

REACTION MECHANISM - II

Ε

S.No.	CONTENTS	Page
1.	Type of reactions	87
2.	Addition reactions	87
3.	Substitution reactions	98
4.	Elimination reactions	113
5.	Exercise-I (Conceptual Questions)	118
6.	Exercise-II (Previous Years Questions)	124
7.	Exercise-III (Analytical Questions)	138
8.	Exercise-IV (Assertion & Reason)	142

NEET SYLLABUS

Types of organic reaction (free radical reaction of Alkane, addition of hydrogen, halogen, water, hydrogen halides (Markovnikov's addition and peroxide effect) in alkene and alkyne, mechanism of electrophilic substitution - Nitration sulphonation, halogenation, Friedel Craft's alkylation and acylation; directive influence of functional group in mono-substituted benzene, mechanism of substitution reactions, mechanism of nucleophilic addition)

OBJECTIVES

After studying this unit, we will be able to :

- recognise the types of organic reactions;
- predict the formation of the addition products of unsymmetrical alkenes and alkynes on the basis of electronic mechanism;
- understand mechanism of electrophilic substitution reactions of benzene;

"Thinking should become your capital asset, no matter whatever ups and downs; you come across in your life."

A.P.J. Abdul Kalam

REACTION MECHANISM : PART-II

4.0 TYPE OF REACTIONS :

3.

Reactions are of mainly four types :

- 1. Addition reactions. 2. Substitution reactions.
 - Elimination reactions. 4. Isomerisation reactions

4.1 ADDITION REACTIONS : It is also of three types :

- (A) Electrophilic addition reactions
- (B) Free radical addition reactions
- (C) Nucleophilic addition reactions
- (A) Electrophilic addition reaction :- Because of the presence of >C=C< bond in molecules, alkenes generally take part in the *addition reactions*.

Alkene Attacking molecule Addition product (Adduct) From mechanism point of view, the addition in alkenes is generally **electrophilic in nature** which means that attacking reagent which carries the initial attack is an electrophile (E⁺). This is quite expected also as there is high electron density in the double bond. The mechanism proceeds in two steps.

Step I: The π -electron cloud of the double bond causes the polarisation of the attacking molecule (E-Nu) which cleaves to release the electrophile (E⁺) for the attack. The double bond simultaneously undergoes electromeric effect and the attack by the electrophile is accomplished in slow step (also called rate determining step) to form a *carbocation* intermediate.

Step II : The nucleophile $(:Nu^{-})$ released in the slow step combines with the carbocation to give the desired addition product in the fast step.

Reactivity for Electrophilic addition reaction $\,\,\,\infty\,\,$ stability of carbocation formed in RDS

(1) Addition of Halogen : It is a electrophilic addition reaction.

$$R-CH = CH_2 + X_2 \longrightarrow R \xrightarrow{X} I - CH - CH_2$$

$$X$$
(Vicinal halides)

- (a) The addition of Br₂ on alkenes provides a useful test for unsaturation in molecule. The brown colour of the bromine being rapidly discharged. Thus decolarization of 5% Br₂ in CCl₄ by a compound suggest unsaturation in it. Colourless dibromo compound is formed.
 (b) Levent with allowing to form Using the disidet which are unstable and Levent discident discreted.
- (b) I_2 reacts with alkenes to form Vicinal di-iodides which are unstable and I_2 gets eliminated to give original alkene.

$$CH_{3} - CH = CH_{2} + I_{2} \rightleftharpoons CH_{3} - CH_{3} - CH_{2} - CH_{2}$$

87

Mechanism: $CH_2 = CH_2 + Br \to Br \to Br \to CH_2 - CH_2 + Br \to Br \to CH_2 - CH_2 + Br \to Br \to Br \to CH_2 - CH_2 + Br \to Br \to CH_2 - CH_2 + Br \to Br \to CH_2 - CH_2 + CH_2 + Br \to CH_2 - CH_2 + CH_2 +$

It is interesting to note that product which is mainly formed as a result of addition is **trans** in nature whereas the cis isomer is obtained in relatively smaller proportions. Since carbocation intermediate is planar (sp^2 hybridised), both cis and trans addition products must be formed almost in equal proportions. The trans product can be justified in case a cyclic halonium ion is formed by the initial electrophile attack.

No carbocation rearrangement and anti addition product.

(2) Addition of halogen acid :

$$R - CH = CH - R + HX \longrightarrow R - CH_2 - CH - R$$
$$R - CH = CH_2 + HX \longrightarrow R - CH - CH_3$$

GOLDEN KEY POINTS

- The order of reactivity of hydrogen halide is :HI > HBr > HCl
- Addition on alkene proceeds via the formation of more stable carbonium ion.
- Addition of HX on unsymmetrical alkenes (R—CH= CH_2) takes place according to Markovnikov's rule. Carbocation rearrangement is observed in the reaction.

Rearrangement in carbocation

ALLEN

Markovnikov's Rule States :

(a) **First Rule**: When molecule of HX add up on unsymmetrical unsaturated hydrocarbon, the electrophile (H⁺) goes to the unsaturated carbon atom bearing more number of hydrogen atoms.

$$CH_{3} - CH = CH_{2} + HX \longrightarrow CH_{3} - CH_{2} - CH_{2}$$

Mechanism : It is electrophilic addition and is illustrated by the action of HCl to propene.

$$CH_{3}-CH = CH_{2} + H = -CI \qquad \xrightarrow{Slow} CH_{3}-CH - CH_{3} + CI^{-}$$

$$Secondary \ carbocation$$

$$CI^{-}+CH_{3}-CH - CH_{3} \qquad \xrightarrow{Fast} CH_{3}-CH - CH_{3}$$

$$CH_{3}-CH - CH - CH_{3}$$

$$CH_{3}-CH - CH - CH - CH$$

$$CH_{3}-CH - CH - CH$$

$$CH_$$

Primary carbocation $(CH_3 - CH_2 - CH_2)$ is also formed but only in very small proportion since it is less stable than the secondary carbocation. Markovnikov's rule is based on stability of carbocation. Note ; The electrophilic addition of HX to unsymmetrical alkenes always occurs through the formation of a more stable carbocation intermediate.

(b) **Second Rule**: In the addition of HX to vinyl halide and analogous compounds, the halogen attaches itself to the carbon atom, on which the halogen atom is already present.

$$CH_2 = CH - Cl + HCl \longrightarrow CH_3 - CH - Cl$$

Ethylidene chloride

$$Mechanism : CH_2 = CH - \ddot{C}I \xrightarrow{H} CH_3 - \ddot{C}H - \ddot{C}I \xrightarrow{H} CH_3 - CH$$

All polar reagents of the general structure $\stackrel{\oplus}{Y} \stackrel{\Theta}{Z}$ (such as $\stackrel{\oplus}{H} \stackrel{\Theta}{-} \stackrel{\oplus}{X}$, $\stackrel{\Theta}{H} \stackrel{\Theta}{-} \stackrel{\Theta}{O}$, $\stackrel{\oplus}{H} \stackrel{\Theta}{-} \stackrel{\Theta}{SO_3H}$, $\stackrel{\oplus}{X} \stackrel{\Theta}{OH}$) add on unsymmetrical unsaturated compound in accordance with Markovnikov's rules. Such additions are called normal Markovnikov's rule, where as additions in the opposite manner are referred to as abnormal or *anti Markovnikov's additions*.

Pre-Medical : Chemistry

(ii)
$$CH_3 - C = CH_2 + H_2O \xrightarrow{H^+} CH_3 - CH_3 - CH_3$$

 $\downarrow CH_3 CH_3 CH_3$

2-Methylpropan-2-ol

2–Methylpropene Mechanism :

$$CH_3 \rightarrow CH = CH_2 + H^+ \xrightarrow{(Slow)} CH_3 \xrightarrow{\oplus} CH_3 - CH_3$$

Carbocation (2°)

T 2:\NODE02\B0AI-B0\TARGET\CHEM\ENG\MODULE-3\04 GOC:II\01-THEORY.P65

 $\begin{array}{c} \begin{array}{c} & & & \\ & &$ Ex. Propa (1° alco $3R-C \equiv C-R \xrightarrow{BH_3} (R - C = C -)_3B$ H R(1° alcohol) H = R $R - CH = C - BH_{2}$ $R - CH = C - BH_{2} + 2R - C \equiv C - R \longrightarrow (R - CH = C - BH_{2}$ $R - CH = C - BH_{2} + 2R - C \equiv C - R \longrightarrow (R - CH = C -)_{3}B$ $R - CH = C - BH_{2} + 2R - C \equiv C - R \longrightarrow (R - CH = C -)_{3}B$ $R - CH = C - BH_{2} + 2R - C \equiv C - R \longrightarrow (R - CH = C -)_{3}B$ $R - CH = C - BH_{2} + 2R - C \equiv C - R \longrightarrow (R - CH = C -)_{3}B$ $R - CH = C - BH_{2} + 2R - C \equiv C - R \longrightarrow (R - CH = C -)_{3}B$ $R - CH = C - BH_{2} + 2R - C \equiv C - R \longrightarrow (R - CH = C -)_{3}B$ $R - CH = C - BH_{2}$ $R - CH = C - BH_{2} + 2R - C \equiv C - R \longrightarrow (R - CH = C -)_{3}B$ $R - CH = C - BH_{2}$ $R - CH = C - BH_{2}$ (cis-Alkene)

The overall process appears to be addition of water according to anti Markovnikov's rule and Note : involves syn. addition.

91

(7) Oxymercuration - demercuration : Mercuric acetate in water is treated with an alkene. The addition product on reduction with sodium Boro hydride in aqueous NaOH Solution gives alcohol. It follows the Markovnikov's rule.

$$CH_3 - CH = CH_2 \longrightarrow CH_3 - CH - CH_3$$

- (i) (AcO)₂ Hg/H₂O (Mercuric acetate) or (CH₃COO)₂ Hg/H₂O
- (ii) NaBH₄

Mechanism :

Note : Intermediate is cyclic cation so there is no rearrangement.

Z:\NODE02\B0AI-B0\TARGET\CHEM\ENG\MODULE-3\04 GOC-II\01-THEORY.P65

2.

BEGINNER'S BOX-2

1. What is the product formed when acetylene reacts with hypochlorous acid ?

(1) CH₃COCl (2) CICH₂CHO (3) Cl₂CHCHO (4) CICH₂COOH Primary alcohol can be formed as major product by (1) CH₃-C=CH₂ $\xrightarrow{(1)BH_3,THF}_{(2)H_2O_2/OH}$ (2) CH₃-C=CH₂ $\xrightarrow{dil.H_2SO_4}$ (3) CH₃-C=CH₂ $\xrightarrow{(1)(CH_3COO)_2Hg,H_2O}_{(2)NaBH_4}$ (4) 2 & 3 both

(B) Free radical addition reactions :- Addition of HBr on alkene or alkyne in presence of peroxide.

$$CH_{3}-CH=CH_{2} \xrightarrow[ROOR]{HBr(\Delta)} CH_{3}-CH-CH_{2}$$

Anti Markovnikov's rule or peroxide effect or Kharasch rule

- (i) In the presence of peroxides the addition of HBr on unsaturated unsymmetrical compound takes place contrary to Markovnikov's rule. This is called peroxide effect and is due to the difference in the mechanism of the addition.
- (ii) In the normal Markovnikov's addition the mechanism is ionic.
- (iii) In the presence of peroxide the addition of HBr takes place via free radicals.
- (iv) Peroxide effect is not observed in case of H-F, HCl and HI. Reactions follows electrophilic addition mechanism.

$$CH_{3}-CH=CH_{2} \xrightarrow{HBr} CH_{3}-CH-CH_{3} \qquad Markownikoff's addition.$$

$$CH_{3}-CH=CH_{2} \xrightarrow{HBr} CH_{3}-CH_{2}-CH_{2}-Br \qquad Anti Markownikoff's addition \\ \xrightarrow{HBr} CH_{3}-CH$$

Mechanism :

(i) Chain initiation -

(a)
$$R \longrightarrow O \longrightarrow R \longrightarrow 2RO^{\bullet}$$

 $HBr + RO^{\bullet} \longrightarrow ROH + Br^{\bullet}$

(ii) Chain propagation

(iii) Chain termination :

$$\begin{array}{l} R-\overset{\bullet}{C}H-CH_2-Br+Br\overset{\bullet}{\longrightarrow}R-CH(Br)-CH_2(Br)\\ R-\overset{\bullet}{C}H-CH_2-Br+R-\overset{\bullet}{C}H-CH_2-Br\overset{\bullet}{\longrightarrow}R-CH-CH_2-Br\\ & I\\ R-CH-CH_2-Br\end{array}$$

 $Br + Br \longrightarrow Br \longrightarrow Br$

Question :
$$CH_3$$
— CH = CH_2 \xrightarrow{HCI}_{ROOR} CH_3 — CH — CH_3

Ans. no effect simple EAR

(C) Nucleophilic Addition Reaction :-

(C₁) NAR in Alkyne : In these reactions some heavy metal cation like Hg⁺², Pb⁺², Ba⁺² are used. These cation attracts the $\pi^- e^-$ of alkynes and decrease the e^- density and hence a nucleophile can attack an alkynes.

(1) Addition of dil. H₂SO₄ (Hydration) : The addition of water takes place in the presence of Hg⁺² and H₂SO₄ [1% HgSO₄+40% H₂SO₄].

