PARABOLA

1. CONIC SECTIONS:

A conic section, or conic is the locus of a point which moves in a plane so that its distance from a fixed point is in a constant ratio to its perpendicular distance from a fixed straight line.

- (a) The fixed point is called the FOCUS.
- **(b)** The fixed straight line is called the DIRECTRIX.
- **(c)** The constant ratio is called the ECCENTRICITY denoted by e.
- **(d)** The line passing through the focus & perpendicular to the directrix is called the AXIS.
- (e) A point of intersection of a conic with its axis is called a VERTEX.

2. GENERAL EQUATION OF A CONIC : FOCAL DIRECTRIX PROPERTY :

The general equation of a conic with focus (p, q) & directrix lx + my + n = 0 is :

$$(l^2 + m^2) [(x - p)^2 + (y - q)^2] = e^2 (lx + my + n)^2$$

= $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$

3. DISTINGUISHING BETWEEN THE CONIC:

The nature of the conic section depends upon the position of the focus S w.r.t. the directrix & also upon the value of the eccentricity e. Two different cases arise.

Case (i) When the focus lies on the directrix:

In this case $D \equiv abc + 2 \ fgh - af^2 - bg^2 - ch^2 = 0 \ \&$ the general equation of a conic represents a pair of straight lines and if :

- e > 1, $h^2 > ab$ the lines will be real & distinct intersecting at S.
- e = 1, $h^2 = ab$ the lines will coincident.
- e < 1, $h^2 < ab$ the lines will be imaginary.

Case (ii) When the focus does not lie on the directrix:

The conic represents:

a parabola	an ellipse	a hyperbola	a rectangular hyperbola		
$e = 1; D \neq 0$	$0 < e < 1; D \neq 0$	$D \neq 0 ; e > 1$	e > 1 ; D ≠ 0		
$h^2 = ab$	$h^2 < ab$	$h^2 > ab$	$h^2 > ab$; $a + b = 0$		

4. PARABOLA:

A parabola is the locus of a point which moves in a plane, such that its distance from a fixed point (focus) is equal to its perpendicular distance from a fixed straight line (directrix).

Standard equation of a parabola is $y^2 = 4$ ax. For this parabola :

- **(i)** Vertex is (0, 0)
- (ii) Focus is (a, 0)
- (iii) Axis is y = 0
- (iv) Directrix is x + a = 0

(a) Focal distance:

The distance of a point on the parabola from the focus is called the FOCAL DISTANCE OF THE POINT.

(b) Focal chord:

A chord of the parabola, which passes through the focus is called a FOCAL CHORD.

(c) Double ordinate:

A chord of the parabola perpendicular to the axis of the symmetry is called a DOUBLE ORDINATE with respect to axis as diameter.

(d) Latus rectum:

A focal chord perpendicular to the axis of parabola is called the LATUS RECTUM. For $v^2 = 4ax$.

- (i) Length of the latus rectum = 4a.
- (ii) Length of the semi latus rectum = 2a.
- (iii) Ends of the latus rectum are L(a, 2a) & L'(a, -2a)

Note that:

- **(i)** Perpendicular distance from focus on directrix = half the latus rectum.
- (ii) Vertex is middle point of the focus & the point of intersection of directrix & axis.
- (iii) Two parabolas are said to be equal if they have latus rectum of same length.

5. PARAMETRIC REPRESENTATION:

The simplest & the best form of representing the co-ordinates of a point on the parabola $y^2=4ax$ is (at², 2at) . The equation $x=at^2$ & y=2at together represents the parabola $y^2=4ax$, t being the parameter.

