}}^{3} \cdot {\left(x^{\log_{8} x}\right)}^{3}$$

$$20 \times 8^{7} = \frac{160}{x^{3}} \cdot x^{3\log_{8} x}$$

$$8^{6} = x^{\log_{2} x} - 3$$

$$2^{18} = x^{\log_{2} x - 3}$$

$$\Rightarrow 18 = (\log_{2} x - 3) (\log_{2} x)$$
Let $\log_{2} x = t$

$$\Rightarrow t^{2} - 3t - 18 = 0$$

$$\Rightarrow (t - 6)(t + 3) = 0$$

$$\Rightarrow t = 6, -3$$

$$\log_{2} x = 6 \Rightarrow x = 2^{6} = 8^{2}$$

$$\log_{2} x = -3 \Rightarrow x = 2^{-3} = 8^{-1}$$

Q.21 (4)

$$\frac{{}^{n}C_{r-1}}{{}^{n}C_{r}} = \frac{2}{15} \implies \frac{\frac{n!}{(r-1)!(n-r+1)!}}{\frac{n!}{r!(n-r)!}} = \frac{2}{15}$$

$$\frac{\frac{r}{n-r+1}}{\frac{n!}{r!(n-r)!}} = \frac{2}{15}$$

$$\frac{\frac{r}{n-r+1}}{\frac{n!}{r!(n-r)!}} = \frac{3}{14} \implies \frac{r+1}{n-r} = \frac{3}{14}$$

$$\frac{\frac{n!}{r!(n-r-1)!}}{\frac{n!}{(r+1)!(n-r-1)!}} = \frac{3}{14} \implies \frac{r+1}{n-r} = \frac{3}{14}$$

$$\frac{14r+14=3n-3r}{3n-17r=14}$$

$$\frac{2n-17r=-2}{n=16}$$

$$17r=34, r=2$$

$${}^{16}C_{1}, {}^{16}C_{2}, {}^{16}C_{3}$$

$$\frac{{}^{16}C_1 + {}^{16}C_2 + {}^{16}C_3}{3} = \frac{16 + 120 + 560}{3}$$
$$\frac{680 + 16}{3} = \frac{696}{3} = 232$$

Q.22 (2)

$$T_r = \sum_{r=0}^{n} {}^nC_r x^{2n-2r} x^{-3r}$$

2n-5r=1 \Rightarrow 2n=5r+1
for r=15.n=38
smallest value of n is 38.

Q.23 (1)

Coefficient of $x^2 = {}^{15}C_2 \times 9 - 3a({}^{15}C_1) + b = 0$ $\Rightarrow -45a + b + {}^{15}C_2 + 9 = 0$ (i) Also, $-27 \times {}^{15}C_3 + 9a \times {}^{15}C_2 - 3b \times {}^{15}C_1 = 0$ $\Rightarrow 9 \times {}^{15}C_2a - 45b - 27 \times {}^{15}C_3 = 0$ $\Rightarrow 21a - b - 273 = 0$ (ii) (i) + (ii) -24a + 672 = 0 $\Rightarrow a = 28$ So, b = 315

Q.24 (2)

$$(1+x)(1-x)^{10}(1+x+x^2)^9$$

 $(1-x^2)(1-x^3)^9$
 ${}^9C_6 = 84$

Q.25 (4)

$$\frac{1}{60} \left(2x^2 - \frac{3}{x^2}\right)^6 - \frac{1}{81} \cdot x^8 \left(2x^2 - \frac{3}{x^2}\right)^6$$

its general term

$$\frac{1}{60}\,{}^{6}\mathrm{C_{r}}\,2^{6-r}\left(-3\right)^{r}\,x^{12-4r}-\frac{1}{81}\,{}^{6}\mathrm{C_{r}}\,2^{6-r}\left(-3\right)^{r}12^{20-4r}$$

for term independent of x, r for Ist expression is 3 and r for second expression is 5 \therefore term independent of x = -36

Q.26 [30]

Let $(1-x+x^2....)(1+x+x^2+...)=a_0+a_1x+a_2x^2$ +..... Put x = 1 $1(2n+1)=a_0+a_1+a_2+...+a_{2n}$(1)

Put x = -1
(2n + 1) 1 =
$$a_0 - a_1 + a_2 + \dots + a_{2n}$$
(2)
From (1) + (2),
 $4n + 2 = 2(a_0 + a_2 + \dots) = 2 \times 61$
 $\Rightarrow 2n + 1 = 61 \Rightarrow n = 30.$