Mechanism :

$$R - C \equiv CH \xrightarrow{Hg^{+2}} R - \overset{\oplus}{C} = \overset{CH}{\underset{Hg^{+}}{Hg^{+}}} R - \overset{C}{\underset{Hg^{+}}{C}} = \overset{CH}{\underset{Hg^{+}}{CH}}$$

Ex.
$$CH_3 \longrightarrow C = C \longrightarrow CH_3 \longrightarrow H^+/H_2O \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_2 \longrightarrow CH_2 \longrightarrow CH_2 \longrightarrow CH_3 \longrightarrow CH_2 \longrightarrow CH_$$

2-butanone

(2) Addition of alcohols : In presence of BF₃ and HgO alkynes react with alcohols and form acetal and ketal

$$CH \equiv CH + CH_{3}OH \xrightarrow{BF_{3}}{H_{gO}} CH_{2} = CHOCH_{3} \xrightarrow{CH_{3}OH} CH_{3} - CH \begin{pmatrix} 0 CH_{3} \\ 0 CH_{3} \end{pmatrix}$$

$$Methylal (acetal)$$

$$R-C \equiv CH + CH_{3}-OH \xrightarrow{BF_{3}}{H_{gO}} R - \stackrel{O}{C} = CH_{2} \xrightarrow{CH_{3}OH} R - \stackrel{O}{C} - CH_{3}$$

$$OCH_{3} \xrightarrow{CH_{3}OH} R - \stackrel{O}{C} - CH_{3} \xrightarrow{OCH_{3}}$$

$$Ketal$$

(3) Addition of $AsCl_3$: In presence of $AlCl_3$ or $HgCl_2$ acetylene combines with $AsCl_3$ to yield Lewisite gas. It is four times poisonous than mustard gas.

$$CH \equiv CH + CI - AsCl_2 \longrightarrow CH - Cl$$

2-Chlorovinyl dichloro arsine (Lewisite gas)

(C₂) NAR in Aldehyde & Ketone : Due to strong electronegativity of oxygen, the mobile π electrons pulled strongly towards oxygen, leaving the carbon atom deficient of electrons. Carbon is thus readily attacked by Nu. The negatively charged oxygen is attacked by electron deficient (electrophile) E⁺.

$$\overset{\hat{\partial}^{\circ}}{\searrow} C = \overset{\hat{\Theta}^{\circ}}{\underset{RDS}{\overset{Nu}{\longrightarrow}}} \overset{\hat{\mathbb{R}}}{\longrightarrow} C - \overset{\hat{\Theta}^{\circ}}{\underset{Nu}{\overset{E^{\circ}}{\longrightarrow}}} \overset{\hat{\mathbb{R}}}{\underset{Nu}{\overset{E^{\circ}}{\longrightarrow}}} \overset{\hat{\mathbb{R}}}{\overset{\hat{\mathbb{R}}}}} \overset{\hat{\mathbb{R}}}{\overset{\hat{\mathbb{R}}}{\overset{\hat{\mathbb{R}}}}} \overset{\hat{\mathbb{R}}}{\overset{\hat{\mathbb{R}}}}} \overset{\hat{\mathbb{R}}}{\overset{\hat{\mathbb{R}}}}} \overset{\hat{\mathbb{R}}}{\overset{\hat{\mathbb{R}}}} \overset{\hat{\mathbb{R}}}{\overset{\hat{\mathbb{R}}}} \overset{\hat{\mathbb{R}}}}{\overset{\hat{\mathbb{R}}}}} \overset{\hat{\mathbb{R}}}} \overset{\hat{\mathbb{R}}}{\overset{\hat{\mathbb{R}}}}} \overset{\hat{\mathbb{R}}}} \overset{\hat{\mathbb{R}}}} \overset{$$

Reactivity	x	Magnitude of ∂+ve charge
of carbonyl group	∞	– leffect
	x	$\frac{1}{+1 \text{ effect}}$

Illustrations

95

ALLEN

(2) Addition of NaHSO, : This reaction is utilized for the separation of carbonyl compounds from noncarbonyl compounds.

ction with glycol : $\searrow C = \underbrace{O + \bigcup_{i=1}^{n} O - CH_{2}}_{i=1} \xrightarrow{Weak acidic medium} (-H_{2}O)} \qquad \qquad \searrow C \swarrow O - CH_{2} \\ O - CH_{2} \\ O - CH_{2} \\ Cyclic acetal / ketal$

- (7) **Reaction with H_2O :** It is a reversible reaction.

$$\sum C = O + H_2 O \qquad \xrightarrow{Weak acid} \qquad \sum C < \bigcirc H \\ OH \\ OH \\ unstable hydrate$$

(neutral)

Chloral (Cl₃C-CH=O) forms stable hydrate [CCl₃ - CH(OH)₂ (chloral hydrate)] Note :

(8) Reaction with ammonia derivatives : These are condensation or addition elimination reaction. These proceeds well in weakly acidic medium.

$$NH_3 \longrightarrow NH_2Z$$
 (Ammonia derivative)

$$\sum - O + H_2 N - Z \qquad \xrightarrow{H^{\oplus}} \qquad \sum - N - Z + H_2 O$$

Addition - elimination (Condensation)

Z:\NODE02\B0AI-B0\TARGET\CHEM\ENG\MODULE-3\04 GOC-II\01-THEORY.P65 Е

Z:\NODE02\B0AI-B0\TARGET\CHEM\ENG\MODULE-3\04 GOC-II\01-THEORY.P65 Ε

97

Pre-Medical : Chemistry

4.2 SUBSTITUTION REACTIONS : Reactions in which one atom or a group of substrate is replaced by other atom or group are called as substitution reactions.

On the basis of reaction conditions and attacking species, substitution reaction is also of three types :

- (A) Free radical substitution reactions
- (B) Electrophilic substitution reactions
- (C) Nucleophilic substitution reactions
- (A) Free radical substitution reactions : Substitution reaction in alkanes show free radical mechanism.

They give following substitution reaction.

(a) Halogenation : Replacement of H-atom by halogen atom

 $R - H + X_2 \longrightarrow R - X + HX$

Halogenation is made on exposure to (halogen + alkane) mixture to UV or at elevated temp.

The reactivity order for halogens shows the order.

F ₂	>	Cl_2	>	Br_2	>	I_2
----------------	---	--------	---	--------	---	-------

Reactivity order of hydrogen atom in alkane is

Tertiary C - H > Sec. C - H > primary C - H

- (i) **Fluorination :** Reacts explosively even in dark. Fluorination can be achieved without violence when alkane is treated with F_2 diluted with an inert gas like N_2 .
- (ii) **Chlorination :**

$$CH_{4} \xrightarrow{Cl_{2}} CH_{3}Cl \xrightarrow{Cl_{2}} CH_{2}Cl_{2} \xrightarrow{Cl_{2}} CHCl_{3} \xrightarrow{Cl_{2}} CCl_{4}$$

The monochloro derivative of alkane is obtained as major product by taking alkane in large excess.

When chlorine is in excess then perchloro derivative is obtained as major product.

At 12 noon explosively
$$CH_4 + Cl_2 \longrightarrow C + HCl$$

Mechanism for $CH_4 + Cl_2 \xrightarrow{UV} CH_3Cl + HCl$

Step I Chain initiation step :

$$Cl:Cl \xrightarrow{UV} Cl^{\bullet} + Cl^{\bullet}$$

Step II Chain propagation step : $Cl' + H : CH_3 \longrightarrow H: Cl + CH_3$

Methyl radical

$$\dot{C}H_3 + \dot{C}I: \dot{C}I \longrightarrow CH_3CI + \dot{C}I$$

Step III Chain termination step : $Cl^{\bullet} + Cl^{\bullet} \longrightarrow Cl_2$, $CH_3^{\bullet} + {}^{\bullet}Cl \longrightarrow CH_3Cl$,

Methane

$$CH_3^{\bullet} + {}^{\bullet}CH_3 \longrightarrow CH_3CH_3$$

(iii) **Bromination** : Br_2 reacts with alkanes in a similar manner but less vigorously.

2:\NODE02\B0AI-B0\TARGET\CHEM\ENG\MODULE-3\04 GOC-II\01-THEORY.P65

(iv) **Iodination :** Iodine reacts with alkanes reversibly. HI formed as the by product is a powerful reducing agent and is capable of reducing the CH_3I to CH_4 .

Iodination may be carried out in the presence of an oxidising agent such as $\rm HIO_3,\ HNO_3,\ HgO$ etc. which decompose HI,

 $CH_4 + I_2 \implies CH_3I + HI$

ALLEN

 $5HI + HIO_3 \longrightarrow 3I_2 + 3H_2O$

Iodination is very slow because energy of activation of the reaction is very large

 $CH_4 + I^{\bullet} \longrightarrow HI + CH_3$

(b) Nitration : (Vapour phase nitration) This involves the substitution of a hydrogen atom of alkane with $-NO_2$ group.

At ordinary temperature, alkanes do not react with $\rm HNO_3.$ But reacts with vapours of Conc. $\rm HNO_3$ at 450° C and in pressure.

$$R - H + HO - NO_2 \xrightarrow{400-500^{\circ}C} R - NO_2 + H_2O$$

Since the reaction is carried at high temperature and in pressure, so the C—C bonds of alkanes also break during the reaction and a mixture of nitroalkanes is formed.

Ex.
$$CH_3 - CH_3 + HNO_3 - 450^{\circ}C \rightarrow CH_3CH_2NO_2 + CH_3NO_2 + H_2O$$

(c) Sulphonation : Replacement of H atom of alkane by $-SO_3H$ is known sulphonation. Alkane react with fuming H_2SO_4 or oleum ($H_2S_2O_7$).

Ex.
$$CH_3 \xrightarrow{CH_3} H + HO \longrightarrow SO_3H \longrightarrow CH_3 \xrightarrow{CH_3} SO_3H + H_2O$$

 $CH_3 \xrightarrow{CH_3} CH_3 \xrightarrow{CH_3} CH_3 \xrightarrow{CH_3} H + H_2O$

2-Methyl propane

The reactivity order for sulphonation is tert. H > Sec. H > prim. H

Note : The reaction is observed in higher alkanes and the alkanes having 3° H.

(d) Chlorosulphonation (Reed reaction) : Reaction with a mixture of SO_2 and Cl_2 at ordinary temp. in the presence of UV light is called chlorosulphonation.

$$C_3H_8 + SO_2 + Cl_2 \longrightarrow C_3H_7SO_2Cl + HCl$$

Propane sulphonyl Chloride

ALLEN

GOLDEN KEY POINTS

Allylic or benzylic substitution by Br₂ (low concentration)/hv or NBS/hv

$$CH_{3}-CH=CH_{2} \xrightarrow{Br_{2}} CH_{2}-CH=CH_{2}+HBr$$

Mechanism :

I Chain initiation step :

 $Br_2 \xrightarrow{hv} Br + Br$

II Chain propagation step :

$$CH_3 - CH = CH_2 + \dot{B}_r \longrightarrow \dot{C}H_2 - CH = CH_2 + HB_3$$

(stable by resonance)

$$\dot{C}H_2$$
-CH=CH₂+ Br₂ \longrightarrow CH₂-CH=CH₂+ \dot{B}_1
 $|$
Br

(Product)

BEGINNER'S BOX-4

1. In the following reaction, the major product is :-

(B) Electrophilic substitution reaction [ESR] : Characteristic reaction of arenes is ESR

Z:\NODE02\B0AI-B0\TARGET\CHEM\ENG\MODULE-3\04 GOC:II\01-THEORY.P65

Note:

(1) ortho/para directing group or activating group : Group which direct electrophile on ortho and para position is called as o/p directing group.

These group increases electron density or increases reactivity of benzene ring so are called activating group. These groups are :

$$\begin{array}{c} -\ddot{\mathbf{N}}\mathbf{H}_{2}, -\ddot{\mathbf{N}}\mathbf{H}_{R}, -\ddot{\mathbf{N}}\mathbf{R}_{2}, -\ddot{\mathbf{O}}\mathbf{H}, -\ddot{\mathbf{O}}\mathbf{R}, -\ddot{\mathbf{N}}\mathbf{H}\mathbf{COCH}_{3}, -\ddot{\mathbf{S}}\mathbf{H}, -\ddot{\mathbf{O}}\mathbf{COR}, -\mathbf{CH}_{3}, -\mathbf{CH}_{2}\mathbf{CH}_{3}, \\ -\mathbf{CH} (\mathbf{CH}_{3})_{2} \\ \hline \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{H} \\ \mathbf{H}$$

due to +M/+H of these groups electron density at ortho and para position is increased so electrophile easily attack on ortho/para position.

(2) Meta directing or deactivating group : Due to -M/-H of groups electron density at ortho and para position is less but more at meta position so electrophile attack on meta position. So, groups which direct electrophile on meta position are called as meta directing groups.

These groups decrease electron density in benzene ring and decrease reactivity of benzene ring so are called as deactivating group.

These groups are :

More e- density at meta position

- (3) Halogens are o/p directing group due to +M effect but are deactivating group due to -I > +M.
- (4) M and H effect does not depend on distance while I-effect depends on distance In given example
- (5) M-effect at meta position is considered zero.

