DPP - Daily Prac	ctice Problems
Name :	Date :
Start Time :	End Time :
CHEMI	STRY (40)
SYLLABUS : p-Block Elements-II	Il (Group-15) : Nitrogen Family
Max. Marks : 120	Time : 60 min.
GENERAL INST	IRUCTIONS
 The Daily Practice Problem Sheet contains 30 MCQ's. For each bubble in the Response Grid provided on each page. 	a question only one option is correct. Darken the correct circle/
You have to evaluate your Response Grids youiself with the help	• • • • • • • • • • • • • • • • • • • •
	duced for each incorrect answer. No mark will be given/ deducted
 if no bubble is filled. Keep a timer in front of you and stop imme The sheet follows a particular syllabus. Do not attempt the sheet 	
 The sheet follows a particular syllabus. Do not atlengt the sheet Refer syllabus sheet in the starting of the book for the syllabus 	et before you have completed your preparation for that syllabus. of all the DPP sheets.

• After completing the sheet check your answers with the solution booklet and complete the Result Grid. Finally spend time to analyse your performance and revise the areas which emerge out as weak in your evaluation.

DIRECTIONS (Q.1-Q.21) : There are 21 multiple choice questions. Each questionhas4 choices (a), (b),(c)and (d),outof which ONLY ONE choice is correct.

- Q.1 Which one of the following elements is most metallic?
 - (a) P (b) As
 - (c) Sb (d) Bi
- **Q.2** White phosphorus (P_4) has
 - (a) Six P-P single bonds
 - (b) Four lone pair of electrons
 - (c) P-P-P angle of 60°
 - (d) All of these

- Q.3 In Birkeland-Eyde process, the raw material used is
- (a) Air
 (b) NH₃
 (c) NO₂
 (d) HNO₃
 Q.4 Which of the following nitrates decomposes without leaving any solid residue ?
 - (a) Lead nitrate (b) Ammonium nitrate
 - (c) Silver nitrate (d) Sodium nitrate
- Q.5 Phosphine is generally prepared in the laboratory
 - (a) By heating phosphorus in a current of hydrogen
 - (b) By heating white phosphorus with aqueous solution of caustic potash
 - (c) By decomposition of P_2H_4 at 110°C
 - (d) By heating red phosphorus with an aqueous solution of caustic soda

 Response Grid
 1.
 abcd
 2.
 abcd
 3.
 abcd
 4.
 abcd
 5.
 abcd

Space for Rough Work

H						— DP	PP/C(4	.0 J
	ctured by heating in an electric furnace	Q.12 Hyp	ophosph	orus acid is	5			
a mixture of		(a)	A tribas	sic acid	(b)	A dibasi	c acid	
(a) Bonc ash and co		(c)	Amono	basic acid	(d)	(d) Not acidic at all		
(b) Bone ash and si		Q.13 Bla	stingofT	NT isdonel	oy mixi	ng		
(c) Bone ash, silica	and coke	(a)	NH ₄ Cl		(b)	NH ₄ NO3	3	
(d) None of these		(c)	NH ₄ NC	2	(d)	$(NH_4)_2S$	04	
Nitrous oxide		Q.14 The	number	of hydroxyl	groups	in pyrop	hosphoric aci	id is
(a) Is a mixed oxide		(a)	3	(b) 4	(c)	5	(d) 7	
(b) Is an acidic oxid		Q.15 Which one has the highest percentage of nitrogen?						
(c) Is highly soluble		(a)	Urea		(b)	Ammoni	iun sulphate	
	mbustion of sulphur	(c) Ammoniumnitrate (d) Calciumnitrate						
	ng acid exists in polymeric form?	Q.16 The	number	of P-O-P brid	dges in	the structu	ure of phosph	orus
(a) HPO ₃	(b) $H_4 P_2 O_7$	pen	toxide a	nd phosphor	us trio	xide are re	espectively	
(c) H_3PO_4	(d) None	(a)	6,6		(b)	5,5		
Of the following, the		(c)	5,6		(d)	6,5		
(a) As_2O_3	(b) P_2O_3	Q.17 Wh	ich one o	of the follow	ing hyd	lrides is le	east stable?	
(c) Sb_2O_3	(d) Bi ₂ O ₃	(a)	AsH_3		(b)	SbH_3		
	ng acid possesses oxidising. reducing	(c)	NH ₃		(d)	PH ₃		
and complex forming (a) HNO ₃		-			Fine atom	nic numbe	er of llIrd mer	nber
(a) HNO ₃ (c) HCl	(b) H_2SO_4 (d) HNO ₂	ofn	itrogen f					
	2	(a)		(b) 15	(c)		(d) 43	
	$NO_3 \cdot P_4O_{10} \cdot \cdot \cdot 4HPO_3 \cdot x$, the				•		phosphorus	is a
product x is	(h) N O			ent and mon				
(a) N_2O_3	(b) N_2O_5		H ₃ PO ₂			H ₃ PO ₃		
(c) NO ₂	(d) H ₂ O	(c)	H ₃ PO ₄		(d)	H ₄ P ₂ O ₆		

