INORGANIC CHEMISTRY

Topic : Chemical Bonding

DPP No. 20

Total Marks : 27

Max. Time : 29 min.

торіс	. Chemical Donuing							
Type Single Multip Subje	M.M., Min. [15, 15] [4, 4] [8, 10]							
1.	Which of the following pairs of species would you expect to have largest difference in spin magnetic moment:							
	(A) O ₂ , O ₂ ⁺	(B) O ₂ ,O ₂ ²⁻	(C) O ₂ ⁺ , O ₂ ²⁻	(D) O ₂ ⁻ , O ₂ ⁺				
2.	According to Molecula (A) $\pi 2p_x = \pi 2p_y$	ar orbital theory, HOMO ir (Β) π* 2p _x = π	n O ₂ - is : *2p _y (C) σ	2p _z (D) σ	* 2p _z			
3.	Order of stability of N ₂ , N ₂ ⁺ and N ₂ ⁻ is :							
		(B) $N_2^+ > N_2 > N_2^-$	(C) N ₂ ⁻ > N ₂ >	N_2^+ (D) $N_2^- = N_2^+$	> N ₂			
4.	The bond order in NO is 2.5 while that in NO⁺ is 3. Which of the following statements is true for these two species :							
	.,	arison is unpredictable.	.,	h in NO is greater than i				
	(C) Bond length in NC)+ is equal to that in NO.	(D) Bond lengt	h in NO⁺ is greater than	IN NO.			
5.	According to Molecula bond order of O_2^+ is c	ar orbital theory, which of correct:	the following stat	ement about the magne	etic character and			

- (A) Paramagnetic and bond order less than that of O_2
- (B) Paramagnetic and bond order greater than that of O_2 .
- (C) Diamagnetic and bond order less than that of O_2
- (D) Diamagnetic and bond order greater than that of O_2 .
- 6.* Which of the following is/are correct :
 - (A) Carbon-carbon bond length in CaC_2 will be more than in CH_2CCH_2
 - (B) O–O bond length in KO_2 will be more than in Na_2O_2 .
 - (C) O–O bond length in O_2 [PtF₆] will be less than that in KO₂
 - (D) N–O bond length in NO gaseous molecule will be smaller than in NOCI gaseous molecule.
- 7. Of the following species, which has the highest bond order and shortest bond length : NO, NO⁺, NO⁺, NO⁺
- 8. Explain why NO⁺ is more stable towards dissociation than NO, whereas CO⁺ is less stable towards dissociation than CO.

Answer Key

DPP No. # 20

1.	(B)	2.	(B)	3.	(A)	4.	(B)	5.	(B)
6.*	(CD)	7.	NO ⁺ .						

NO has lost an antibonding electron to form NO⁺. So NO⁺ is more stable.
CO has lost a bonding electron to form CO⁺. So CO⁺ is less stable.

Hints & Solutions

DPP No. # 20

1. $O_2 = 2$ unpaired e⁻ $O_2^+ = 1$ unpaired e⁻ $O_2^- = 1$ unpaired e⁻ $O_2^{-2-} = 0$ unpaired e⁻

 O_2^2 and $O_2^{2^2}$ have largest difference in no. of unpaired electrons.So, they have largest difference in magnetic moment.

2.
$$O_2^{-}$$
:KK $(\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_z)^2 (\pi 2p_x^2 = \pi 2p_y^2) \underbrace{(\pi^* 2p_x^1 = \pi^* 2p_y^1)}_{HOMO}$

3. Bond order of $N_2 = 3$ Bond order of $N_2^+ = 2.5$ Bond order of $N_2^- = 2.5$ But N_2^+ consist of lesser electrons in anti bonding molecular orbital. So it is more stable than N_2^- .

as $N_2^+ = \sigma_{1s}^2 < \sigma_{1s}^{*2} < \sigma_{2s}^2 < \sigma_{2s}^{*2} < \pi_x 2p^2 = \pi_y 2p^2 < \sigma_{2p_z}^1$ $N_2^- = \sigma_{1s}^2 < \sigma_{1s}^{*2} < \sigma_{2s}^2 < \sigma_{2s}^{*2} < \pi_x 2p^2 = \pi_y 2p^2 < \sigma_{2p_z}^2 < \pi_x 2p^{*1} = \pi_y 2p^{*0}$

- 4. Greater bond order \Rightarrow Lesser bond length.
- 5. $O_2^+ = BO = 2.5 > BO_{O_2}$ 15 electron : paramagnetic.
- 6.* In CaC₂ there is C = C, while in CH₂CCH₂, there is only C = C. KO₂ = K⁺ + O₂⁻ Bond order = 1.5 Na₂O₂ = 2Na⁺ + O₂²⁻ Bond order = 1.0 O₂ (Pt F₆] = O₂⁺ + [Pt F₆]⁻ Bond order = 2.5 NO Bond order = 2.5 while in NOCI, bond order = 2.

Species	No. of electrons	Bond order	Magnetic nature	
NO	15	1/2 (10 – 5) = 2.5	Paramagnetic	
NO [*]	14	1/2 (10 - 4) = 3.0	Diamagnetic	
NO ²⁺	13	1/2 (9 – 4) = 2.5	Paramagnetic	
NO	16	1/2 (10 - 6) = 2.0	Diamagnetic	

Highest bond order \Rightarrow shortest bondlength (NO⁺).

7.

NO has lost an antibonding electron to form NO⁺. So NO⁺ is more stable.
CO has lost a bonding electron to form CO⁺. So CO⁺ is less stable.