ŎН

ALLEN Simila

Similarly :

no effect at meta position

(i) Halogenation :

Note: CH_3 group in toluene is o/p directing and activating group.

2:\NODE02\B0AI-B0\TARGET\CHEM\ENG\MODULE-3\04 GOC-II\01-THEORYP65

103

Pre-Medical : Chemistry

(iv) Friedel crafts reaction [FCR] : Alkylation or acylation of arenes in presence of lewis acid [FeCl₃, AlCl₃ or ZnCl₂...] is called as FCR.

Intermediate carbocation is formed in FCR so rearrangement is possible.

Z.\NODE02\B0AI-B0\TARGET\CHEM\ENG\MODULE-3\04 GOC-II\01-THEORY.P65

(vi) Gatterman's Koch Reaction :

(vii) Gatterman's Aldehyde synthesis :

$$\bigcirc + \underbrace{HCN + HCl}_{\text{AlCl}_{3}} \rightarrow \bigcirc \overset{CH=NH}{\longrightarrow} \underset{\text{Cl}-CH=NH}{\overset{\oplus}{\longrightarrow}} \bigcirc \overset{CH=O}{\longrightarrow} \bigcirc \overset{CH=O}{\longrightarrow}$$

GOLDEN KEY POINTS

The important electrophiles used in the aromatic substitution are the following -

Electrophilic	Source	Name of substitution reaction
Cl ⁺ (Chloronium)	$Cl_2 + AlCl_3$ or $FeCl_3$	Chlorination
Br ⁺ (Bromonium)	$Br_2 + AlBr_3$ or $FeBr_3$	Bromination
NO ₂ ⁺ (Nitronium)	(conc. $HNO_3 + H_2SO_4$)	Nitration
SO ₃ (Sulphertrioxide)	conc. H_2SO_4 , fuming sulphuric acid	Sulphonation
R ⁺ (Alkyl carbonium)	$RX + AIX_{3} (X = Cl \text{ or } Br)$ $ROH + H^{+}$	Friedel crafts (Alkylation)
$R - \overset{\oplus}{C} = O$ (Acyl carboniu	m) RCOCl + $AlCl_3$	Friedel crafts (Acylation)

BEGINNER'S BOX-5 1. Which of the following group is ortho para director :-(1) $\prod_{-NH-C-CH_3}^{O}$ (2) || -C-NH. (3) –C≡N Substitution takes place at the position. 2. (2) 2(3) 3 (1) 1(4) Both (1) and (3) (C) Nucleophilic substitution reaction (S_N): Due to electronegativity difference the -C - X bond is polarised bond. $\begin{pmatrix} I_{\delta+} & \delta-\\ -C & X \end{pmatrix}$ Thus the C-atom of the $\overset{\delta^+}{C}-\overset{\delta^-}{X}$ bond becomes centre to attack by a nucleophile $\overset{\Theta}{(Nu)}$. X^{Θ} ion from R—X molecule is substituted by a $\overset{\Theta}{Nu}$. i.e.S_N reaction are the most common reactions in R—X. $R \longrightarrow X + \stackrel{\Theta}{Nu} \longrightarrow R \longrightarrow Nu + X^{\Theta}$ Two mechanisms are observed in $\mathbf{S}_{_{\rm N}}$ reaction : (a) S_{N^1} mechanism (b) S_{N^2} mechanism

Mechanism of S_{N^1} and S_{N^2} :

 S_{N^1} **Mechanism** : S_{N^1} stands for uni molecular nucleophilic substitution. The mechanism involves two steps. Consider the hydrolysis of tert. butyl bromide with aqueous NaOH.

Step 1: The alkyl halide ionises to give a planar corbonium ion. The corbonium ion is planar because the central positively charged carbon is sp² hybridized.

Pre-Medical : Chemistry

- (i) Ionisation is the rate determining step because it is the slow step. In other words, the rate at which alcohol is formed depends upon the concentration of tertiary alkyl halide alone.
- $\therefore \quad \text{Rate} = K[R_3C Br]$ It is obvious that the reaction follows first order kinetics, therefore reaction is called S_{N1}.
- (ii) The reactivity order for S_{N^1} reaction ∞ stability of carbocations formed by halides.
- $\therefore \text{ reactivity order of halides } (S_N^1) \text{ varies as follows :} \\ Benzyl halide > Allyl 3° halide > Allyl 2° halide > Allyl 1° halide > 3° halide > 2° halide > 1° halide > methyl halide. \\ \end{aligned}$
- (iii) Remember that in case alkyl halide is optically active, S_{N^1} reactions lead to racemisation. S_{N^2} mechanism : S_{N^2} stands for bimolecular nucleophilic substitution. In this type of nucleophilic substitution reaction, bond making and bond breaking process occur simultaneously.

Transition state

- (i) Reactivity of alkyl halides in S_{N^2} substitution is governed by steric factors. The bulkier the group, that less reactive it will be.
- (ii) Reactivity order of alkyl halide varies as follows :

allyl halide > CH_3X > 1°halide > 2°halide > 3° halide

(iii) The order of reactivity among 1° alkyl halides is : $CH_3X > C_2H_5X > C_3H_7X$ etc.

Remember that in case alkyl halide is optically active, S_{N^1} reactions lead to Walden inversion.

- (iv) For a given alkyl group the order of reactivity is (for S_{N^1} and S_{N^2} both) : RI > RBr > RCI > RF
- (v) In addition to substitution reaction alkyl halide also undergo elimination reactions to form alkene with the removal of a molecule of hydrogen halide (dehydrohalogenation). In dehydrohalogenation, hydrogen and halogen atoms are eliminated from two adjacent carbon atoms, the reaction also known as β -elimination it may proceed by E^1 or E^2 mechanism (analogous to S_{N^1} and S_{N^2} mechanism).

The order of elimination reaction is : **3°** halides > **2°** halides > **1°** halides

(1) nucleophilic substitution reaction (S_N) in alkyl halide :

107

(major)

(i) Reaction with NaOR' (Sodium alkoxide) : $R-X + NaOR' \longrightarrow R-OR' + NaX$

(williamson ether synthesis reaction)

Ex. (i)
$$CH_3 - CH_2 - CI + NaOCH_3 - CH_3 - CH_2 - O - CH_3$$

(ii) $CH_3 \longrightarrow CH_3$ $H_3 \longrightarrow CH_3 \longrightarrow CH$

(j) Reaction with NH_3 :

Ex. (i)
$$R - X + NH_3 \longrightarrow R - NH_2 \xrightarrow{R-X} R - NH - R \xrightarrow{R-X} R - N - R$$

$$\begin{bmatrix} R \\ \downarrow R - X \\ \downarrow R - X \\ R \end{bmatrix} X^{\Theta} (Quaternery salt)$$
(ii) $R - X + NH_3 \longrightarrow R - NH_2 + H - X$
(excess) (Major)
(iii) $R - X + NH_3 \longrightarrow R_4 \stackrel{\oplus}{N} \stackrel{X}{X} (major)$
(excess)

NSR reaction of alcohol :-

(a) Reaction with HX :

eg. R—CH₂—OH —
$$\xrightarrow{H-X}$$
 RCH₂—X

Mechanism :

$$R-CH_{2} \xrightarrow{H^{+}} CH_{2} \xrightarrow{H^{+}} R-CH_{2} \xrightarrow{H^{\oplus}} H \xrightarrow{H^{\oplus}} R-CH_{2} \xrightarrow{H^{\oplus}} R-CH_{2} \xrightarrow{H^{\oplus}} R-CH_{2} \xrightarrow{K^{\oplus}} R$$

(Unstable)

(Product)

109

In this reaction, intermediate carbocation is formed so rearrangement can take place. anhy. $ZnCl_2$ act as dehydrating agent and absorbs H_2O from the reaction so good yield of halide is obtained. Also it generates H^+ from HCl.

$$HCl + ZnCl_2 \longrightarrow ZnCl_3^{\Theta} + H^{\oplus}$$

Reactivity order for alcohol :

Reactivity ∞ stability of intermediate carbocation , so reactivity order : **Tert. alc.** > **Sec. alc.** > **Pri. alc.**

Z:\NODE02\B0AI-B0\TARGET\CHEM\ENG\MODULE-3\04 GOC-II\01-THEORY.P65

ALLEN

Reactivity order of H—X is : HI > HBr > HCl

HI is maximum reactive so it reacts readily with 1° , 2° and 3° alcohols.

 $R - OH + HI \longrightarrow R - I + H_2O$

HCl and also 1° alcohol are less reactive so $ZnCl_2$ or some amount of H_2SO_4 is needed to increase the reactivity.

eg. CH_3 — CH_2 —OH + HCl $\xrightarrow{ZnCl_2}{\Lambda}$ CH_3 — CH_2 —Cl

At normal condition :

 $CH_3 - CH_2 - OH + HCl - (no reaction)$

 $\textbf{Note:} [HCl_{(\text{conc.})} + ZnCl_{2 (\text{anhydrous})}] \text{ is called as } \textbf{lucas reagent,} alcohol gives turbidity with lucas reagent.}$

Reactivity towards lucas reagent (difference in 1°, 2° and 3° alcohol).

	1° alcohol	2° alcohol	3° alcohol
Time to	in 30 min.	in 5 min.	in 2-3 second
	•		

give turbidity on heating

(b) Reaction with phosphorus halides :

 PBr_3 and PI_3 are less stable, thus for bromides and Iodides, $(P + Br_2)$ Or $(P + I_2)$ mixture is used.

(c) Reaction with thionyl chloride - (Darzen's procedure) :

$$R - OH + SOCl_2 \xrightarrow{Pyridine} R - Cl + SO_2 + HCl$$
One mole
One mole

NSR reaction in ether :-

Reaction with HX : Reactivity of HX HI>HBr>HCl

- (A) Reaction with cold conc. HX : Ethers forms oxonium salt with cold and conc. HCl (less reactive) Cold conc. HI and HBr (more reactive) break C–O bond.
- (B) Reaction with conc. HI or conc. HBr :

$$CH_3CH_2 \longrightarrow CH_3 \longrightarrow CH_3CH_2 \longrightarrow CH_3CH_2 \longrightarrow H_3CH_2 \longrightarrow H_3C$$

Illustrations -

Illustration 3.

ion 3.
$$CH_3 \xrightarrow{I}_{H_3} O \xrightarrow{C}_{H_2} O \xrightarrow{Cold and conc.}_{H_1} ?$$

Solution.

Mechanism

CH₃

	If oxonium ion gives more stable carbocation $[Ph\ddot{C}H_2, CH_2=CH-CH_2, (CH_3)_3C]$ then SN ¹ reaction occurs.
	If oxonium ion gives less stable carbocation $[Ph, CH_2 = CH, CH_3 CH_2, (CH_3)_2 CH]$ then SN^2 reaction occurs, and X^{Θ} attacks at less hindered carbon
Illustration 4.	$CH_{3}CH_{2}$ —O— $CH_{2}Ph \xrightarrow{Cold conc.} HI \rightarrow CH_{3}CH_{2}$ —OH + Ph CH_{2} —I, write mechanism of given reaction.
Solution.	Mechanism : $CH_3CH_2\overset{\Box}{\Omega}CH_2Ph \xrightarrow{H^{\oplus}} CH_3CH_2 \xrightarrow{\Phi} CH_2Ph$
	\mathbf{z}
Illustration 5.	$CH_{3}CH_{2}OH + PhCH_{2} \longrightarrow PhCH_{2}I + CH_{3}CH_{2}-OH \qquad (S_{N}I)$ $CH_{3}CH_{2}-O-CH_{3} \xrightarrow{\text{conc. and cold HI}} ?$
Solution.	$CH_{3}CH_{2} \xrightarrow{\square} CH_{3} + \xrightarrow{\square^{+}} CH_{3}CH_{2} \xrightarrow{\oplus} CH_{3} \xrightarrow{\square^{0}} CH_{3}I + CH_{3}CH_{2}OH \qquad (S_{N}2)$
	Oxonium ion gives less stable carbocation
	SN^2 reaction I^{Θ} attacks at less hinderd carbon.
Illustration 6.	$CH_3 - CH_2 - O - Ph \xrightarrow{\text{cold and conc.}} ?$
Solution.	Mechanism :
	$CH_{3}-CH_{2}-\overset{\bullet}{O}-Ph \xrightarrow{H^{+}}{H^{+}} CH_{3}-\overset{\bullet}{CH_{2}} \xrightarrow{\Theta} -Ph \xrightarrow{Br}{\Theta} CH_{3}CH_{2}Br + PhOH$
	Note : If excess of HI/ Δ is used then two moles of alkyl hallides are formed.
	$CH_{3}CH_{2} - O - CH_{2}Ph \xrightarrow{HI}{A} CH_{3}CH_{2}OH + PhCH_{2}I \xrightarrow{HI}{A} CH_{3}CH_{2} - I + PhCH_{2} - I$
Illustration 7.	C_2H_5 —O— C_2H_5 <u>hot and conc. HBr</u> ? + ?
Solution.	C_2H_5 —Br + C_2H_5 — Br

Aromatic nucleophilic substitution :

NSR reaction in halobenzene :-

Presence of deactivating group at ortho and para position makes the nucleophilic substitution easier.