1.125	6. (a)(b)(c)(d)	7. (a)(b)(c)(d)		9. (a)(b)(c)(d)	10. (a)(b)(c)(d)
Response Grid	11.abcd	12. abcd	13.abcd	14.abcd	15. abcd
GRID	16.abcd	17. abcd	18.abcd	19.abcd	

_ Space for Rough Work _

DPP/ C (40)

- **Q.20** Of the following which is paramagnetic and has three electron bond in its structure?
 - (a) N_2O (b) NO (c) N_2O_3 (d) N_2O_5
- Q.21 When plants and animals decay, the organic nitrogen is converted into inorganic nitrogen. The inorganic nitrogen is in the form of
 - (a) ammonia (b) elements of nitrogen
 - (c) nitrates (d) nitrides

DIRECTIONS (Q.22-Q.24): In the following questions, more than one of the answers given are correct. Select the correct answers and mark it according to the following codes:

Codes :

(c)

- (a) I, 2 and 3 arc correct (b) I and 2 arc correct
 - 2 and 4 are correct (d) 1 and 3 are correct

Q.22 Which of the following are true?

- (I) The melting point of antimony is less than arsenic.
- (2) Calcium carbide reacts with nitrogen gas at 1100°C to form a fertilizer, nitrolim.
- (3) Nearly all intermediate oxidation states of phosphorus disproportionate into +5 and - 3 both in alkali and acid.
- (4) Boiling point of ammonia is greater than stibine.

Q.23 Which of the following orders are incorrect?

- (1) $H_3PO_4 > H_3PO_3 > H_3PO_2$ (reducing character)
- (2) $SbH_3 > NH_3 > AsH_3 > PH_3$ (reducing character)
- (3) $NH_3 > PH_3 > AsH_3 > SbH_3$ (basicity)
- (4) $N_2O \le NO \le N_2O_3 \le N_2O_5$ (oxidation state of nitrogen atom)
- Q.24 Which of the following statements are correct for nitrogen?
 - (1) It has a small size
 - (2) It does not readily react with O₂
 - (3) It is a typical non-metal
 - (4) *d*-orbitals are available for bonding

DIRECTIONS (Q.25-Q.27): Read the passage given below and answer the questions that follows :

There are some deposits of nitrates and phosphates in earth's crust. Nitrates are more soluble in water. Nitrates are difficult to reduce under the laboratory conditions but microbes do it easily. Ammonia forms large number of complexes with transition metal ions. Hybridization easily explains the ease of sigma donation capability of NH_3 and PH_3 . Phosphine is a flammable gas and is prepared from white phosphorus.

Q.25 Among the following, the correct statement is

- (a) Phosphates have no biological significance in humans.
- (b) Between nitrates and phosphates, phosphates are less abundant in earth's crust.
- (c) Between nitrates and phosphates, nitrates are less abundant in earth's crust.
- (d) Oxidation of nitrates is possible in soil.
- Q.26 Among the following, the correct statement is
 - (a) Between NH₃ and PH₃, NH₃ is a better electron donor because the lone pair of electrons occupies spherical *s*-orbital and is less directional.
 - (b) Between NH_3 and PH_3 , PH_3 is a better electron donor because the lone pair of electrons occupies sp^3 orbital and is more directional.
 - (c) Between NH_3 and PH_3 , NH_3 is a better electron donor because the lone pair of electrons occupies sp^3 orbital and is more directional.
 - (d) Between NH_3 and PH_3 , PH_3 is a better electron donor because the lone pair of electrons occupies spherical *s*-orbital and is less directional.
- **Q.27** White phosphorus on reaction with NaOH gives PH₃ as one of the products. This is a
 - (a) dimerization reaction
 - (b) disporportionation reaction
 - (c) condensation reaction
 - (d) precipitation reaction