6. TYPE OF PARABOLA:

Four standard forms of the parabola are $y^2 = 4ax$; $y^2 = -4ax$; $x^2 = 4ay$; $x^2 = -4ay$

 $y^2 = -4ax$

 $x^2 = 4ay$

	Parabola	Vertex	Fous	Axis	Directrix	Length of Latus rectum	Ends of Latus rectum	Parametric equation	Focal length
	$y^2 = 4ax$	(0,0)	(a,0)	y=0	x=-a	4a	(a, ±2a)	(at ² ,2at)	x+a
	$y^2 = -4ax$	(0,0)	(-a,0)	y=0	x=a	4a	(-a, ±2a)	(-at ² ,2at)	x-a
	$x^2 = +4ay$	(0,0)	(0,a)	x=0	y=-a	4a	(±2a, a)	(2at,at ²)	y+a
	$x^2 = -4ay$	(0,0)	(0,-a)	x=0	y=a	4a	(±2a, -a)	(2at, -at ²)	у–а
($(y-k)^2 = 4a(x-h)$	(h,k)	(h+a,k)	y=k	x+a-h=0	4a	(h+a, k±2a)	(h+at ² ,k+2at)	x-h+a
($(x-p)^2 = 4b(y-q)$	(p,q)	(p, b+q)	х=р	y+b-q=0	4b	(p±2a,q+a)	$(p+2at,q+at^2)$	y–q+b

7. POSITION OF A POINT RELATIVE TO A PARABOLA:

The point (x_1 , y_1) lies outside, on or inside the parabola $y^2 = 4ax$ according as the expression $y_1^2 - 4ax_1$ is positive, zero or negative.

8. CHORD JOINING TWO POINTS:

The equation of a chord of the parabola $y^2 = 4ax$ joining its two points $P(t_1)$ and $Q(t_2)$ is $y(t_1 + t_2) = 2x + 2at_1t_2$

Note:

- (i) If PQ is focal chord then $t_1t_2 = -1$.
- (ii) Extremities of focal chord can be taken as (at², 2at) & $\left(\frac{a}{t^2}, \frac{-2a}{t}\right)$
- (iii) If $t_1t_2 = k$ then chord always passes a fixed point (-ka, 0).

9. LINE & A PARABOLA:

(a) The line y = mx + c meets the parabola $y^2 = 4ax$ in two points real, coincident or imaginary according as a > = < cm

$$\Rightarrow$$
 condition of tangency is, $c=\frac{a}{m}$.

Note: Line y = mx + c will be tangent to parabola $x^2 = 4av$ if $c = -am^2$.

(b) Length of the chord intercepted by the parabola $y^2 = 4ax$ on

the line y = mx + c is :
$$\left(\frac{4}{m^2}\right)\sqrt{a(1+m^2)(a-mc)}$$
 .

Note : length of the focal chord making an angle α with the x-axis is $4a \ cosec^2 \ \alpha$.

10. LENGTH OF SUBTANGENT & SUBNORMAL:

PT and PG are the tangent and normal respectively at the point P to the parabola $y^2 = 4ax$. Then

TN = length of subtangent = twice the abscissa of the point P

(Subtangent is always bisected by the vertex)

NG = length of subnormal which is constant for all points on the parabola & equal to its semi latus rectum (2a).

11. TANGENT TO THE PARABOLA $y^2 = 4ax$:

(a) Point form:

Equation of tangent to the given parabola at its point (x_1, y_1) is $yy_1 = 2a (x + x_1)$

(b) Slope form:

Equation of tangent to the given parabola whose slope is 'm', is

$$y = mx + \frac{a}{m}, (m \neq 0)$$

Point of contact is $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$

(c) Parametric form:

Equation of tangent to the given parabola at its point P(t), is $ty = x + at^2$

Note: Point of intersection of the tangents at the point $t_1 \& t_2$ is $[at_1 \ t_2, \ a(t_1 + t_2)]$. (i.e. G.M. and A.M. of abscissae and ordinates of the points)

12. NORMAL TO THE PARABOLA $v^2 = 4ax$:

(a) Point form:

Equation of normal to the given parabola at its point (x_1, y_1) is

$$y - y_1 = -\frac{y_1}{2a} (x - x_1)$$

(b) Slope form:

Equation of normal to the given parabola whose slope is 'm', is $y = mx - 2am - am^3$ foot of the normal is $(am^2, -2am)$

(c) Parametric form:

Equation of normal to the given parabola at its point P(t), is $y + tx = 2at + at^3$

Note:

- (i) Point of intersection of normals at $t_1 \& t_2$ is $(a(t_1^2 + t_2^2 + t_1t_2 + 2), -at_1t_2(t_1 + t_2)).$
- (ii) If the normal to the parabola $y^2=4ax$ at the point t_1 , meets the parabola again at the point t_2 , then $t_2=-\left(t_1+\frac{2}{t}\right).$
- (iii) If the normals to the parabola $y^2 = 4ax$ at the points t_1 & t_2 intersect again on the parabola at the point ' t_3 ' then $t_1t_2 = 2$; $t_3 = -(t_1 + t_2)$ and the line joining t_1 & t_2 passes through a fixed point (-2a, 0).