Reactivity Order : (Towards nucleophilic substatitution)

ALLEN

	————— Illustra	tions		
Illustration	Which of the following undergoes Hy	drolysis most easily :		
	$(1) \bigcirc Cl \qquad (2) \bigcirc NO_2$	$(3) \bigcup_{NO_2}^{Cl} NO_2 \qquad (4) \bigcup_{NO_2}^{NO_2} NO_2$		
Solution.	If there is more e^- withdrawing groups then there will be more nuclephilic substitution reaction.			
	Ans. (4)			
Illustration	The product in the following reaction	is :		
	Ph – Cl + Fe /	$Br_2 \longrightarrow Product$		
	(1) o– bromo-chloro benzene	(2) p– bromo-chloro benzene		
	(3) (1) and (2) both	(4) 2, 4, 6-tribromo chloro benzene		
Solution.	Since – Cl group is deactivating and o	/p directing group so o- and p- products are formed.		
	Ans. (3)			

NSR in Acid derrivatives :

Example : Hydrolysis of acid derrivatives :

BEGINNER'S BOX-7

- 2. Which one of the following is least reactive with water
- (1) $CH_3 C CI$ (2) $C_6H_5 - C - NH_2$ (3) $CH_3 - C - NH_2$ (4) $C_6H_5 - C - CI$ (5) U(6) U(7) U(8) U(9) U(

ALLEN

3.
$$CH_{3}-CH-\overset{\oplus}{ONa} + CH_{3}CI \longrightarrow$$

 CH_{3}
(1) $CH_{3}-CH$
 CH_{2}
(2) $CH_{3}-CH-O-CH_{3}$
 CH_{3}
(3) $CH_{3}-CH-O-CH_{2}-CH_{3}$
 CH_{3}
(4) $CH_{3}-CH-CH_{3}$
 CH_{3}

ELIMINATION REACTIONS : These reactions are involve elimination of small molecule from the substrate 4.3 Flimination

Limmation	1
$\cdot \alpha$ -elimination or 1, 1-elimination	β -elimination or 1, 2-elimination

α-Elimination (1, 1-Elimination) : Removal of H and X from one C-atom

 $CHCl_3 \longrightarrow CCl_2$ (dichloro carbene) Example :

Mechanism :

α, β Elimination (β-elimination) : Removal of H and X from adjacent C-atoms

 E_1 unimolecular elimination E_2 bimolecular elimination

Unimolecular elimination (E₁) :-(a)

 $CH_3 - CH_2 - OH \xrightarrow{95\%H_2SO_4} CH_2 = CH_2$

Mechanism of Reaction: The acidic dehydration of alcohol proceeds through the formation of a carbocation intermediate and is explained as follows :

Step I: Alcohol being a Lewis base accepts a proton (H^{+}) from the acid in a reversible step as follows:

$$CH_3 - CH_2 - \ddot{O} - H + \ddot{H} \iff CH_3 - CH_2 - \ddot{O} - H$$

Ethanol

Protonated ethanol

Step II: Due to presence of positive charge on electronegative oxygen, its electron accepting tendency increases. As a result C - O bond becomes weak and cleaves as follows :

$$CH_{3} - CH_{2} \xrightarrow{f \oplus O}_{I} - H \xrightarrow{Slow}_{RDS} CH_{3} - \overset{\oplus}{C}H_{2} + H_{2}O$$

(From acid)

Ethyl carbocation

This is a slow and is regarded as rate determining step in \mathbf{E}_1 reaction.

Step III : Base removes $H\alpha$ (proton) from carbocation and changes it into ethene in a fast step as follows:

$$H - CH_2 - \overset{\oplus}{C}H_2 \xrightarrow{Base}{fast} CH_2 = CH_2$$

Ethene

Saytzeff rule : When two possible alkenes are obtained by the elimination reaction then that alkene containing maximum number of alkyl group on double bonded C-atoms is called Saytzeff's product and formed as major product.

Note : The alkene having less number of alkyl groups on double bonded C-atoms is called Hofmann's product.

Example

$$(i) CH_{3}-CH_{2}-CH_{3}-CH_{3} \xrightarrow{H_{2}SO_{4}}{\Delta} CH_{3}-CH=CH-CH_{3}+CH_{3}-CH_{2}-CH=CH_{2}$$

$$2-butanol main product 1-butene$$

$$2-butene 80\% 20\%$$

$$(Saytzeff's product) (Hoffmann's product)$$

$$(ii) CH_{3}-CH_{2}-CH_{2}-CH_{2}-OH \xrightarrow{H_{2}SO_{4}}{\Delta} CH_{3}-CH=CH-CH_{3} + CH_{3}CH_{2}CH=CH_{2}$$

$$1-butanol 2-butene80\% 1-butene 20\%$$
Main product

Mechanism : Acid catalyzed dehydration of alkanols proceeds via the formation of more stable carbonium ion.

$$\begin{array}{cccc} CH_{3}CH_{2}CH_{2}-CH_{2}-\overset{\bullet}{\Omega} & -H+\overset{\oplus}{H} \longrightarrow & CH_{3}CH_{2}CH_{2}CH_{2}\overset{\oplus}{O}H_{2} \\ CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}\overset{\oplus}{O}H_{2} \longrightarrow & CH_{3}CH_{2}CH_{2} - \overset{\oplus}{CH}_{2} + H_{2}O \\ Primary Carbonium & ion \\ CH_{3}-\overset{H}{C}-\overset{H}{C}-\overset{\oplus}{C}-\overset{H}{C} + H & \underline{Re\,arrangement\,by} \\ 1,2\, hydride & ion shift \\ 1^{0} Carbonium \\ CH_{3}-\overset{H}{C}-\overset{\oplus}{C}-\overset{H}{C}-\overset{H}{C} + H & \underline{Re\,arrangement\,by} \\ CH_{3}-\overset{H}{C}-\overset{\oplus}{C}-\overset{H}{C}-\overset{H}{C} + H & \underline{Re\,arrangement\,by} \\ CH_{3}-\overset{H}{C}-\overset{\oplus}{C}-\overset{H}{C}-\overset{H}{C} + H & \underline{Re\,arrangement\,by} \\ CH_{3}-\overset{H}{C}-\overset{H}{C}-\overset{H}{C}-\overset{H}{C}-\overset{H}{C} + H & \underline{Re\,arrangement\,by} \\ CH_{3}-\overset{H}{C}-\overset{H}{C}-\overset{H}{C}-\overset{H}{C}-\overset{H}{C}-\overset{H}{C}-\overset{H}{C} + H & \underline{Re\,arrangement\,by} \\ CH_{3}-\overset{H}{C}-\overset{H}{C}-\overset{H}{C}-\overset{H}{C}-\overset{H}{C}-\overset{H}{C}-\overset{H}{C}-\overset{H}{C} + H & \underline{Re\,arrangement\,by} \\ CH_{3}-\overset{H}{C}-$$

Reactivity order of acidic dehydration of alcohols is : 3° > 2° > 1° R-OH

- Rate of reaction ∞ [substrate]
- Molecularity of reaction = 1 (So reaction is called as E_1)
- In reaction intermediate carbocation is formed, so carbocation rearrangement is possible.

(b) Bimolecular elimination (E_2) :

Example :

ALLEN

(i) Dehydrohalogenation of halides by alcoholic $KOH/NaNH_2$:

$$CH_3 - CH_2 - Cl + KOH_{(alc.)} \longrightarrow CH_2 = CH_2 + KCl + H_2O$$

Mechanism :

$$HO + H - C = C - H \longrightarrow H_2C = CH_2$$

- Rate of reaction α [substrate] [base]
- Order of reaction = 2 (So reaction is E_2)
- In E_2 reaction intermediate (carbocation) is not formed. So there will be no carbocation rearrangement.

$$\begin{array}{ccc} CH_{3} - \begin{array}{c} CH - CH_{3} & \xrightarrow{Alc.} \\ | \\ Cl \end{array} \xrightarrow{(KOH)} & CH_{2} = CH - CH_{3} \end{array}$$

(ii) Pyrolysis of tetra alkyl ammonium ion :

Note : Hoffmann's product is formed as major product.

Competition between substitution and elemination reactions

Reactivity order of alkyl halides : E_1 -Reaction : $1^\circ < 2^\circ < 3^\circ$

$$E_{1}^{\circ} \text{ Reaction : } 1^{\circ} < 2^{\circ} < 3^{\circ}$$
$$E_{2}^{\circ} \text{ Reaction : } 1^{\circ} < 2^{\circ} < 3^{\circ}$$
$$S_{N}^{\circ} \text{ Reaction : } 1^{\circ} < 2^{\circ} < 3^{\circ}$$
$$S_{N}^{\circ} \text{ Reaction : } 1^{\circ} > 2^{\circ} > 3^{\circ}$$

GOLDEN KEY POINTS

- SN^2/E^2 is favoured by high conc. of good neucleophile or strong base. (CH₃O^o, HO^o) Rate of Reaction \propto (Substrate) (Reagent)
- SN^{1}/E^{1} is favoured by low conc. of poor neucleophile or weak base (CH₃OH, H₂O)
- If an alkyl halide, undergoes SN²/SN¹ then SN² reaction will be favoured by high conc. of good neucleophile (negetively charged) in presence of polor aprotic solvent where as SN¹–reaction is favoured by low conc. of poor neucleophile (neutral) in presence of polar protic solvent.

Polar protic solvent : H₂O, CH₃OH, HCOOH

Polar aprotic solvent : DMSO, CH₃CN, C₂H₅-O-C₂H₅, DMF

4.4 ISOMERIZATION REACTIONS : These reaction involves the interconversion of one isomer into the another isomer.

For example :

- (i) $CH_3 CH_2 CH_2 CH_3 \xrightarrow{AICl_3} CH_3 CH$
- (ii) $CH_3 CH_2 CH = CH_2 \xrightarrow{Al_2(SO_4)_3} CH_3 CH_2 + CH_3 CH = CH CH_3$ $\downarrow CH_3$

(iii)
$$CH_3 - CH_2 - C \equiv CH \xrightarrow{Alc.KOH} CH_3 - C \equiv C - CH_3$$

NaNH₂

BEGINNER'S BOX-8

- 1. Acidic dehydration of alcohol involves :-
 - (1) E_1 elimination

(1) II > I > III > IV

(3) IV > III > I > II

- (2) Carbocation rearrangement if possible
- (3) Saytzeff's product is formed as major product
- (4) All
- 2. Arrange the following in order of their reactivity toward dehydrohalogenation :-

LLEN

ALLEN REACTION AT A GLANCE :

S.N.	Class of compounds	Types of reactions
(i)	Alkane	Free radical substitution
(ii)	Alkene, alkyne	Electrophilic addition
(iii)	Alkyl halide	Nucleophilic substitution
(iv)	Aldehyde, ketone	Nucleophilic addition
(v)	Acid and their derivatives	Nucleophilic substitution
(vi)	Aromatic compounds	Electrophilic substitution

ANSWER KEY

BEGINNER'S BOX-1	Que.	1	2	3	
DLOINNER 5 DOA-1	Ans.	1	1	3	
REGINNER'S ROX-9	Que.	1	2		
DLOINNER O DOX-2	Ans.	3	1		
REGINNER'S ROX-3	Que.	1	2	3	4
DLOIMALK S DOX-3	Ans.	1	2	2	2
BEGINNER'S BOX-4	Que.	1	2	3	4
DEGINIALIA'S DOA-4	Ans.	3	3	2	4
BEGINNER'S BOX-5	Que.	1	2		
DECIMIENCE DON C	Ans.	1	4		
BEGINNER'S BOX-6	Que.	1	2		
	Ans.	2	2		
BEGINNER'S BOX-7	Que.	1	2	3	
	Ans.	1	2	2	
BEGINNER'S BOX-8	Que.	1	2		
	Ans.	4	1		
			-		
)	

118

12. What is the main product of this reaction?

$$CH_{3} - C = CH \xrightarrow{HCl(g)}_{Excess} ?$$

$$(1) CH_{3} - C = CH_{2}$$

$$(2) CH_{3} - CH - CH_{2}$$

$$(2) CH_{3} - CH - CH_{2}$$

$$(3) CH_{3} - CH_{2} - CH \checkmark Cl$$

$$(4) CH_{3} - CH_{2} - CH_{3}$$

- Propan- 1-ol can be prepared from propene by

 H₂O/H₂SO₄
 Hg(OAc)₂/H₂O₂ followed by NaBH₄.
 B₂H₆ followed by H₂O₂.
 CH₃CO₂H/H₂SO₄
- 14. 3-Phenyl propene on reaction with HBr gives (as a major product) (1) $C_6H_5CH_2CH(Br)CH_3$ (2) $C_6H_5CH(Br)CH_2CH_3$ (3) $C_6H_5CH_2CH_2CH_2Br$ (4) $C_6H_5CH(Br)CH=CH_2$

NUCLEOPHILIC ADDITION REACTION

15. Acetaldehyde reacts with semicarbazide, product will be :

(1) $CH_3CH = NNH - CO - NH_2$ (2) $CH_3CH = NCONHNH_2$ (3) $CH_3CH = NHNH_2$ Q

(4)
$$CH_3 \rightarrow C \rightarrow NH \rightarrow CONH_2$$

- 16. Cyanohydrin of the following compound on hydrolysis gives compound that can show optical isomerism :
 (1) HCHO
 (2) CH₃CHO
 (3) CH₃COCH₃
 (4) All the above
- 17. In this reaction : $CH_3CHO + HCN \longrightarrow CH_3CH(OH)CN$ $\xrightarrow{H_2O} CH_3CH(OH)COOH$ an asymmetric centre is generated. The acid obtained would be :-(1) D-isomer
 - (1) D-isomer (2) L-isomer
 - (3) 50% D + 50% L-isomer
 - (3) 30% D + 30% L-isomer
 - (4) 20% D + 80% L-isomer