Q.27 (3)

(3)

$$\frac{{}^{36}C_{r+1}}{{}^{35}C_{r}} = \frac{6}{k^{3}-3}$$

$$k^{2}-3 = \frac{r+1}{6} \implies k^{2}=3+\frac{r+1}{6}$$
r can be 5, 35
for r=5, k=\pm2
r=35, k=\pm3
Hence number of order pair = 4

Q.28 (2)

$$\frac{(1+x)^{10} \left[1 - \left(\frac{x}{1+x}\right)^{11}\right]}{\left(1 - \frac{x}{1+x}\right)}$$
$$\frac{(1+x)^{10} \left[(1+x)^{11} - x^{11}\right]}{(1+x)^{11} \times \frac{1}{(1+x)}} = (1+x)^{11} - x^{11}$$
Coefficient of x⁷ is ¹¹C₇ = ¹¹C₄ = 330

Q.29 (3)

We know ⁿC₁ is max at middle term

$$a = {}^{19}C_p = {}^{19}C_{10} = {}^{19}C_9$$

 $b = {}^{20}C_q = {}^{20}C_{10}$
 $c = {}^{21}C_6 = {}^{21}C_{10} = {}^{21}C_{11}$
 $\frac{a}{}^{19}C_9 = \frac{b}{\frac{20}{10} \cdot {}^{19}C_9} = \frac{c}{\frac{21}{11} \cdot \frac{20}{10} \cdot {}^{19}C_9}$
 $\frac{a}{1} = \frac{b}{2} = \frac{c}{\frac{42}{11}}$
 $\frac{a}{11} = \frac{b}{22} = \frac{c}{42}$.

Q.30

[615]
General term =
$$\frac{10!}{\alpha!\beta!\gamma!} x^{\beta+2\gamma}$$

for coefficient of $x^4 \Rightarrow \beta + 2\gamma = 4$
 $\gamma = 0, \beta = 4, \alpha = 6 \Rightarrow \frac{10!}{6!4!0!} = 210$

$$\gamma = 1, \beta = 2, \alpha = 7 \implies \frac{10!}{7!2!1!} = 360$$
$$\gamma = 2, \beta = 0, \alpha = 8 \implies \frac{10!}{8!0!2!} = 45$$
$$Total = 615$$

Q.31 (4)

$$T_{r+1} = {}^{16}C_r \left(\frac{x}{\cos\theta}\right)^{16-r} \left(\frac{1}{x\sin\theta}\right)^r$$

for r = 8 term is free from 'x'
$$T_9 = {}^{16}C_8 \frac{1}{\sin^8\theta\cos^8\theta}$$

$$T_9 = {}^{16}C_8 \frac{2^8}{(\sin2\theta)^8}$$

in $\theta \in \left[\frac{\pi}{8}, \frac{\pi}{4}\right], L_1 = {}^{16}C_8 2^8 \because \{\text{Min value of } L_1 \text{ at } \theta = \pi/4\}$
In $\theta \in \left[\frac{\pi}{16}, \frac{\pi}{8}\right], L_2 = {}^{16}C_8 \frac{2^8}{\left(\frac{1}{\sqrt{2}}\right)^8} = {}^{16}C_8 2^8 . 2^8 . 2^4 \{\because \text{ min value of } L_2 \text{ at } \theta = \pi/8]$
value of L_2 at $\theta = \pi/8$]

$$\frac{L_2}{L_1} = \frac{{}^{10}C_8 \cdot 2^\circ 2^4}{{}^{16}C_8 \cdot 2^8} = 16$$

2 [51]

$$\sum_{r=0}^{25} (4r+1)^{25} C_r = 4 \sum_{r=0}^{25} r^{25} C_r + \sum_{r=0}^{25} c_r^{25} C_r$$

$$= 4 \sum_{r=1}^{25} r \times \frac{25}{r} {}^{24} C_{r-1} + 2^{25} = 100 \sum_{r=1}^{25} {}^{24} C_{r-1} + 2^{25}$$

$$= 100 .2^{24} + 2^{25} = 2^{25} (50+1) = 51.2^{25}$$
So k = 51

Q.33 [118]
ⁿC_{r-1}:ⁿC_r:ⁿC_{r+1}: 2:5:12

$$\Rightarrow \frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{5}{2} \text{ and } \frac{{}^{n}C_{r+1}}{{}^{n}C_{r}} = \frac{12}{5}$$

$$\Rightarrow \frac{n-r+1}{r} = \frac{5}{2} \text{ and } \frac{n-r}{r+1} = \frac{12}{5}$$

$$\Rightarrow 2n-7r+2=0 \text{ and } 5n-17r-12=0$$
Solving; x = 118, r = 34

Q.34 (3)