RESPONSE	20.abcd	21.abcd	22. abcd	23. abcd	24. abcd
GRID	25.abcd	26.abcd	27.abcd		

- Space for Rough Work

159

DIRECTIONS (Q. 28-Q.30) : Each of these questions contains two statements: Statement-1 (Assertion) and Statement-2 (Reason). Each of these questions has four alternative choices, only one of which is the correct answer. You have to select the correct choice.

- (a) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (b) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (c) Statement -1 is False, Statement-2 is True.
- (d) Statement -1 is True, Statement-2 is False.

Q.28 Statement-1: Nitrogen is unreactive at room temperatures but becomes reactive at elevated temperatures (on heating) or in presence of catalyst.

Statement-2 : In nitrogen molecule, there is extensive delocalization of electrons.

- Q.29 Statement-1 : Liquid NH₃ is used for refrigeration. Statement-2 : Liquid NH₃ quickly vaporises.
- Q.30 Statement-1 : NO₃⁻ is planar while NH₃ is pyramidal.

Statement-2 : N in NO₃⁻ is sp^2 hybridized but in NH₃ it is sp^3 -hybridized.

 RESPONSE GRID
 28.abcd
 29.abcd
 30.abcd

DAILY PRACTICE PROBLEM SHEET 40 - CHEMISTRY				
Total Questions	30	Total Marks	120	
Attempted		Correct		
Incorrect		Net Score		
Cut-off Score	32	Qualifying Score	52	
Success Gap = Net Score – Qualifying Score				
Net Score = (Correct × 4) – (Incorrect × 1)				

Space for Rough Work

CHEMISTR SOLUTION

3. (a) Birkeland - Eyde process
 Dinitrogen is prepared commercially from air by liquification and fractional distillation. When liquid air is allowed to distil, dinitrogen having lower b.pt (77 K) distils over first leaving behind liquid oxygen (b.pt 90K). World wide production of dinitrogen from liquid air is more than 50 million tonnes per year.

4. **(b)**
$$\operatorname{NH}_4\operatorname{NO}_3 \xrightarrow{\Delta} 2\operatorname{H}_2\operatorname{O} \uparrow + \operatorname{N}_2\operatorname{O} \uparrow$$

$$NaNO_{3} \xrightarrow{\Delta} NaNO_{2} + \frac{1}{2}O_{2} \uparrow$$

$$2AgNO_{3}(s) \rightarrow 2Ag(s) + 2NO_{2}(g) + O_{2}(g)$$
Lunar caustic

$$2Pb(NO_3)_2 \rightarrow 2PbO + 4NO_2 \uparrow +O_2 \uparrow$$

5. (b) $P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2PO_2$ White Phosphine

6. (c)
$$2\text{Ca}_3(\text{PO}_4)_2 + 6\text{SiO}_2 \xrightarrow{1770\text{K}} 6\text{CaSiO}_3 + P_4O_{10}$$

$$P_4O_{10} + 10C \xrightarrow{1770K} P_4 + 10CO$$

White

- 7. (d) N_2O is itself non- combustible but supports combustion. $S+2N_2O \rightarrow SO_2+2N_2$
- 8. (a) $(HPO_3)_{\mu\nu}$ polymetaphosphoric acid.

9. (b) $N_2O_3 P_2O_3 As_2O_3 Sb_2O_3 Bi_2O_3$ Acidic oxides Amphoteric Basic

Acidic character decreases down the group

- 10. (d) HNO₂ can be either reduced to nitric oxide (NO) or oxidised to nitric acid and hence it acts both as an oxidising as well as reducing agent. 2HNO₂→2NO+H₂O+|O| HNO₂+[O]→HNO₃
- 11. (b) Weknow that,

$$4HNO_3 + P_4O_{10} \longrightarrow 4HPO_3 + 2N_2O_5$$

The product is dinitrogen pentoxide (N_2O_5).