18.	When two mole of alcoh	ol reacts with 1 mole of
	(1) Hemiacetal	(2) Acetal
	(3) Hemiketal	(4) Ketal
19.	When acetone reacts	with Grignard reagent
	followed by hydrolysis, in	t gives :
	(1) 1° –alcohol	(2) 2° –alcohol
	(3) 3° –alcohol	(4) Methyl alcohol
FREI	E RADICAL ADDITION	REACTION
20.	Reaction of HBr with p	ropene in the presence
	of peroxide gives	
	(1) 3-bromo propane	(2) Allyl bromide
	(3) n-propyl bromide	(4) Isopropyl bromide
21.	Isobutene $\xrightarrow{HBr}_{H_2O_2}$ "p	roduct". The product is
	(1) Isobutyl bromide	(2) Tert. butyl bromide
	(3) Tert. butyl alcohol	(4) isobutyl alcohol
FREI	E RADICAL SUBSTITU	TION REACTION
22.	Alkane reacts with which	of the following halogens
	in dark	(2) I (4) D.
	(1) F_2 (2) Cl_2	(3) I_2 (4) Br_2
23.	The nitrating agent for th	ne nitration of alkanes is:
	(1) Conc. HNO ₃	
	(2) Mixture of conc. HN	O_3 and conc. H_2SO_4
	(3) Acetyl nitrate	
	(4) HNO_3 vapours at hig	gh temperature
24.	The chain propagating ste	p is fastest in the reaction
	of an alkane with	F
	(1) Fluorine free radical	(2) Chlorine free radical
	(3) Iodine free radical	(4) Bromine free radical
		. ,

- **25.** In the nitration of propane, the product obtained in maximum yield is
 - (1) 1-nitropropane (2) 2-nitropropane
 - (3) Nitroethane (4) Nitromethane
- 26. Only two isomeric monochloro derivatives are possible for (exclude stereo isomers)
 (1) n-butane
 (2) 2, 4-dimethyl pentane
 - (3) benzene
 - (4) 2-methyl butane

Pre-Medical : Chemistry

27. What is the chief product obtained when n-butane is treated with bromine in the presence of light at 130°C ?

(1)
$$CH_3$$
— CH_2 — CH_2 — CH_2 — Br
(2) CH_3 — CH_2 — CH — Br
 CH_3
(3) CH_3 — CH — CH_2 — Br
 CH_3
(4) CH_3 — CH_2 — Br
 CH_2 — Br
 CH_2 — Br

ELECTROPHILIC SUBSTITUTION REACTION

- **28.** The strongest deactivating effect on aromatic ring is
 - (1) $-CH_2Cl$ (2) $-OCH_3$ (3) $-CH_3$ (4) $-CCl_3$
- **29.** Which of the following is maximum reactive towards E.S.R. :-

30. Correct order of reactivity of following compound with an electrophile :-

31. Toluene is more reactive than benzene towards electrophilic reagents due to :-

- (1) Inductive effect only
- (2) Hyperconjugative effect only
- (3) Both inductive as well as hyperconjugative effects
- (4) Strong mesomeric effect

32. Nitration of benzene is

- (1) nucleophilic substitution
- (2) nucleophilic addition
- (3) electrophilic substitution
- (4) electrophillic addition

33. Consider the following compounds :

(I) (II)
$$(II)$$
 (III) (II) (III) (IV) (IV)

Correct order of their reactivity in electrophilic substitution reactions would be :-

(1) I > II > III > IV (2) IV > III > II > I(3) III > II > I > IV (4) III > IV > I > II

- **34.** The active species in the nitration of benzene is (1) NO_2^+ (2) HNO_3^- (3) NO_3^- (4) NO_2^-
- **35.** The function of anhydrous AlCl₃ in the Friedel craft's reaction
 - (1) To absorb water
 - (2) To absorb HCl
 - (3) To produce electrophile
 - (4) To produce Nucleophile
- **36.** In which of the following compound the electrophile attack on o- and p- positions :

NUCLEOPHILIC SUBSTITUTION REACTION

37. The correct reactivity order of alcohols towards H–X will be

(I) OH

 $(III) CH_3 - CH_2 - OH$

- (II) $CH_2 = CH CH_2OH$ (IV) $CH_3 - CH - CH_3$ OH

38. Which of the following product will be obtained when neopentyl alcohol is treated with conc. HCl in presence of ZnCl₂.

(1) t- butyl chloride
(2) isobutylene
(3) t- pentyl chloride
(4) Neo pentyl chloride

120

AL	LEN			Pre-	Medical : Chemi	stry
39.	In $S_N 1$ the first step invo	lves the formation of	49.	An alkyl halide may be c	onverted in to an alc	cohol
	(1) free radical	(2) carbanion		by		
	(3) carbocation	(4) final product		(1) Addition	(2) Substitution	
40.	To form alkane isonitrile,	alkyl halide is reacted with:		(3) Dehydrohalogenatior	(4) Elimination	
	(1) KCN	(2) AgCN	50.	Compound is most react	ive towards NaOH ir	n
	(3) NaCN	(4) NH₄CN		(1) CH ₃ Cl	(2) $CH_2 = CHCl$	
		1 2 4		(3) $C_6 H_5 Cl$	(4) $C_6 H_5 CH_2 Cl$	
41.	The most reactive towar	rds S_N^1 is	- 1			חר
	(1) PhCH ₂ Cl	(2) Ph Cl	51.	Most stable carbocation	formed from $(CH_3)_3$ C	J−Br,
	(3) PhCHCl(CH ₃)	$(4) p- NO_2C_6H_4CH_2CI$		$(C_6H_5)_3CBr, (C_6H_5)_2CHBr$	and $C_6 H_5 C H_2 Br would$	iid be
42.	Alkyl fluorides are synthe	esised by		(1) $C_6 H_5 \overset{\oplus}{C} H_2$	(2) (CH ₃) ₃ [⊕] _C	
	(1) Finkelstein reaction	(2) Swart reaction		0 0	0.0	
	(3) Kolbe reaction	(4) Wurtz reaction		(3) (C ₆ H ₅) ₃ [⊕] C	(4) $(C_6H_5)_2 \overset{\oplus}{C}H$	
43.	The products of reaction	n of alcoholic silver nitrite	52	S 1 reaction on ontically	Lactiva substratas m	ainlu
	with ethyl bromide are		52.	June dives		anny
	(1) Ethane	(2) Ethene		(1) Retention in configur	ation	
	(3) Ethyl alcohol	(4) Nitro ethane		(2) Inversion in configura	tion	
11	For the reaction			(3) Racemise product		
44.	$\frac{7}{2}$			(4) No product		
	$C_2 \Pi_5 O \Pi + \Pi X _______________________________$	$\rightarrow C_2 \Pi_5 X$, the order of	-			~ • •
	reactivity is		53.	I he hydrolysis of alkyl h	alides by aqueous Na	aOH
	(1) HI > HCI > HBr			is best termed as		
	(2) HI > HBr > HCl			(1) electrophilic substitut	on reaction	
	(3) HCl > HBr > HI			(2) electrophilic addition	reaction	
	(4) HBr > HI > HCl			(4) nucleophilic substituti	on reaction	
45.	The reaction ,CH ₃ Br + ($OH^- \longrightarrow CH_3OH + Br^-$		(1) 110000 prime cuccilian		
	obeys the mechanism		54 .	Reaction of sodium etho	oxide and ethyl iodid	e will
	(1) S _N 1	(2) S _N 2		give :-		
	(3) E ¹	(4) E^2		(1) Ether	(2) Ethyl alcohol	
46 .	Butanenitrile may be pre	epared by heating		(3) Acetaldehyde	(4) Acetic acid	
	(1) Propyl alcohol with k	KCN	55.	The least reactive chlori	ne is present in	
	(2) Butyl alcohol with KO	CN		(1) Methyl chloride	(2) Allyl chloride	
	(3) Butyl chloride with K	CN		(3) Ethyl chloride	(4) Vinyl chloride	
	(4) Propyl chloride with	KCN	FC	۸	d. : 41 :	
47	T1 · · ·	1 (50.	Arrange the following contained by $2 = 1000$	mpounds in the increa	asing
47.	I ne given reaction is an			order of their SN reach	VILY?	
	$C_2 \Pi_5 Dr + KCN(aq.)$ —	$\rightarrow C_2 \Pi_5 CIN + KDr$		CH_3		
	(1) Elimination (2) Nuclear bilia substitut	ion		CH_3 -C-X, CH_3 -CH-X	, CH_3 – CH_2 – X , CH_3	3–X
	(2) Floctrophilic substitut	ion		ĊH ₃ ĊH ₃		
	(4) Redox change	1011		(a) (b)	(c) (e	d)
10	Maatuos -1:1 1 1 1 1 1			(1) (a) < (b) < (c) < (d)		
40.	(1) C U C			(2) (a) < (c) < (d) < (b)		
		(2) $(C_6 \Pi_5)_2 C \Pi C$		(3) (d) < (c) < (b) < (a)		
	$(3) C_{6}^{1} C_{5}^{1} C_{2}^{1} C_{2}^{1} C_{1}^{1}$	(\pm) (C_6^{1} I_5^{1}) (C_6^{1}		(4) (b) < (d) < (c) < (a)		
		•			1	21

Pre-Medical : Chemistry

57.	Which alcohol produces turbidity with Lucas reagen	ELIN	AINATION REACTION
	most slowly		
58.	 (1) 2–Butanol (2) t–Butyl alcohol (3) Isobutyl alcohol (4) Diphenylcarbinol The preparation of ethers from alcohols by using sulphuric acid is called :- (1) Williamson's ether Synthesis (2) Williamson's continuous etherification process 	64.	The reactivity of alkyl halides in E^2 elimination reactions follows the order (1) R–I < R–Br < R–Cl < R–F (2) R–F < R–Cl < R–Br < R–I (3) R–I > R–Cl > R–Br < R–F (4) R–I < R–Br < R–F < R–Cl
50	(3) Ziesel's method(4) Zerewitinoff method	65.	The unimolecular elimination involves formation of(1) A free radical(2) A carbanion(3) A carbocation(4) A biradical
59.	 1 he reaction of ethyl iodide with sodium ethoxide is (1) An electrophilic substitution reaction (2) A nucleophilic addition reaction (3) A nucleophilic substitution reaction (4) A free radical substitution reaction 	66.	Which of the following alkyl bromides will eliminate HBr fastest (1) Ethyl bromide (2) Propyl bromide (3) Isopropyl bromide (4) t-Butyl bromide
60.	 (1) A nucleophilic addition (1) A nucleophilic addition (2) An electrophilic substitution (3) SN² displacement (4) SN¹ displacement 	67.	 1-phenyl-2-chloropropane on treating with alc. KOH gives mainly : (1) 1-phenylpropene (2) 2-phenylpropene (3) 1-phenylpropan-2-ol (4) 1-phenylpropan-1-ol
61.	In the Williamson synthesis of ethers given by the general equation – $R - X + R'ONa \longrightarrow R - O - R'$ the yield from $R - X$ follows the sequence :- (1) $CH_3X > 1^\circ > 2^\circ > 3^\circ$ (2) $CH_2X < 1^\circ < 2^\circ < 3^\circ$	² 68.	Which of the following alkyl halides gives a mixture of alkenes on dehydrohalogenation (1) n–Propyl halide (2) Isopropyl halide (3) s–Butyl bromide (4) t–Butyl bromide
60	(3) $CH_3X < 1^\circ < 2^\circ > 3^\circ$ (4) $CH_3X > 1^\circ < 2^\circ < 3^\circ$	69.	Arrange the following alkanols A, B and C in order of their reactivity towards acid catalysed dehydration:-
62.	 With conc. HBr ethyl phenyl ether yields :- (1) Phenol and ethyl bromide. (2) Bromobenzene and ethanol (3) Phenol and ethane (4) Bromobenzene and ethane 		(A) CH_3 — CH — CH_2 — CH_2 — OH CH_3 OH
63.	An unknown alcohol is treated with the "Lucas reagent' to determine whether the alcohol is primary, secondary or tertiary. Which alcohol reacts fastest and by what mechanism :- (1) secondary alcohol by SN1 (2) tertiary alcohol by SN1 (3) secondary alcohol by SN2	5	(B) $CH_3 \xrightarrow{-C} - CH_2 - CH_3$ $CH_3 \xrightarrow{-CH_3} OH$ (C) $CH_3 \xrightarrow{-CH_3} CH_3 - CH_3 - CH_3$ (1) $A > B > C$ (2) $B > A > C$

(3) B > C > A

- (3) secondary alcohol by SN2
- (4) tertiary alcohol by SN2

(4) C > B > A

EX	ERC	ISE-I	(Con	ceptua	al Que	stions	5)						ANS	WER	KEY
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	2	3	2	3	4	3	1	2	4	1	4	3	2	1
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	2	3	4	3	3	1	1	4	1	2	1	2	4	2	1
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	3	3	3	1	3	2	4	3	3	2	3	2	4	2	2
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	4	2	4	2	4	3	3	4	1	4	1	3	2	3	3
Que.	61	62	63	64	65	66	67	68	69	70	71	72			
Ans.	1	1	2	2	3	4	1	3	3	3	2	4			
															123