General term of

$$(\alpha x^{1/9} + \beta x^{1/6})^{10} = {}^{10}C_r (\alpha x^{1/9})^{10-r} (\beta x^{-1/6})^r$$

For term independent of 'x' r = 4

 \therefore Term independent of $x = {}^{10}C_r \alpha^6 \beta^4$

Also $\alpha^3 + \beta^2 = 4$

By AM - GM inequality

$$\frac{\alpha^{3} + \beta^{2}}{2} \ge \left(\alpha^{3}\beta^{2}\right)^{1/2}$$
$$\Rightarrow (2)^{2} \ge \alpha^{3}\beta^{2} \qquad \Rightarrow \alpha^{6}\beta^{4} \le 16$$
$$\therefore 10k^{-10}C_{4} \cdot 16 \qquad \Rightarrow k = 336$$

Q.35 (4)

General term =
$$T_{r+1} = {}^{9}C_{r} \left(\frac{3}{2}x^{2}\right)^{9-r} \left(-\frac{1}{3x}\right)^{r}$$

$$= {}^{9}C_{r}(-1)^{r}. \frac{3^{9-2r}}{2^{9-r}} x^{18-3r}$$

If term is independent of x then r = 6.

$$∴ k = {}^{9}C_{6} \cdot \frac{3^{-3}}{2^{3}} = \frac{7}{18}$$

∴ 18 K = 7

Q.36 (3)

$$(3^{1/2} + 5^{1/8})^n$$

Let $T_{r+1} = {}^nC_r (3)^{\frac{n-r}{2}} (5)^{\frac{r}{8}}$

So, r must be 0, 8, 16, 24 Now $n = t_{33} = 0 + 32 \times 8 = 256$ $\Rightarrow n = 256$

Q.37 (2)

Q.38 (2)

Consider the three consecutive coefficients as ${}^{n+5}C_{r}$, ${}^{n+5}C_{r+1}$, ${}^{n+5}C_{r+2}$

$$\therefore \frac{n+5}{n+5} \frac{C_r}{C_{r+1}} = \frac{1}{2}$$

$$\Rightarrow \frac{r+1}{n+5-r} = \frac{1}{2} \Rightarrow 3r = n+3 \qquad \dots (i)$$
and
$$\frac{n+5}{n+5} \frac{C_{r+1}}{C_{r+2}} = \frac{5}{7}$$

$$\Rightarrow \frac{r+2}{n+4-r} = \frac{5}{7} \Rightarrow 12r = 5n+6 \qquad \dots (ii)$$

From (i) and (ii) n = 6Largest coefficient in the expansion is ${}^{11}C_6 = 462$

Q.39 (1)

Q.40 (120)

$$(1+x+x^2+x^3)^6 = \left(\frac{1-x^4}{1-x}\right)^6$$

Coefficient of x4 in
$$\left(\frac{1-x^4}{1-x}\right)^6$$
 = coefficient of x⁴

in $(1-6x^4)(1-x)^{-6}$ = cowefficient of x^4 in $(1-6x^4)[1+{}^6C_1x+{}^7C_2x^2+....]$ = ${}^9C_4-6.1=126-6=120$

Q.41 [13]

$$T_{r+1} = {}^{22}C_r \cdot (x^m)^{22-r} \cdot \left(\frac{1}{x^2}\right)^r$$

$$T_{r+1} = {}^{22}C_r \cdot x^{22m-mr-2r}$$

$$\therefore 22m - mr - 2r = 1 \text{ and } {}^{22}C_r = 1540$$

$$\therefore {}^{22}C_3 = 1540 \Longrightarrow r = 3 \text{ or } 19$$

Now, for r = 3; 22m - 3m - 6 = 1

$$\Rightarrow 19m = 7 \Rightarrow m = \frac{7}{19} \text{ (not acceptable)}$$

for r = 19; 22m - 19m = 39
$$\Rightarrow m = 13$$

Q.42 (2)