12. (c) H_3PO_2 is monobasic acid

$$H \stackrel{O}{\stackrel{H}{\stackrel{P}{\stackrel{OH}{\stackrel{}}}} OH} (Only one -OH group)$$

13. (b) Blasting of TNT is done by mixing of NH_4NO_3 .

14. (b)
$$H_4P_2O_7$$

 $HO-P-O-P-OH_1$
 $HO-P-O-P-OH_2$
 $OH OH_1$
 $OH OH_2$
Tetrabasic

% of N =
$$\frac{\text{Mass of N}}{\text{Mass of compound}} \times 100 = \frac{28}{60} \times 100 = 46\%$$

17. (b) $NH_3 > PII_3 > AsII_3 > SbII_3 > BiII_3$

Stability decreases down the group because bond energy decreases down the group.

 18. (c)
 1
 II
 III
 IV
 V

 Element - N
 P
 As
 Sb
 Bi

 Atomic no.7
 15
 33
 51
 83

75

DAILY PRACTICE PROBLEMS

DPP/C (40)

- 19. (a) Hypophosphorous acid (H_3PO_2) is a monobasic acid which act as reducing agent. In this molecule, two P H bonds are responsible for its reducing character and one –OH group is responsible for its monobasic acid character.
- 20. (b) The structure of NO is N = ●. It is an odd electron molecule and is paramagnetic. It contains a three electron bond.
- 21. (a) The inorganic nitrogen exists in the form of ammonia, which may be lost as gas to the atmosphere, may be acted upon by nitrifying bacteria, or may be taken up directly by plants.
- 22. (a) (1) Availability of electrons for metallic bonding decreases on account of inert pair effect.

(2)
$$\operatorname{CaC}_2 + \operatorname{N}_2 \xrightarrow{1100^{\circ}\mathrm{C}} \underbrace{\operatorname{CaCN}_2 + \operatorname{C}}_{\operatorname{nitrolim}}$$

(3) Statement (3) is correct.

(4) SbH_3 has higher boiling point than NH_3 due to greater vander Waal's force of attraction.

23. (b) (1) As number of reducing hydrogen increases, the reducing character also increases. In H₃PO₄ there is no reducing hydrogen so it should be least reducing.
(2) As down the the group bond energy decreases, the removal of H becomes easier.

(3) Down the group availability of lone pair of electrons decreases as they are present in more concentrated s-orbital.

(4)+1 < +2 < +3 < +5

24. (a) $N_7 \rightarrow ls^2, 2s^2, 2p^3$

d-orbitals are absent in nitrogen.

25. (c) We know that phosphates have a biological significance in human, therefore statement (a) is not correct.

Since nitrates are more soluble in water so they are less abundant in earth's crust where as phosphates are less soluble in water and so they are more abundant in earth's crust. Thus statement (b) is False..

DPP/C (40)

In nitrates (NO_3^-) nitrogen is in + 5 oxidation state which is the highest oxidation state exhibited by nitrogen. Because of this nitrates can not be oxidized (oxidation means increase in oxidation state). Hence statement (d) is not correct.

The correct answer is (c).

26. (c) In case of group 15 (n itrogen group), on moving down the group there occurs a decrease in bond angle of metal hydrides. This decrease in bond angle of metal hydrides of this group may be attributed to the increased p-character in the bond pair which results in more s- character in lone pair orbital.

The directional character is more for sp^3 hybrid orbital than as- orbital.

Thus the correct answer is (c).

27. (b) The reaction between NaOH and white phosphorus (P_4) can be represented as follows:

$$P_4 + 3NaOH + 3H_2O \longrightarrow 3NaH_2PO_2 + PH_3$$

(white phosphorus) (Phosphine)

In this reaction phosphorus is oxidised as well as reduced so it is a disproportionation reaction.

- ... The correct answer is (b).
- 28. (b) On heating its outermost electron transite to next energy level by which it become more reactive.
- 29. (a) Liquid NH_3 is used for refrigeration is true and it is due to the fact that it vaporises quickly and for vaporisation it takes up heat and cool the refrigerator.
- (a) Both statement-1 and statement-2 are true and statement-2 is the correct explanation of statement-1.