13. PAIR OF TANGENTS:

The equation of the pair of tangents which can be drawn from any point $P(x_1, y_1)$ outside the parabola to the parabola $y^2 = 4ax$ is given by : $SS_1 = T^2$, where :

$$S \equiv y^2 - 4ax \;\; ; \qquad S_1 \equiv y_1^{\; 2} - 4ax_1 \; ; \qquad T \equiv yy_1 - 2a \; (x \, + x_1). \label{eq:S}$$

14. CHORD OF CONTACT:

Equation of the chord of contact of tangents drawn from a point $P(x_1, y_1)$ is $yy_1 = 2a(x + x_1)$

Remember that the area of the triangle formed by the tangents from

the point (x_1, y_1) & the chord of contact is $\frac{(y_1^2 - 4ax_1)^{3/2}}{2a}$. Also note that the chord of contact exists only if the point P is not inside.

15. CHORD WITH A GIVEN MIDDLE POINT:

Equation of the chord of the parabola $y^2 = 4ax$ whose middle point

is
$$(x_1, y_1)$$
 is $y - y_1 = \frac{2a}{y_1}(x - x_1)$.

This reduced to $T = S_1$ where $T \equiv yy_1 - 2a(x + x_1)$ & $S_1 \equiv y_1^2 - 4ax_1$.

16. DIAMETER:

The locus of the middle points of a system of parallel chords of a Parabola is called a DIAMETER. Equation to the diameter of a parabola $y^2 = 4ax$ is y = 2a/m, where m = slope of parallel chords.

17. CONORMAL POINTS:

Foot of the normals of three concurrent normals are called conormals point.

- (i) Algebraic sum of the slopes of three concurrent normals of parabola $y^2 = 4ax$ is zero.
- (ii) Sum of ordinates of the three conormal points on the parabola $y^2 = 4ax$ is zero.
- (iii) Centroid of the triangle formed by three co-normal points lies on the axis of parabola.
- (iv) If $27ak^2 < 4(h-2a)^3$ satisfied then three real and distinct normal are drawn from point (h, k) on parabola $y^2 = 4ax$.
- (v) If three normals are drawn from point (h, 0) on parabola $y^2 = 4ax$, then h > 2a and one of the normal is axis of the parabola and other two are equally inclined to the axis of the parabola.

18. IMPORTANT HIGHLIGHTS:

(a) If the tangent & normal at any point 'P' of the parabola intersect the axis at T & G then ST = SG = SP where 'S' is the focus. In other words the tangent and the normal at a point P on the

parabola are the bisectors of the angle between the focal radius SP & the perpendicular from P on the directrix. From this we conclude that all rays emanating from S will become parallel to the axis of the parabola after reflection.

- **(b)** The portion of a tangent to a parabola cut off between the directrix & the curve subtends a right angle at the **focus**.
- (c) The tangents at the extremities of a focal chord intersect at right angles on the **directrix**, and a circle on any focal chord as diameter touches the directrix. Also a circle on any focal radii of a point P (at², 2at) as diameter touches the tangent at the vertex and intercepts a chord of length $a\sqrt{1+t^2}$ on a normal at the point P.
- **(d)** Any tangent to a parabola & the perpendicular on it from the focus meet on the tangent at the vertex.
- **(e)** Semi latus rectum of the parabola $y^2 = 4ax$, is the harmonic mean between segments of any focal chord

i.e.
$$2a = \frac{2bc}{b+c}$$
 or $\frac{1}{b} + \frac{1}{c} = \frac{1}{a}$.

(f) Image of the focus lies on directrix with respect to any tangent of parabola $y^2 = 4ax$.