		1	
E	XERCISE-II (Previous Year Questions)		AIPMT/NEET & AIIMS (2006-2018)
1.	AIPMT 2006Nucleophilic addition reaction will be most favouredin : $\begin{pmatrix} 0 & 0 \\ \parallel & - \end{pmatrix}$ (1) $CH_3CH_2CH_2$ $\begin{pmatrix} 0 & 0 \\ - & -CH_3 \end{pmatrix}$ (2) CH_3 $\begin{pmatrix} -CH_3 & -C-CH_3 \end{pmatrix}$	5.	The order of decreasing reactivity towards electrophilic reagent for the following : (a) Benzene (b) Toluene (c) Chloro benzene (d) Phenol (1) $b > d > a > c$ (2) $d > c > b > a$ (3) $d > b > a > c$ (4) $a > b > c > d$
2.	$\begin{array}{ccccccc} & & & & & & \\ & & & & \\ (3) & CH_3 - CH_2 - CH_2 - C - H & (4) & CH_3 - C - H \\ & & \\ The major organic products of reaction are \\ & CH_3 - O - CH(CH_3)_2 + HI \longrightarrow \\ (1) & CH_3OH + (CH_3)_2CHI & (2) & ICH_2 - O - CH(CH_3)_2 \\ & (3) & CH_3 - O - C(CH_3)_2 & (4)CH_3I + (CH_3)_2CHOH \\ & & \\ $	6 . 7 .	For the following : (a) I ⁻ (b) CI ⁻ (c) Br ⁻ the increasing order of nucleophilicity would be : (1) CI ⁻ < Br ⁻ < I ⁻ (2) I ⁻ < CI ⁻ < Br ⁻ (3) Br ⁻ < CI ⁻ < I ⁻ (4) I ⁻ < Br ⁻ < CI ⁻ CH ₃ In the reaction : CH ₃ -CH-CH ₂ -O-CH ₂ -CH ₃ + HI \longrightarrow
	1 AIIMS 2006		which of following compounds will be formed :
3.	The correct increasing order of the reactivity of halides for S_{N^1} reaction is – (1) $CH_3 - CH_2 - X < (CH_3)_2CH - X < CH_2 = CH - CH_2 - X < PhCH_2 - X$ (2) $(CH_3)_2CH - X < CH_3 - CH_2 - X < CH_2 = CH - CH_2X < PhCH_2 - X$ (3) $PhCH_2 - X < (CH_3)_2 CH - X < CH_3 - CH_2 - X < CH_2 = CH_2 - CH_2 - X$ (4) $CH_2 = CH - CH_2 - X$ (5) $CH_3 - CH_2 - X < CH_3 - CH_2 - X$		(1) $CH_{3} - CH - CH_{3} + CH_{3} - CH_{2} - OH$ CH_{3} (2) $CH_{3} - CH - CH_{2} - OH + CH_{3} - CH_{3}$ CH_{3} (3) $CH_{3} - CH - CH_{2} - OH + CH_{3} - CH_{2} - I$ CH_{3} (4) $CH_{3} - CH - CH_{2} - I + CH_{3} - CH_{2} - OH$ CH_{3} AIPMT 2008
	AIPMT 2007	o	CH_3
4.	Predict the product 'C' obtained in the following reaction of 1-butyne : $CH_3 - CH_2 - C \equiv CH \xrightarrow{HCI} B \xrightarrow{HI} C$ (1) $CH_3 - CH_2 - CH_2 - C - H$ (2) $CH_3 - CH_2 - CH - CH_2CI$	0.	$H_{3}C - CH - CH = CH_{2} + HBr \longrightarrow A$ A (Predominantly) is : $(1) CH_{3} - C - CH_{2}CH_{3}$ Br $(2) CH_{3} - CH - CH - CH_{3}$ $(2) CH_{3} - CH - CH - CH_{3}$ $(2) CH_{3} - CH - CH - CH_{3}$
	(3) $CH_3 - CH_2 - C - CH_3$	l	(3) CH_3 — CH — CH — CH_3

 CH_3 (4) $CH_3 \rightarrow CH - CH_2 - CH_2Br$

(3) $CH_3 - CH_2 - \overset{i}{C} - CH_3$ (4) $CH_3 - CH - CH_2 - CH_2I$ Cl

9. In a SN² substitution reaction of the type $R \rightarrow Br + Cl^{\Theta} \rightarrow R - Cl + Br^{\Theta}$, which one of the following has the highest relative rate ?

(1)
$$CH_3$$
 CH_3 CH_3
 H_3 CH_2Br (2) CH_3 $-C_2$ CH_2Br
 CH_3 H_2Br

(3) CH₃—CH₂Br (4

 $(4) CH_3 - CH_2 - CH_2 Br$

10. Which one of the following is most reactive towards electrophilic attack ?

- The relative reactivities of acyl compounds towards nucleophillic substitution are in the order of :-(1) Acid anhydride >Amide > Ester >Acyl chloride (2) Acyl chloride >Ester>Acid anhydride > Amide (3) Acyl chloride >Acid anhydride >Ester> Amide
 - (4) Ester >Acyl chloride>Amide >Acid anhydride

AIPMT 2009

 Benzene reacts with CH₃Cl in the presence of anhydrous AlCl₃ to form :-

(1) Xylene	(2) Toluene
(3) Chlorobenzene	(4) Benzylchloride

- 13. Nitrobenzene can be prepared from benzene by using a mixture of conc. HNO₃ and conc. H₂SO₄. In the mixture, nitric acid acts as a/an :- (1) Catalyst (2) Reducing agent
 - (3) Acid (4) Base
- **14.** Which of the following reactions is an example of nucleophilic substitution reaction ?

(1) $RX + Mg \longrightarrow RMgX$

- (2) $RX + KOH \longrightarrow ROH + KX$
- (3) $2RX + 2Na \longrightarrow R R + 2NaX$
- (4) $RX + H_2 \longrightarrow RH + HX$

AIPMT 2010

- 16. Among the given compounds, the most susceptible to nucleophilic attack at the carbonyl group is :- (1) CH₃COCl
 (2) CH₃COOCH₃
 (3) CH₃CONH₂
 - (4) CH₃COOCOCH₃
- **17.** Which one is most reactive towards electrophilic reagent ?

- 18. The reaction of toluene with Cl₂ inpresence of FeCl₃ gives 'X' and reaction in presence of light gives 'Y'. Thus, 'X' and 'Y' are :-
 - (1) X = Benzyl chloride,
 - Y = m-chlorotoluene
 - (2) X = Benzal chloride,
 - Y = o-chlorotoluene
 - (3) X = m-chlorotoluene,
 - Y = p-chlorotoluene
 - (4) X = o- and p-chlorotoluene
 - Y = Trichloromethyl benzene
- **19.** Which one of the following compounds will be most readily dehydrated :-

Pre-Medical : Chemistry

20. The correct order of increasing reactivity of C-X bond towards nucleophile in the following compounds is :-

X

(I) (II) $(CH_3)_3C-X$ $(CH_3)_2CH-X$ (III) (IV) (1) III < II < I < IV (2) I < II < IV < III (3) II < III < I < IV (4) IV < III < I < II

AIIMS 2010

21. 2-Butene $\xrightarrow{\text{HBr}}$

 Major products of above reaction will be :

 (1) 1
 (2) 2

 (3) 4
 (4) 3

22. Arrange the following in correct order of nucleophilicity :-

 $\label{eq:solution} \textbf{23.} \quad \mbox{Which of the following is maximum reactive towards} \\ SN^1 \mbox{ reaction }:-$

AIPMT Pre-2011

24. Which one is a nucleophilic substitution reaction among the following ?

(1)
$$CH_3-CH=CH_2 + H_2O \xrightarrow{H^+} CH_3-CH-CH_3$$

I
OH

(2) RCHO + R'MgX
$$\longrightarrow$$
 R–CH–R'
I
OH

(3)
$$CH_3-CH_2-CH_2-CH_2Br + NH_3 \longrightarrow$$

(4) $CH_3CHO + HCN \rightarrow CH_3CH(OH)CN$

AIPMT Mains-2011

25. Which of the following compounds undergoes nucleophilic substitution reaction most easily ?

26. The order of reactivity of phenyl magnesium bromide (PhMgBr) with the following compounds :-

- **27.** Consider the reaction :
 - (i) $(CH_3)_2CH-CH_2Br \xrightarrow{C_2H_3OH} (CH_3)_2CH-CH_2OC_2H_5 + HBr$
 - (ii) $(CH_3)_2CH-CH_2Br \xrightarrow{C_2H_5O^-}$ $(CH_3)_2CH-CH_2OC_2H_5 + Br^-$

The mechanisms of reaction (i) and (ii) are respectively :-

- (1) $S_{_{\rm N^2}}$ and $S_{_{\rm N^1}}$ (2) $S_{_{\rm N^1}}$ and $S_{_{\rm N^2}}$
- (3) S_{N^1} and S_{N^1} (4) S_{N^2} and S_{N^2}

AIIMS 2011

28. The correct increasing order of reactivity for following molecules towards electrophilic aromatic substitution.

29. S_{N^2} reaction readily occurs in:-(1) $(CH_3)_2CH - O - CH_3$

(2)
$$\begin{array}{c} CH_3 - C - O - CH_3 \\ I \\ CH_3 \end{array}$$

(3) $CH_2 = CH - CH_2 - O - CH_3$

(4) Ph –CH₂ –O –CH₂ –CH₃

AIPMT Pre.-2012

30. Acetone is treated with excess of ethanol in the presence of hydrochloric acid. The product obtained is:

(1)
$$(CH_3)_2C$$

 OC_2H_5
(2) $(CH_3)_2C$
 OC_2H_5
 OC_2H_5
(3) $CH_3CH_2CH_2 - C - CH_3$
(4) $CH_3CH_2CH_2 - C - CH_2CH_2CH_3$

31. In the following reaction:

$$CH_{3} \xrightarrow{C} C-CH = CH_{2} \xrightarrow{H_{2}O/H^{\oplus}} A_{Major product} + B_{Minor product}$$

$$CH_{3}$$
The major product is :-
$$(1) H_{3}C \xrightarrow{C} C-CH \xrightarrow{-} CH_{3}$$

$$(1) H_{3}C \xrightarrow{C} C-CH \xrightarrow{-} CH_{3}$$

$$(2) H_{3}C \xrightarrow{C} CH_{3} \xrightarrow{-} CH_{2} \xrightarrow{-} CH_{2}$$

$$CH_{3} \xrightarrow{-} OH$$

$$(3) H_{3}C \xrightarrow{C} C-CH \xrightarrow{-} CH_{3} \xrightarrow{-} OH$$

$$(4) H_{2}C \xrightarrow{C} C-CH \xrightarrow{-} CH_{2} \xrightarrow{-} CH_{3}$$

$$OH CH_{3}$$

- 32. Among the following compounds the one that is most reactive towards electrophilic nitration is:(1) Toluene (2) Benzene
 - (3) Benzoic Acid (4) Nitrobenzene NEET-UG 2013
- Which of the following compounds will not undergo Friedal-Craft's reaction easily :(1) Toluene
 (2) Cumene
 - (3) Xylene (4) Nitrobenzene
- **34.** Among the following ethers, which one will produce methyl alcohol on treatement with hot concentrated HI ?
 - (1) CH₃-CH-CH₂-O-CH₃ CH₃
 (2) CH₃-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃

(3)
$$CH_3 - CH_2 - CH_2 - CH_3$$

ĊΗ₃

AIIMS 2013

35. Arrange the following compound in decreasing order of reactivity towards nucleophilic addition reaction:-

- **36.** When trans -2-Butene is reacted with Br_2 then product is formed :-
 - (1) Racemic-2, 3-dibromobutane
 - (2) Meso-2, 3-dibromobutane
 - (3) d-2, 3-dibromobutane
 - (4) ℓ -2, 3-dibromobutane

(2)
$$CH_2I$$
 + HCHC

(3)
$$OH$$

 CH_2I + CH_2I_2

AIPMT 2014

38. Which of the following compounds will undergo racemisation when hydrolysed by solution of KOH

39. What products are formed when the following compound is treated with Br₂ in the presence of FeBr₃ ?

- **40.** Identify Z in the sequence of reactions: $CH_3CH_2CH = CH_2 \xrightarrow{HBr/H_2O_2} Y \xrightarrow{C_2H_5ONa} Z$ (1) $CH_3 - (CH_2)_3 - O - CH_2CH_3$ (2) $(CH_3)_2CH_2 - O - CH_2CH_3$ (3) $CH_3(CH_2)_4 - O - CH_3$ (4) $CH_3CH_2 - CH(CH_3) - O - CH_2CH_3$
- **41.** Which one is most reactive towards Nucleophilic addition reaction?

