

Addition compound

(two or more simple salt combining with fixed proportion of mass)

. Double salt

* Loose their idenity in aqueous solution eg. KCl.MgCl₂.6H₂O carnalite salt K₂SO₄⁻Al₂(SO₄)₃.24H₂O potash alum

CHAPTER

Co-ordination compound

 Retain their indenity in aqueous solution
 eg. K₄[Fe(CN)₆] Potassium hexacyanidoferrate (II)

REPRESENTATION OF COMPLEX COMPOUND

Co-ordination number = Number of electron pair accepted by central metal ion.

LIGAND

Chemical species which can donates electron pair.

Classification on the Basis of Denticity

(Denticity : -Number of electron pair donated by central metal atom or ion)

Monodentate (denticity = 1) :

eg. H⁻, X⁻, Py, N₂, N³⁻, N₂H₄ etc.

Bidentate (denticity = 2) :

eg. en, pn, bn, ox^{2-} , $acac^{-1}$, gly^{-1} , dmg^{-1}

Polydentate (denticity = -2):

eg. dien, imda⁻², trien, nta³⁻, EDTA⁴⁻

Ambidentate : Ligand which have more than one donor site but at the time of donation only atom can donate electron pair.

eg. : (CN^-, NC^-) , (NO_2^-, ONO^-) , (SCN^-, NCS^-) , (OCN^-, NCO^-) , $(S_2O_3^{2-}, SO_2S^{2-})$ Flexidentate ligand : Show more than one type of denticity.

eg. : $CO_3^{2^-}$, $SO_4^{2^-}$, CH_3COO^-

Bidentate and Polydentate are also called chelating ligand.

Classification on the basis of electron donating and accepting tendency Classical ligand : H₂O, NH₃ etc.

Non-classical ligand : CN⁻, NO⁺, NO, CO, PPh₃

 π – donor ligand \Rightarrow C₂H₄, C₂H₂ etc.

BONDING IN COORDINATION COMPOUND

Effective atomic number & Sidgwick rule

Total number of electron present on central metal atom or ion after accepting the electron pair from ligand.

$$K_{4}[\ddot{F}e(CN)_{6}]$$

EAN = 26 - (+2) + 6(2) = 36

- If EAN value is equal to atomic number of Noble gas then complex follow sidgwick rule of EAN.
- In carbonyl complex, if EAN value = Atomic number of Noble gas then carbonyl complex is more stable.

	eg. [V(CO) ₆]	$[Cr(CO)_6]$	$[Mn(CO)_6]$	
	act as oxidising	stable	act as reducing	
	agent	complex	agent	
•	Brown ring complex	37		
	Sodium nitroprusside	36		
	Zeise's Salt	84		
	$Mn_2(CO)_{10}$	36		
	$Fe_2(CO)_9$	36		
	$Co_2(CO)_8$	36		

WERNER'S CO-ORDINATION THEORY

- Metals possesses two types of valencies PV & SV.
- PV is non-directional, represent by (doted line) is satisfied by negative charge species.
- SV is directional, represent by _____ (solid line) and stisfied by negative or neutral species.
- Now a days primary valency and secondary valency is consider as oxidation & co-ordination number respectively.

VBT

- Metal provoide hybridised vacant orbital for the acceptance of lone pair from ligand.
- Hybridisation, shape and magnetic behaviour of complex depends upon the nature of ligand.
- Strong field ligand pair up the unpaired e of central metal atom where as weak field ligand does not.
- If unpaired e⁻ present in complex then complex is paramagnetic. If unpaired e⁻ is absent then diamagnatic.

eg. CN = 4; $[NiCl_4]^{2-}$

CRYSTAL FIELD THEORY

Crystal Field Theory : In the electric field of these negative charges, the five d-orbitals of the metal atom no longer have exactly same energy. Splitting of five degenerate d-orbitals of the metal ion into sets of orbitals having different energies is called crystal field splitting.

