The rms velocity of hydrogen is $\sqrt{7}$ times the rms velocity of nitrogen. If T is the temperature of the gas,

(B) 1:2:4 (C) 2: $\sqrt{2}$:1 (D) 1:2: $\sqrt{2}$

(D) $T_{(H_2)} = \sqrt{7} T_{(N_2)}$

(B) $T_{(H_2)} > T_{(N_2)}$ (C) $T_{(H_2)} < T_{(N_2)}$

The ratio of rates of diffusion of SO₂, O₂ and CH₄ under identical conditions is :

11.

12.

then:

(A) $T_{(H_2)} = T_{(N_2)}$

(A) $1: \sqrt{2}: 2$

13.	The molecular weight of a gas, which diffuse through a porous plug at 1/6th of the speed of hydrogen unde identical conditions, is :			
	(A) 12 u	(B) 72 u	(C) 36 u	(D) 24 u
14.	The rate of diffusion of two gases A and B is in the ratio of $1:4$ and that of B and C in the ratio of $1:3$ the rate of diffusion of C with respect to A is -			
	(A) $\frac{1}{12}$	(B) 12	(C) 6	(D) 4
15.	The rate of effusion of helium gas at a pressure of 1000 torr is 10 torr min-1. What will be the rate of effusion of hydrogen gas at a pressure of 2000 torr at the same temperature?			
	(A) 20 torr min-1	(B) 40 torr min-1	(C) $20 \sqrt{2}$ torr min-1	(D) 10 torr min-I
*16.	The time taken for effu	sion of 32 mL of oxyg	en gas will be the same	e as the time taken for effusion of
	which gas sample under identical conditions: (Take $\sqrt{2} = 1.4$, $\sqrt{3} = 1.7$)			
	(A) 64 mL H ₂		(C) 44.8 mL CH ₄	
17.	A bottle of dry NH ₃ & a bottle of dry HCl connected through a long tube are opened simultaneously u identical conditions at both ends. The white ammonium chloride ring first formed will be:			
	(A) at the centre of the t	ube	(B) near the HCl bottle	e
	(C) near the NH ₃ bottle		(D) throughout the length of tube	
18.	A straight glass tube has 2 inlets $X \& Y$ at the two ends of 200 cm long tube. HCl gas through inlet X and NF gas through inlet Y are allowed to enter in the tube at the same time and white fumes form at a point Y inside the tube. The distance of point Y from X is:			
	(A) 118.9 cm	(B) 81.1 cm	(C) 91.1 cm	(D) 108.9 cm
*19.	At room temperature, A_2 gas (vapour density = 40) and B_2 gas are allowed to diffuse through identical pinholes from opposite ends of a glass tube of 1m length and of uniform cross-section. The two gases first meet at a distance of 60 cm from the A_2 end. The molecular mass of B_2 gas is:			
	(A) 90 u	(B) 180 u	(C) 45 u	(D) 35.5 u
20.	A mixture containing 2 moles of He and 1 mole of CH_4 is taken in a closed container and made to effuse through a small orifice of container. Then, which is the correct effused volume percentage of He and CH initially, respectively:			
	(A) 40%, 60%	(B) 20%, 80%	(C) 80%, 20%	(D) 60%, 40%
21.	A 4.0 dm 3 flask containing N_2 at 4.0 bar was connected to a 6.0 dm 3 flask containing helium at 6.0 bar, and th gases were allowed to mix isothermally. Then the total pressure of the resulting mixture will be			
	(A) 4.8 bar	(B) 5.2 bar	(C) 5.6 bar	(D) 5.4 bar
ANSWER KEY				
RACE # 33				
1.	(D) 2. (B) 3. ((C) 4. (B) 5. (E)		8. (C) 9. (A) 10. (B)

11. (C) 12. (A) 13. (B) 14. (B) 15. (C) *16. (C) 17. (B) 18. (B) *19. (B) 20. (C)

21. (B)