General term =
$$T_{r+1} = {}^{10}C_r \left(\sqrt{x}\right)^{10-r} \cdot \left(-\frac{k}{x^2}\right)^r$$

= ${}^{10}C_r (-k)^r \cdot \frac{10-r}{x^{-2}} = 2r$
= ${}^{10}C_r (-k)^r \cdot \frac{10-5r}{x^{-2}}$
If it is constant term then $r = 2$
 $\therefore {}^{10}C_2 (-k)^r = 405$
 $\Rightarrow k^2 = \frac{405 \times 2}{10 \times 9} = \frac{81}{9} = 9$
 $|k| = 3$

JEE-ADVANCED PREVIOUS YEAR'S

Q.1 (D)

$$B_{10} \sum_{r=1}^{10} A_r B_r - C_{10} \sum_{r=1}^{10} (A_r)^2 = {}^{20}B_{10} ({}^{30}C_{20} - 1) - {}^{30}C_{10}$$
$$({}^{20}C_{10} - 1) = {}^{30}C_{10} - {}^{20}C_{10} = C_{10} - B_{10}$$

Q.2 [6]

Q.1
$$rac{1}{n+5}C_{r-1} : {n+5}C_r : {n+5}C_{r+1} = 5 : 10 : 14$$

$$\Rightarrow \frac{n+5}{n+5}C_{r-1} = \frac{10}{5} \qquad \& \frac{n+5}{n+5}C_r = \frac{14}{10}$$

$$\Rightarrow \frac{(n+5)-r+1}{r} = 2 \qquad \& \frac{(n+5)-(r+1)+1}{r+1} =$$

$$\Rightarrow \frac{n+6}{r} = 3 \qquad \& \frac{n+6}{r+1} = \frac{12}{5}$$

$$\Rightarrow 3r = \frac{12}{5} (r+1) \qquad \Rightarrow r = 4$$

$$\therefore n+6 = 12 \qquad \Rightarrow n = 6$$
Q.3 (C)

Coefficent of x¹¹

$$=\frac{(1+x^2)^4(1+x^3)^7(1+x^4)^{12}(1-x^2)^4}{(1-x^2)^4}$$

Coefficient of $x^{11} \equiv (1-x^8)^4 (1+x^4)^8 (1+x^3)^7 (1-x^2)^{-4}$

 $= (1 - 4x^{8}) (1 + x^{4})^{8} (7x^{3} + 35x^{9}) (1 - x^{2})^{-4}$ $= (7x^{3} + 35x^{9} - 28x^{11}) (1 + x^{4})^{8} (1 - x^{2})^{-4}$ Coefficent of $x^{8} = (7x + 35x^{6} - 28x^{8}) (1 + 8x^{4} + 28x^{8}) (1 - x^{2})^{-4}$ $= (7 + 35x^{6} - 28x^{8} + 56x^{4} + 196x^{8}) (1 - x^{2})^{-4}$ Coefficent of $t^{4} = (7 + 56t^{2} + 35t^{3} + 168t^{4}) (1 - t)^{-4}$ $= 7 \cdot {}^{7}C_{3} + 56 \cdot {}^{5}C_{3} + 35 \cdot {}^{4}C_{3} + 168$ = 245 + 700 + 168 = 1113.<u>Alterantive :</u>

2x + 3y + 4z = 11 $(x, y, z) = (0, 1, 2) {}^{4}C_{0} \times {}^{7}C_{1} \times {}^{12}C_{2}$ $(1, 3, 0) {}^{4}C_{1} \times {}^{7}C_{3}$ $(2, 1, 1) {}^{4}C_{2} \times {}^{7}C_{1} \times {}^{12}C_{1}$ $(4, 1, 0) {}^{7}C_{1}$ coefficient of x¹¹ = 66 × 7 + 35 × 4 + 42 × 12 + 7 = 1113. Ans.
[8]

Q.4 [

9 = (0, 9) (1, 8), (2, 7), (3, 6), (4, 5) # 5 cases 9 = (1,2,6), (1,3,5), (2, 3, 4) # 3 cases total = 8