In octahedral

Orbitals which have same energy in a subshell are known as degenerate orbitals.

Series which shows the Relative Strength of Ligands

 $[(weakest) < Br^{-} < SCN^{-} < Cl^{-} < S^{2-} < F^{-} < OH^{-} < C_{2}O_{4}^{2-} < H_{2}O < NCS^{-} < edta^{4-} < NH_{3} < en < CN^{-} < CO(strongest)$

Crystal Field Stabilisation Energy (CFSE)

- (i) For octahedral CFSE = $[-0.4(n_{t_{12}}) + 0.6(n_{eg})] \Delta_0 + Paring energy (P.E.) \times x$
 - Where $n_{t_{2g}} =$ number of electron in t_{2g} orbitals
 - n_{eg} = number of electron in eg orbitals

x = number of elctron pair

- (ii) For tetrahedral CFSE
 - = $[-0.6(n_e) + 0.4 (n_{t_1}) \Delta_t + Paring energy (P.E.) \times x]$
 - where $\mathbf{n}_{t_2} = \text{number of electron in } t_2 \text{ orbitals}$

 $n_e =$ number of electron in e orbitals

x = number of electron pair

 \Rightarrow Follow Hund's Pauli & Aufbau rule.

CN-6

Exception

$[Co(OX)_3]^{3-}$	d ² sp ³	diamagnetic
$[Co(H_2O)_6]^{3+}$	d ² sp ³	diamagnetic
$\left[\mathrm{NiF}_{6}\right]^{2-}$	d ² sp ³	diamagnetic
$\left[\mathrm{Cr(NH}_{3})_{6}\right]^{2+}$	$sp^{3}d^{2}$	paramagnetic
$\left[\mathrm{Mn}(\mathrm{NH}_3)_6\right]^{2+}$	sp ³ d ²	paramagnetic
$[Fe(NH_3)_6]^{2+}$	sp ³ d ²	paramagnetic
$[\text{CoL}_6]^{4-}(\text{L} = \text{NO}_2^{-}/\text{CN}^{-})$	d ² sp ³	paramagnatic

[NiCNl₄]²⁻

11

11

1 1

CN-4

dsp², Sq. planar inner orbital complex, paramagnetic low spin complex,

Exception

• d³s hybridisation, Td, diamagnetic, inner orbital complex eg.

 $MnO_{4}^{-}, CrO_{4}^{2-}, Cr_{2}O_{7}^{2-}, CrO_{2}Cl_{2}, CrO_{2}F_{2}, VO_{4}^{3-}$

• Transference of electron eg. Cu^{+2} in CN-4 with L (where $L = NO_2^{-} / CN^{-} / NH_3$ etc.)

Factor affecting splitting

- (i) Strength of ligand
- (ii) Oxidation state of central metal ion
- (iii) Transition series (d-series)
- (iv) Geometry (number of ligands)
- (v) Chelation

Colour of complexes

- Colour -

d-d transition

- \rightarrow d¹-d⁹ complex can show colour.
- → Complementry colour of absorb colour is observe.
- eg.: $[Ti(H_2O_6)]^{3+}$, $[Ni_1(H_2O)_6]^{2+}$ $[Cu(NH)_4]^{2+}$

Charge transfer

- → Metal-metal charge transfers or metal ligand charge transfers
- → MNO₄, brown ring complex sodium nitroprusside purssian blue, turnbull's blue

ORGANOMETALLIC COMPOUNDS

Compounds in which the less E.N. (Ge, Sb, B, Si, P, As) central metal atoms are bonded directly to carbon atoms are called organometallic compounds.

- σ-bonded compounds formed by nontransition elements. R-Mg-X, (CH₃-CH₂)₂ Zn, Ziegler natta catalyst, etc.
- π-bonded organometallic compounds are generally formed by transition elements e.g. Zeise's salt, ferrocene, dibenzene chromium, etc.
- σ-and π-bonded organometallic compounds : Metal carbonyls compounds formed between metal and carbon monoxide belong to this class. Ni(CO)₄, Fe(CO)₅ etc.

