METHODS OF DIFFERENTIATION

1. DERIVATIVE OF f(x) FROM THE FIRST PRINCIPLE:

Obtaining the derivative using the definition

$$\underset{\delta x \to 0}{\text{Lim}} \frac{\delta y}{\delta x} = \underset{\delta x \to 0}{\text{Lim}} \frac{f(x + \delta x) - f(x)}{\delta x} = f'(x) = \frac{dy}{dx} \ \ \text{is called calculating}$$

derivative using first principle or ab initio or delta method.

2. FUNDAMENTAL THEOREMS:

If f and g are derivable function of x, then,

(a)
$$\frac{d}{dx}(f \pm g) = \frac{df}{dx} \pm \frac{dg}{dx}$$
, known as **SUM RULE**

(b)
$$\frac{d}{dx}(cf) = c \frac{df}{dx}$$
, where c is any constant

(c)
$$\frac{d}{dx}(fg) = f\frac{dg}{dx} + g\frac{df}{dx}$$
, known as **PRODUCT RULE**

$$\text{(d)} \ \frac{d}{dx} \bigg(\frac{f}{g} \bigg) \ = \frac{g \bigg(\frac{df}{dx} \bigg) - f \bigg(\frac{dg}{dx} \bigg)}{g^2} \, ,$$

where $g \neq 0$ known as **QUOTIENT RULE**

(e) If
$$y = f(u) & u = g(x)$$
, then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$, known as **CHAIN RULE**

Note: In general if
$$y = f(u)$$
, then $\frac{dy}{dx} = f'(u) \cdot \frac{du}{dx}$.

3. DERIVATIVE OF STANDARD FUNCTIONS:

	f(x)	f'(x)
(i)	x ⁿ	nx ⁿ⁻¹
(ii)	e ^x	e^{x}
(iii)	a ^x	$a^x \ell na$, $a > 0$
(iv)	ℓ nx	1/x
(v)	log _a x	$(1/x) \log_a e, a > 0, a \neq 1$
(vi)	sinx	COSX
(vii)	COSX	– sinx
(viii)	tanx	sec ² x
(ix)	secx	secx tanx
(x)	cosecx	- cosecx . cotx
(xi)	cotx	– cosec ² x
(xii)	constant	0
(xiii)	$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}, -1 < x < 1$
(xiv)	$\cos^{-1} x$	$\frac{-1}{\sqrt{1-x^2}}, -1 < x < 1$
(xv)	tan ⁻¹ x	$\frac{1}{1+x^2}, \ x \in \mathbb{R}$
(xvi)	sec ⁻¹ x	$\frac{1}{\mid x \mid \sqrt{x^2 - 1}}, \mid x \mid > 1$
(xvii)	cosec ⁻¹ x	$\frac{-1}{\mid x \mid \sqrt{x^2 - 1}}, \mid x \mid > 1$
(xviii)	$\cot^{-1} x$	$\frac{-1}{1+x^2}, x \in R$

4. LOGARITHMIC DIFFERENTIATION:

To find the derivative of :

- (a) A function which is the product or quotient of a number of function or
- **(b)** A function of the form $[f(x)]^{g(x)}$ where f & g are both derivable, it is convenient to take the logarithm of the function first & then differentiate.

5. DIFFERENTIATION OF IMPLICIT FUNCTION:

(a) Let function is $\phi(x, y) = 0$ then to find dy /dx, in the case of implicit functions, we differentiate each term w.r.t. x regarding y as a functions of x & then collect terms in dy / dx together on one side to finally find dy / dx

OR
$$\frac{dy}{dx} = \frac{-\partial \phi / \partial x}{\partial \phi / \partial y}$$
 where $\frac{\partial \phi}{\partial x}$ & $\frac{\partial \phi}{\partial y}$ are partial differential coefficient of $\phi(x, y)$ w.r.to x & y respectively.

(b) In expression of dy/dx in the case of implicit functions, both x & y are present.

6. PARAMETRIC DIFFERENTIATION:

If $y = f(\theta)$ & $x = g(\theta)$ where θ is a parameter, then $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$.

7. DERIVATIVE OF A FUNCTION W.R.T. ANOTHER FUNCTION:

Let
$$y = f(x)$$
; $z = g(x)$, then $\frac{dy}{dz} = \frac{dy/dx}{dz/dx} = \frac{f'(x)}{g'(x)}$

8. DERIVATIVE OF A FUNCTION AND ITS INVERSE FUNCTION:

If inverse of y = f(x) is denoted as $g(x) = f^{-1}(x)$, then g(f(x)) = x $\Rightarrow g'(f(x))f'(x)=1$

9. HIGHER ORDER DERIVATIVE:

Let a function y = f(x) be defined on an open interval (a, b). It's derivative, if it exists on (a, b) is a certain function f'(x) [or (dy / dx) or y'] & it is called the first derivative of y w. r. t. x. If it happens that the first derivative has a derivative on (a, b) then this derivative is called second derivative of y w.r.t. x & is denoted by f''(x) or (d^2y/dx^2) or y''. Similarly, the 3^{rd} order derivative of y w.r.t. x, if it

exists, is defined by $\frac{d^3y}{dx^3} = \frac{d}{dx} \left(\frac{d^2y}{dx^2} \right)$. It is also denoted by f''' (x) or y''' & so on.

10. DIFFERENTIATION OF DETERMINANTS:

If
$$F(x) = \begin{vmatrix} f(x) & g(x) & h(x) \\ l(x) & m(x) & n(x) \\ u(x) & v(x) & w(x) \end{vmatrix}$$
, where f, g, h. l, m, n, u, v, w are

differentiable functions of x, then

$$F'(x) = \begin{vmatrix} f'(x) & g'(x) & h'(x) \\ l(x) & m(x) & n(x) \\ u(x) & v(x) & w(x) \end{vmatrix} + \begin{vmatrix} f(x) & g(x) & h(x) \\ l'(x) & m'(x) & n'(x) \\ u(x) & v(x) & w(x) \end{vmatrix} + \begin{vmatrix} f(x) & g(x) & h(x) \\ l'(x) & m(x) & n(x) \\ u(x) & v(x) & w'(x) \end{vmatrix}$$

Similarly one can also proceed columnwise.

11. L'HÔPITAL'S RULE:

(a) Applicable while calculating limits of indeterminate forms of the type $\frac{0}{0}$, $\frac{\infty}{\infty}$. If the function f(x) and g(x) are differentiable in certain neighbourhood of the point a, except, may be, at the point a itself, and g'(x) $\neq 0$, and if

$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0 \quad \text{or} \quad \lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \infty \;,$$

then
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$$

provided the limit $\lim_{x\to a}\frac{f'(x)}{g'(x)}$ exists (L' Hôpital's rule). The point

'a' may be either finite or improper $+ \infty$ or $-\infty$.

- **(b)** Indeterminate forms of the type $0. \infty$ or $\infty \infty$ are reduced to forms of the type $\frac{0}{0}$ or $\frac{\infty}{\infty}$ by algebraic transformations.
- (c) Indeterminate forms of the type 1^{∞} , ∞^0 or 0^0 are reduced to forms of the type 0. ∞ by taking logarithms or by the transformation $[f(x)]^{\phi(x)} = e^{\phi(x).\ell n f(x)}$.