Q.5 [5]

coefficient of x^2 in $(1+x)^2 + (1+x)^3 + ... + (1+x)^{49} + (1+mx)^{50}$ = $(3n+1)^{51}C_3$ \Rightarrow coefficient of x^2 in

$$\frac{\left(1+x\right)^{2}\left(\left(1+x\right)^{48}-1\right)}{1+x-1} + \left(1+mx\right)^{50} = (3n+1)^{51}C_{3}$$

$$\Rightarrow {}^{50}C_{3} + {}^{50}C_{2} \times m^{2} = = (3n+1)^{51}C_{3}$$

$$\Rightarrow 16 + m^{2} = (3n+1) 17$$

$$\Rightarrow n = 5$$

Q.6 [646]

 $\frac{7}{5}$

$$X = \sum_{r=0}^{n} r.({}^{n}C_{r})^{2}; n = 10$$
$$X = n.\sum_{r=0}^{n} {}^{n}C_{r}.{}^{n-1}C_{r-1}$$
$$X = n.\sum_{r=1}^{n} {}^{n}C_{n-r}.{}^{n-1}C_{r-1}$$

$$X = n.^{2n-1}C_{n-1}; n = 10$$
$$X = 10.^{19}C_{9}$$
$$\frac{X}{1430} = \frac{1}{143}.^{19}C_{9}$$
$$= 646$$

Q.7

Suppose

[6.20]

$$\frac{n(n+1)}{2} \quad n(n-1) \cdot 2^{n-2} + n \cdot 2^{n-1} \\ n \cdot 2^{n-1} \qquad 4^n = 0$$

$$\frac{n(n+1)}{2} \cdot 4^{n} - n^{2}(n-1) \cdot 2^{2n-3} - n^{2} \cdot 2^{2n-2} = 0$$

$$\frac{n(n+1)}{2} - \frac{n^{2}(n-1)}{8} - \frac{n^{2}}{4} = 0$$

$$n^{2} - 3n - 4 = 0$$

$$n = 4$$
Now
$$\sum_{k=0}^{4} \frac{{}^{4}C_{k}}{k+1} = \sum_{k=0}^{4} \frac{k+1}{5} \cdot {}^{5}C_{k=1} \frac{1}{k+1}$$

$$= \frac{1}{5} \cdot [{}^{5}C_{1} + {}^{5}C_{2} + {}^{5}C_{3} + {}^{5}C_{4} + {}^{5}C_{5}] = \frac{1}{5} [2^{5} - 1]$$

$$= \frac{31}{5} = 6.20$$

$$\begin{aligned} &(A,B,D) \\ &Solving \\ &f(m,n,p) = \sum_{i=0}^{p} {}^{m}C_{i} {}^{n+i}C_{p} {}^{p+n}C_{p-i} \\ &{}^{m}C_{i} {}^{n+i}C_{p} {}^{p+n}C_{p-i} \\ &{}^{m}C_{i} {}^{n} {}^{(n+i)!}_{p!(n-p+i)!} \times \frac{(n+p)!}{(p-i)!(n+i)!} \\ &{}^{m}C_{i} \times \frac{(n+p)!}{p!} \times \frac{1}{(n-p+i)!(p-i)!} \\ &{}^{m}C_{i} \times \frac{(n+p)!}{p!n!} \times \frac{n!}{(n-p+i)!(p-i)!} \\ &{}^{m}C_{i} \times \frac{(n+p)!}{p!n!} \times \frac{m!}{(n-p+i)!(p-i)!} \\ &{}^{m}C_{i} {}^{n+p}C_{p} {}^{n}C_{p-i} {}^{m+n}C_{p} \\ &{}^{f}(m,n,p) = {}^{n+p}C_{p} {}^{m+n}C_{p} \\ &{}^{f}(m,n,p) = {}^{m+n}C_{p} \\ &{}^{f}(m,n) = \sum_{p=0}^{m+n} C_{p} \\ &{}^{g}(m,n) = \sum_{p=0}^{m+n} C_{p} \\ &{}^{g}(m,n) = \sum_{p=0}^{m+n} C_{p} \\ &{}^{g}(m,n) = 2^{m+n} \\ &{}^{(A)}g(m,n) = q(n,m) \\ &{}^{(B)}g(m,n+1) = 2^{m+n+1} \\ &{}^{g}(m+n,n) = 2^{m+1+n} \\ &{}^{(D)}g(2m,2n) = 2^{2m+2n} \\ &{}^{=}(g(m,n))^{2} \end{aligned}$$

Q.8