AIIMS 2014

42. $CH_2-C \equiv CH + 2HBr \longrightarrow Product ?$ (1) CH_3 -CH-CH₂ I IBr Br

(2)
$$CH_3$$
- CH_2 - $CH < Br Br$

(3)
$$\begin{array}{c} CH_2-CH_2-CH \\ Br & Br \end{array}$$

(4) $\begin{array}{c} CH_3-C-CH_3 \\ \swarrow \\ Br & Br \end{array}$

43. Increasing order of reactivity towards E.S.R. for following compounds is ?

- **44.** Correct order of nucleophilicity :-
 - (1) $CH_3O^- > CH_3^- > NH_2^- > CH_3COO^-$
 - (2) $CH_3^- > NH_2^- > CH_3O^- > CH_3COO^-$
 - (3) $NH_2^- > CH_3^- > CH_3O^- > CH_3COO^-$
 - (4) $CH_3^- > CH_3O^- > NH_2^- > CH_3COO^-$

AIPMT 2015

The reaction of $C_6H_5CH = CHCH_3$ with HBr **46**. produces:-

(

1)
$$C_6H_5CH_2CHCH_3$$
 (2) $C_6H_5CH_2CH_2CH_2Br$
 I
Br

(3)
$$(3)$$
 (4)

47. Treatment of cyclopentanone O with

methyl lithium gives which of the following species?

- (1) Cyclopentanonyl cation
- (2) Cyclopentanonyl radical
- (3) Cyclopentanonyl biradical
- (4) Cyclopentanonyl anion

Re-AIPMT 2015

In the reaction with HCl, an alkene reacts in **48**. accordance with the Markovnikov's rule, to give a product 1-chloro-1-methylcyclohexane. The possible alkene is :-

- 49. Reaction of carbonyl compound with one of the following reagents involves nucleophilic addition followed by elimination of water. The reagent is :
 - (1) hydrocyanic acid (2) sodium hydrogen sulphite
 - (3) a Grignard reagent
 - (4) hydrazine in presence of feebly acidic solution

Pre-Medical : Chemistry

ALLEN

- 71. Which of the following can be used as the halide component for Friedel-Crafts reaction ?
 (1) Chloroethene
 (2) Isopropyl chloride
 (3) Chlorobenzene
 (4) Bromobenzene
- **72.** Consider the reaction

 $CH_3CH_2CH_2Br + NaCN \rightarrow CH_3CH_2CH_2CN + NaBr$ This reaction will be the fastest in

- (1) N,N'-dimethylformamide (DMF)
- (2) water
- (3) ethanol
- (4) methanol

132

- **AIIMS 2016**
- **73.** Arrange followings in their nuclophilicity order.

$$\begin{array}{cccc} & & & & & & & & & & & \\ C_{6}H_{5}O^{\ominus} & & C_{6}H_{5}S^{\ominus} & & C_{6}H_{5}-\overset{\ominus}{C}H_{2} & CH_{3}-\overset{\ominus}{C}-\overset{\ominus}{C}H_{2} \\ (I) & & (III) & (III) & (IV) \end{array}$$

$$(1) \ II > III > IV > I \\ (2) \ I > IV > II > III \\ (2) \ V = V & V & V \end{array}$$

(3) II > IV > III > I

$$(4) III > IV > I > I$$

74.
$$(O_{AlCl_3}) \rightarrow O_{AlCl_3} \rightarrow A \xrightarrow{Br_2/Fe} B$$

B is :-

(1)
$$\bigcirc$$
 C-NH \bigcirc C-CH₃

(2)
$$\xrightarrow{\text{Br}} C-\text{NH} \xrightarrow{\text{C}} C-\text{CH}_3$$

75. Arrange the following compounds in order of reactivity towards $S_N 1$ reaction.

(a)
$$CH_2-CH_2-CH_2-CH_3$$
 (b) $H_3C-CH-CH_2-CH_3$
Br Br

NEET(UG) 2017
• Predict the correct intermediate and product in the following reaction :

$$H_3C-C=CH \xrightarrow{H_4O, H_2SO_4}_{HgSO_4}$$
 Intermediate \longrightarrow product
(A) $H_3C-C=CH_2$ $H_3C-C=CH_2$
(I) $A : H_3C-C=CH_3$ $B : H_3C-C=CH$
(2) $A : H_3C-C=CH_2$ $B : H_3C-C=CH_3$
(3) $A : H_3C-C=CH_2$ $B : H_3C-C=CH_3$
(4) $A : H_3C-C=CH_2$ $B : H_3C-C=CH_3$
(4) $A : H_3C-C=CH_2$ $B : H_3C-C=CH_3$
(5)
(1) $\bigoplus_{OH}^{(H_3)}$ Major Product.
What is major product ?
(1) $\bigoplus_{OQ}^{(H_3)}$
(2) $\bigoplus_{OQ}^{(H_3)}$
(3) $\bigwedge_{O_2}^{(CH_3)}$
(4) $NO_3 \bigoplus_{OH}^{(H_3)}$
(4) $NO_3 \bigoplus_{OH}^{(H_3)}$
(5) $NO_3 \bigoplus_{OH}^{(H_3)}$
(6) $NO_3 \bigoplus_{OH}^{(H_3)}$
(7) $NO_3 \bigoplus_{OH}^{(H_3)}$
(8) $NO_3 \bigoplus_{OH}^{(H_3)}$
(9) NO

Pre-Medical : Chemistry

NO₂

 NO_2

 $^{2}H_{3}$ $\sim_{C_{6}H_{5}}$

135

136

Z:\NODE02\B0AI-B0\TARGET\CHEM\ENG\MODULE-3\04 GOC-II\02-EXERCISE.P6!

Е

ALLEN

$\frac{\text{HBr}(\text{excess})}{\Delta}$ **103.** CH₃-O \bigcirc сн NO, · →.<u>-</u> ćн (1) HO CH I Br CH I OH NO_2 (2) HO СН | ОН NO_2 СН | Br

(3) Br
$$-$$
 CH $-$ CH $-$ CH $-$ CH $-$ NO₂
OH Br

(4) Br
$$\longrightarrow$$
 CH \longrightarrow CH \longrightarrow NO₂
Br OH

EX	ERC	ISE-I	l (Pre	vious	Year (Questi	ions)	ANSWER KEY							
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	4	4	1	3	3	1	3	1	3	2	3	2	4	2	4
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	1	2	4	2	2	2	1	4	3	2	1	4	2	1	2
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	3	1	4	4	1	2	3	4	3	1	4	4	1	2	4
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	4	4	3	4	3	4	4	3	2	2	1	2	2	3	3
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	4	1	1	1	2	2	1	1	1	3	2	1	1	1	2
Que.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans.	4	1	2	1	3	1	1	3	4	4	3	2	3	2	3
Que.	91	92	93	94	95	96	97	98	99	100	101	102	103		
Ans.	3	1	2	1	3	3	1	2	2	3	3	1	2		
				-								-		137	

'X' is

CH₂

(3)

H₂—Br

CH₂

A (major product) is

ĊH₃ OH

ĊН

ĊΗ₃

(4) CH_3 —C(OH) CH_2 —CH₂—D

1.

2.

3.

CH₂

CH₃

Br

ĊΗ₃

ĊΗ₃

Ĭ CH₃

Br

(1) $Ph-\dot{C}H-\dot{C}H-CH_{3}$

(2) $Ph-CH_2-C-CH_3$

Check Your Understanding EXERCISE-III (Analytical Questions) 4. The addition of HBr to 1-Butene gives a mixture of products A, B and C. $Ph-CH = CH_3 + HBr - HBr$ Peroxide (X) Br CH₃ H٠ CH. C₂H₅ (A) (B) CH₃-CH₂-CH₂-CH₂-Br (C) The mixture consists of :-(3) $Ph-CH_2-CH-CH_2-Br$ (1) A and B as major and C as minor products (2) B as major, A and C as minor products (4) $Ph-CH=C-CH_2-Br$ (3) B as minor, A and C as major products (4) A and B as minor and C as major products. C≡CH $\xrightarrow{\text{HBr}}$ A (major) ; 'A' is 5. Hydration of in presence of $H_{2}SO_{4} / HgSO_{4}$ gives CH₂CH₂OH (1)CH₂CHO CH₂CH₃ (3) 6. Identify correct order of reactivity for electrophilic substitution reaction of the following compounds :- NO_2 CH_3 < ÇHO $CH_3 - CH - CH = CH_2 \xrightarrow{\oplus} D/H_2O$ A; NHCH₃ (1) CH_3 -CH-CHD-CH₂-OH CH_3 (2) CH_3 —CH—CH— CH_2 —D $\overbrace{O}^{\text{Cl}} < \overbrace{O}^{\text{CHO}} < \overbrace{O}^{\text{NO}_2} < [$ (3) CH_3 —C(OH) $CHDCH_3$

T 2:\NODE02\B0AI-B0\TARGET\CHEM\ENG\MODULE-3\04 GOC-II\02-EXERCISE.P64

8. p- nitro toluene on further nitration gives

- **9.** Which of the following reaction gives t-butyl benzene:
 - (1) C_6H_6 + t-butyl chloride, $\underline{AIC_3}$
 - (2) $C_6H_6 + (CH_3)_2C = CH_2 \xrightarrow{HF}$ (3) $C_6H_6 + t$ -butyl alcohol $\xrightarrow{H_2SO_4}$
 - (4) All of them
- Halogenation of alkanes gives a mixture of monohalo products. The ease of substitution follows the order
 - (1) Tertiary H > primary H > secondary H
 - (2) Primary H < secondary H < tertiary H
 - (3) Primary H > secondary H > tertiary H
 - (4) Secondary H > tertiary H < primary H
- **11.** The number of different substitution products possible when ethane is allowed to react with bromine in sunlight are
 - (1) 9
 (2) 6

 (3) 8
 (4) 5

12. Chlorination of toluene in the presence of light and heat followed by treatment with aqueous NaOH gives
(1) o-cresol
(2) p-cresol

(3) 2, 4-dihydroxy toluene (4) Benzyl alcohol

- **13.** Which gives maximum yield of C_2H_5Cl (1) $C_2H_6 + Cl_2 \xrightarrow{hv, light} C_2H_5Cl + HCl$ excess
 - (2) $C_2H_6 + Cl_2 \xrightarrow{h\nu} C_2H_5Cl + HCl$ excess

(3)
$$C_2H_6 + Cl_2 \xrightarrow{hv} C_2H_5Cl$$

(4)
$$C_2H_6+Cl_2 \xrightarrow{\text{Dark}} C_2H_5Cl + HCl$$

14. Which of the following has maximum nucleophilicity :-

(3)
$$CF_3 - C - O^{\Theta}$$
 (4) $\langle O \rangle - O^{\Theta}$

- **15.** Consider thiol anion (RS^{\ominus}) and alkoxy anion (RO^{\ominus}) . Which of the following statement is correct ?
 - (1) RS^{\ominus} is less basic and less nucleophilic than RO^{\ominus}
 - (2) RS^{\ominus} is less basic but more nucleophilic than RO^{\ominus}
 - (3) RS^{\ominus} is more basic and more nucleophilic than RO^{\ominus}
 - (4) ${\rm RS}^{\ominus}$ is more basic but less nulceophilic than ${\rm RO}^{\ominus}$

16. Alkaline hydrolysis of 2,2-dichloropropane gives

- (1) Acetone
 (2) 2,2-propane-diol

 (3) Propane
 (4) Propan-2-ol
- **17.** Electrophile \widetilde{NO}_{2} attacks the following :

 Which of the following statement is correct for SN² mechanism

- (1) In (c) carbon atom is sp^3 hybridized
- (2) In (c) carbon atom is $sp^{2}\ hybridised$
- (3) (a) and (e) are electrophiles
- (4) (c) is more stable then (d)
- **19.** Following reaction is

 $\begin{array}{c} CH_{3}(CH_{2})_{5} \xrightarrow{H} & \stackrel{\Theta}{\longrightarrow} & HO \xrightarrow{H} & (CH_{2})_{5}CH_{3} \\ H_{3}C \xrightarrow{H} & HO \xrightarrow{C} & CH_{3} \end{array}$

(1)
$$E_1$$
 (2) S_{N^1}
(3) E_2 (4) S_{N^2}

$$\mathbf{20}. \quad \begin{array}{c} \overset{3}{\text{CH}}_{3} - \overset{2}{\underset{\text{CH}}{\text{CH}}} \overset{1}{\text{CH}}_{2}\text{Cl} \xrightarrow{\text{aq. KOH}} \text{CH}_{3} - \underset{\text{CH}}{\text{CH}} - \underset{\text{CH}_{3}}{\text{CH}} - \underset{\text{CH}_{3}}{\text{CH}} \\ \end{array}$$

In the above reaction the attack of a nucleophile would be from which side

- (1) On the front side of $C\ell$ of C_1 carbon
- (2) On C_2 carbon
- (3) On the rear side of $C\ell$ of C_1 carbon
- (4) On C_3 carbon
- **21.** Which of the following ether can not be prepared by Williamson's method :-
 - (1) Ditertbutyl ether
 - (2) Ethyl-tert-butyl ether
 - (3) Anisole
 - (4) 1 & 2 Both

22. The major product formed in the following reaction is :-

$$\begin{array}{c} \begin{array}{c} CH_{3} \\ CH_{3}-C-CH_{2}Br \\ H \end{array} \xrightarrow{CH_{3}OH} \\ (1) CH_{3}-C-CH_{2}OCH_{3} \\ H \end{array}$$

$$(2) CH_{3}-CH-CH_{2}CH_{3} \\ OCH_{3} \\ (3) CH_{3}-C=CH_{2} \\ (4) CH_{3}-C-C-CH_{3} \\ OCH_{3} \\ \end{array}$$