IUPAC nomenclature of complex compounds

- For anionic complex (like K₄[Fe(CN)₆])
 Common name of normal cation (without numeral prefix) + name of ligands (with numeral prefix) + latin name of CMI along with suffix ate + oxidation state (in roman number).
 eg. : Potassium hexacyanoferrate (II)
- For cationic complex like [Cu(NH₃)₄]SO₄

Name of ligands (with numeral prefix) + Common name of CMI + oxidation state (In roman number) + Name of anion (without numeral prefix)

eg. : Tetraammine copper (II) sulphate.

- For neutral complex (like [Fe(CO)₅]) Name of ligands (with numeral prefix) + Common name of CMI + oxidation state (In roman number) eg. : Pentacarbonyl iron (O)
- Rule same just apply alphabetical order when write the name of ligands e.g. [Pt(NH₃)₂Cl₂] Diamminedichloroplatinum (II)

STRUCTURAL ISOMERISM

• Ionisation isomerism : Counter ion as a ligand & ligand act as counter ion.

 $[Co(H_2O)_5Cl]SO_4 \rightarrow [Co(H_2O)_5SO_4]Cl$

• Hydrate isomersim : Number of water molecule inside & outside the co-ordinate sphere are different.

 $[Cr(H_2O)_6]Cl_3 \leftrightarrow [Cr(H_2O)_5Cl]Cl_2.H_2O \leftrightarrow [Cr(H_2O)_4Cl_2]Cl.2H_2O$

• Linkage : Exihibit when ambidentate ligand is present in co-ordination sphere.

 $[\mathrm{NC} \to \mathrm{Ag} \leftarrow \mathrm{CN}]^{-} \leftrightarrow [\mathrm{NC} \to \mathrm{Ag} \leftarrow \mathrm{NC}]^{-} \leftrightarrow [\mathrm{CN} \to \mathrm{Ag} \leftarrow \mathrm{NC}]^{-}$

• **Co-ordination isomerism :** Exihibit when both are cationic & anionic complex

 $[Pt(NH_3)_4] [PtCl_4] \leftrightarrow [Pt(NH_3)_3Cl] [Pt(NH_3)Cl_3]$

STEREO ISOMERISM

Stereo Isomerism in Co-ordination Compound CN-4

- Square planar complex does not show optical isomerism.
- Square planar complex show optical activity if the cooridinated ligand having chiral center.
- Square planar complex
 [Ma₂b₂]^{n±}, [Ma₂bc]^{n±}, [Mabcd]^{n±}, [M(AB)cd]^{n±}

 [M(AB)(CD)]^{n±} show geometrical isomerism
- [Mabcd]^{n±} form two cis and one trans.
- Tetrahedral com plex [Mabcd]^{n±}, [M(AB)cd]^{n±}[M(AB)(CD)]^{n±} show optical isomerism

CN-6 Number of Possible Isomers for Specific Complexes								
Formula	Number of stereoisomers	Pairs of Enantiomers	Number of G.I.					
Ma_4b_2	2	0	2					
Ma ₃ b ₃	2	0	2					
Ma ₄ bc	2	0	2					
Ma ₃ b ₂ c	3	0	3					
Ma ₃ bcd	5	1	4					
$Ma_2b_2c_2$	6	1	5					
Ma ₂ b ₂ cd	8	2	6					
Ma ₂ bcde	15	6	9					
Mabcdef	30	15	15					
M(AA)(BC)de	10	5	5					
M(AB)(AB)cd	11	5	6					
M(AB)(CD)ef	20	10	10					
M(AB) ₃	4	2	2					

• Tetrahdral complex does not show geometrical isomerism.

NOTES

Uppercase letter represent chelating ligands and lowercase letter represent monodentate ligands.