- **23.** Major product of the reaction :- $(CH_3)_3C-Cl + C_2H_5ONa \longrightarrow$ would be :-(1) $(CH_3)_2C-OC_2H_5$ (2) $(CH_3)_3C-C_2H_5$ (3) $(CH_3)_2C=CH_2$ (4) $CH_3-CH=CH-C_2H_5$
- **24.** Among the following the most reactive towards alcoholic KOH is
 - (1) $CH_2 = CHBr$
 - (2) CH₃COCH₂CH₂Br
 - (3) CH₃CH₂Br
 - (4) CH₃CH₂CH₂Br
- **25.** The major product obtained on treatment of $CH_3CH_2CH(F)CH_3$ with CH_3O^-/CH_3OH is
 - (1) CH₃CH₂CH(OCH₃)CH₃
 - (2) $CH_{3}CH = CHCH_{3}$
 - (3) $CH_3CH_2CH = CH_2$
 - (4) CH₃CH₂CH₂CH₂OCH₃
- 26. Dehydrohalogenation of neopentyl chloride with alc. KOH mainly gives
 (1) 2-methyl-1-butene
 (2) 2-methyl-2-butene
 - (3) 2,2-dimethyl-1-propanol
 - (4) 2-pentene

EXERCISE-III (Analytical Questions) ANSWER KEY Que. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Que. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Ans. 2 1 4 1 1 4 3 1 4 2 1 4 2 2 2 Que. 16 17 18 19 20 21 22 23 24 25 26 27 28													KEY		
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	1	4	1	1	4	3	1	4	2	1	4	2	2	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28		
Ans.	1	2	2	4	3	1	3	3	2	3	2	4	3		
															141

E	XERCISE-IV (Assertion & Reason)	1	Target AIIMS							
	Directions for Asse	rtion	& Reason questions							
Tł	nese questions consist of two statements each, p these Questions you are required to choos	printed as Assertion and Reason. While answering ose any one of the following four responses.								
(A)	If both Assertion & Reason are True & the Reas	ason is a correct explanation of the Assertion.								
(B)	If both Assertion & Reason are True but Reason	n is not	a correct explanation of the Assertion.							
(C)	If Assertion is True but the Reason is False.									
(D)	If both Assertion & Reason are false.									
1.	Assertion :- trans 2-butene gives racemic mixturewhen treated with Cl_2 . Reason :- Addition of Cl_2 is anti.(1) A(2) B(3) C(4) D	8.	Assertion :- When CH_3Cl and $AlCl_3$ are usedin F.C.R. the electrophile is Cl^{\oplus} . Reason :- The first attack on benzene is of Cl^{\oplus} .(1) A(2) B(3) C(4) D							
2.	Assertion :- Addition of HBr in presence of peroxide on alkene is free radical addition. This reaction is not shown by HCl.Reason :- Due to less bond energy of HCl than HBr, homolysis of HCl can not occurs.(1) A(2) B(3) C(4) D	9.	Assertion :- The correct reactivity order towards sulphonation is – meta xylene > Toluene > chlorobenzene > Nitrobenzene Reason :- m-xylene has the highest electron density & hence most reactive.							
3.	Assertion :- Additon of CBrCl3 in presence of peroxides takes place faster to 2-ethyl-1-hexene than to 1-octene.Reason :- Intermidiate free radical in case of 2-ethyl-1-hexene is more stable.(1) A(2) B(3) C(4) D	10.	(1) A (2) B (3) C (4) D Assertion :- Iodine monochloride (ICI) reacts with benzene in presence of a lewis acid such as anhyd. $AlCl_3$ to give iodobenzene and not chlorobenzene. Beason :-Iodine is less electronegative than							
4.	Assertion :- Ketone gives 2.4-DNP test easilythan aldehyde.Reason :- Ketone is more reactive than aldehyde.(1) A(2) B(3) C(4) D	11.	chlorine in the reaction. (1) A (2) B (3) C (4) D Assertion :- Vinul balides can not be used in							
5.	Assertion :- p-nitrophenol gives more electrophilic substituted compound than m-methoxy phenol Reason :- Methoxy group shows only negative I-effect		 Place of alkyl halides in friedal crafts alkylation. <i>Reason :-</i> Vinyl halides does not give electrophile easily. (1) A (2) B (3) C (4) D 							
6.	(1) A(2) B(3) C(4) DAssertion : Rates of nitration of benzene and hexadeuterobenzene are different.Reason : C-H bond is stronger than C-D bond.(1) A(2) B(3) C(4) D	12.	Assertion :- If the hydrogen atoms of benzene are replaced by deuterium atoms then the reactivity of benzene ring is decreased for ESR. Reason :- The bond strength of C–D is more than C–H and reaction depends on the bond strength of C–D and C–H.							
7.	Assertion :- Major product obtained from FCR of benzene with n-butyl chloride is tert. Butyl benzene. Reason :- Intermediate 1° carbocation rearrangements in more stable 3° carbocation. (1) A (2) B (3) C (4) D	13.	(1) A(2) B(3) C(4) DAssertion :- Benzyl chloride is more reactive than p-chloro toluene towards aqueous NaOH.Reason :- The C-Cl bond in benzyl chloride is more polar than C-Cl bond in p-chloro toluene.(1) A(2) B(3) C(4) D							

-

LEN AL Target AIIMS

ALI	L en						116	-wieulcui	. Chemisii y
14.	Assertion : treated with Reason :- C of CH ₃ CH ₂ C (1) A	- CH ₃ CH ₂ water than Carbonium i DCH ₂ Cl is (2) B	OCH ₂ Cl read CH ₃ CH ₂ OC ion formed by stabilized by (3) C	cts faster when H ₂ CH ₂ CH ₂ Cl. If the ionisation resonance. (4) D	21.	Assertion NaOH who Reason : and Cl cau substitution (1) A	n :- Chlorob ere as ethyl (- The partia ises less read 1. (2) B	enzene does chloride reac al double bo ctivity toward (3) C	not react with ts. nd between C ls nucleophilic (4) D
15.	Assertion aniliniumchla Reason :- aniline. (1) A	:- p- pride can b p-Chloro (2) B	-Chloro a e distinguish aniline is le (3) C	aniline and ed by AgNO ₃ . ess basic than (4) D	22.	Assertio acetone wa Reason : (1) A	n :- Benzy ater it produ - The reaction (2) B	vl bromide ces benzyl ak on follows SI (3) C	(4) D when kept in cohol. N ² mechanism (4) D
16.	Assertion : than a methe Reason :- I to sp ³ carbo (1) A	- Phenoxia oxide ion. In methoxi n. (2) B	de ion is a po de ion oxyg (3) C	or nucleophile en is attached (4) D	23.	Assertion phenol and Reason : methyl-oxy cleaved by (1) A	n :- Anisole 1 CH ₃ I. - Phenyl-ox gen bond in HI. (2) B	on reaction ygen bond is n anisole and (3) C	with HI gives stronger than d hence is not (4) D
17.	Assertion	:- CH	CH ₃ -C -CH ₂ - -C -CH ₂ - CH ₃	–Br + NaOH	24.	Assertion immediated Reason : ZnCl ₂ and (1) A	n :- In Luc y. - An equim conc. HCl is (2) B	as test, 3° a olar mixutre called Lucas (3) C	alcohols react of anhydrous reagent. (4) D
	\longrightarrow CH ₃	$ \begin{array}{c} CH_{3} \\ -C -CH_{2} \\ CH_{3} \end{array} $	—OH (majo	r)	25.	Assertion reaction of Reason :	n :- t-butyl r f t-butyl bron - Reaction t	nethyl ether nide with m follow SN ² -n (3) C	is prepared by ethoxide ion. nechanism.
18.	Reason :- It carbanion (1) A Assertion :	follows wit (2) B - Arvl sulpl	h formation (3) C honic acid gi	of more stable (4) D ves phenol on	26.	(I) A Assertion with zinc o Reason :	(2) B n :- Treatme dust produce - The react	ent of 1,3-dib es cycloprop ion of alkyl 1	(4) D promopropane ane. halide with Zn
	reacting with by : Reason : electrophillic (1) A	- This ac substitutic (2) B	high temper cidification on reaction. (3) C	ature followed reaction is (4) D	27.	dust is nuc (1) A Assertion sodium eth major proc	leophilic sul (2) B n :- 2-Brom noxide in et luct.	ostitution. (3) C nobutane on hanol gives :	(4) D reaction with 2–butene as a
19.	Assertion : alkyl halide t Reason :- In obtained from (1) A	- Aryl hali towards N ntermediate m Aryl hal (2) B	des are more SR. e carbocatior lide. (3) C	e reactive than n is more stable (4) D	28.	Reason :- (1) A Assertion Ketone. Reason	- 2-Butene is (2) B n :- Aldehyd :- Nucleopt	more stable (3) C de are more nilic additio	than 1-butene. (4) D reactive than n reaction in
20.	Assertion : optically activ Reason :- mixture.	- In SN ¹ re we then the All tertia	eaction if the product is rea ry halides g	e alkyl halide is cemic mixture. gives racemic		carbonyl co $\infty = \frac{1}{\text{Steric I}}$	$\frac{1}{\text{nindrence}}$ at carbonyl gro	nd ∝ positi	ve charge at
	(1) A	(2) B	(3) C	(4) D		(1) A	(2) B	(3) C	(4) D
									143

143

29.	Assertion	n :- CH₃-CI	Cl H–CH–CH ₃	alc. KOH/∆	33.	Assertion :- Propene reacts with diborane t tripropyl borane.	to form						
		ĊI	H_3			Reason :- It follows anti markowni kott's	s rule.						
	$CH_3 - C = C$	$H-CH_3 + C$	H ₃ -CH-CH=	-CH ₂		(1) A (2) B (3) C (4)	D						
	CH ₃		CH_3		34.	Assertion :- 2-Bromopentane react with alcoho							
	(Major	;)				KOH to form 2-pentene.							
	Reason :- takes place	·In E ₂ reactions by saytzeft	on product for f rule.	rmation always		Keason :- Alcoholic KOH tollows E_1 , mechanis(1) A(2) B(3) C(4) D							
	(1) A	(2) B	(3) C	(4) D	35.	Assertion :- p-Nitrobenzyl ethyl ether on h	neating						
30.	Assertio	on :- The	product of	reaction of		with conc. HBr and gives p-Nitrobenzyl bro	omide.						
	2-Methyl temperatur	cyclo hex re is 1-Brom	anol with H 10-1-methyl c	HBr at room vclo hexane.		Reason :- p-Nitrobenzyl carbocation is hig stable.							
	Reason	• Generall	v dehudratic	on occur and		(1) A (2) B (3) C (4)	D						
	product is	1-methyl cu	iclo hexene	on occur und	36.	Assertion :- Phthalic anhydride react with phen							
	(1) A	(9) P	(2) C	(4) D		in presence of NaOH gives pink colour.							
	(1) A	(Z) D	(3) C	(4) D		Reason :- It forms phenolpthalein.							
31.	Assertion	n :- Compo	und CH ₃ CH	–CH ₂ –OH can		(1) A (2) B (3) C (4)	D						
			 CH		37.	Assertion :- Benzophenone on reaction	n with						
		.11	11.00	3	NaHSO ₃ gives stable addition product.								
	not give et	ther with co	nc. H_2SO_{4}			Reason :- Equilibrium of this reaction lies	on the						
	Reason :	- It favours th	ne formation	of alkene over		right side.	_						
	ether.				~ ~	(1) A (2) B (3) C (4) \Box	D						
	(1) A	(2) B	(3) C	(4) D	38.	Assertion :- C_6H_5MgBr on reaction wit	th CO ₂						
32.	Assertio)n :- In fri	iedel craft's	reaction of		gives benzoic acid							
	1-chlorop	ropane giv	es isopropy	l benzene as		Reason :- CO ₂ is a good electrophile							
	product.					(1) A (2) B (3) C (4) (4)	D						
	Reason :	 The primar 	y carbocation	n rearranges to									
	form secon	ndary carbo	cation.										
	(1) A	(2) B	(3) C	(4) D									
32.	not give et Reason : ether. (1) A Assertic 1-chlorop product. Reason : form secon (1) A	ther with co - It favours th (2) B (2) B (2) n :- In fri- (2) B (2) B	CH onc. H ₂ SO _{4.} ne formation (3) C iedel craft's res isopropy ry carbocation cation. (3) C	of alkene over (4) D reaction of l benzene as n rearranges to (4) D	37.	Assertion :- Benzophenone on reactionNaHSO3 gives stable addition product.Reason :- Equilibrium of this reaction liesright side.(1) A(2) B(3) C(4) IAssertion :- C_6H_5MgBr on reaction withgives benzoic acidReason :- CO_2 is a good electrophile(1) A(2) B(3) C(4) I	n with on the D h CO D						

E	(ERC	ISE-I	V (As	sertio	n & R	eason)						ANS	WER	KEY
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	4	3	1	4	4	4	4	4	1	1	1	4	1	1	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	2	4	3	4	3	1	3	1	2	4	3	1	1	3	3
Que.	31	32	33	34	35	36	37	38							
Ans.	1	1	3	3	3	1	4	3							
144								-	-						