LINEAR EQUATIONS IN TWO VARIABLES

MATHEMATICAL REASONING

1. Which equation satisfies the data given in the table?

Х	-1	0	1	2
У	-3	-1	1	3

- (A) y = x 2
- (B) y = 2x 1
- (C) y = 3x 3
- (D) v = x + 1
- **2.** The graph of y = 6 is a line
 - (A) Parallel to x-axis at a distance of 6 units from the origin.
 - (B) Parallel to *y*-axis at a distance of 6 units from the origin.
 - (C) Making an intercept of 6 units on the *x*-axis.
 - (D) Making an intercept of 6 units on both the axes.
- 3. If the point (3, 4) lies on the graph of the equation 3y = ax + 7, then the value of a is
 - $(A) \quad \frac{2}{3}$

(B) 1

(C) $\frac{4}{3}$

- (D) $\frac{5}{3}$
- **4.** How many linear equations in x and y can be satisfied by x = 2, y = 3?
 - (A) Only one
- (B) Only two
- (C) Infinitely many
- (D) None of these
- 5. The graph of the linear equation 2x + 3y = 6 is a line which meets the x-axis at the point
 - (A) (0, 2)
- (B) (2, 0)
- (C) (3, 0)
- (D) (0, 3)

- 6. In the rectangular coordinate system given below, the shaded region is bounded by two straight lines. Which of the following is not an equation of one of the boundary lines?
 - (A) x = 0
 - (B) x = 1
 - (C) x y = 0
 - (D) x + 2y = 2

- 7. ax + by + c = 0 does not represent an equation of line, if _____.
 - (A) $a = c = 0, b \neq 0$
 - (B) $b = c = 0, a \neq 0$
 - (C) a = b = 0
 - (D) $c = 0, a \neq 0, b \neq 0$
- **8.** A straight line parallel to the *y*-axis has equation _____.
 - (A) x = a
- (B) y = a
- (C) y = x
- (D) y = -x
- 9. If (2, 0) is a solution of the linear equation 2x + 3y = k, then the value of k is _____.
 - (A) 4

(B) 6

(C) 5

- (D) 2
- **10.** If the graph of the equation 4x + 3y = 12 cuts the coordinate axes at A and B, then hypotenuse of right triangle AOB is of length
 - (A) 4 units
- (B) 3 units
- (C) 5 units
- (D) None of these

- **11.** Point (4, 1) lies on the line
 - (A) x + 2y = 5
- (B) 2x + y = -6
- (C) x + 2y = 6
- (D) x + y = 16
- **12.** The equation x = 7 in two variables, can be written as
 - (A) $1 \cdot x + 1 \cdot v = 7$
- (B) $1 \cdot x + 0 \cdot v = 7$
- (C) $0 \cdot x + 1 \cdot y = 7$
- (D) None of these
- **13.** The point (a, -a) always lies on
 - (A) x + y = 0
- (B) x y = 0
- (C) x = -a
- (D) y = a

- 14. The equation of the line whose graph passes through the origin is ...
 - (A) 4x + 2y = -1
- (B) x + y = 1
- (C) 8x + 7y = 0
- (D) 8x 1 = 4y
- **15.** If $\angle A$ and $\angle B$ are complementary angles and $m \angle A$ is x, which equation can be used to find $m \angle B$ which is denoted by y?
 - (A) $y = (90^{\circ} + x)$
- (B) $v = (90^{\circ} x)$
- (C) $y = (180^{\circ} x)$
- (D) $y = (x + 180^{\circ})$

EVERYDAY MATHEMATICS

- **16.** A and B are friends. A is elder to B by 5 years. B's sister C is half the age of B while A's father D is 8 years older than twice the age of *B*. If the present age of *D* is 48 years, find the present ages of A, B and C respectively.
 - (A) 50 years, 25 years, 20 years
 - (B) 40 years, 20 years, 15 years
 - (C) 20 years, 15 years, 10 years
 - (D) 25 years, 20 years, 10 years
- 17. Mayank and Sujata, two students of class 9th together contributed ₹1000 to PPM relief fund.
 - (i) Find the linear equation satisfying the data.
 - (ii) If Sujata contributed ₹475, then how (₹) much Mayank contributed?
 - (i)
- (ii) 575
- (A) 2x + y = 1000
- (B) x + y = 1000
- 525 575
- (C) 0.x + 1.y = 100525
- (D) 2x + 2y = 500
- **18.** The cost of a note book is twice the cost of a pen. If the cost of a note book is ₹ x and that of a pen is ₹ y, then a linear equation in two variables to represent the given condition is .

- (A) x + 2y = 0
- (B) x 2y = 0
- (C) 2x + y = 0
- (D) 2x y = 0
- **19.** Rakesh has $\mathcal{T}x$ more than Mohan has, and together they have a total of ₹y. Which of the following options represents the amount of money that Mohan has?

 - (B) $\not\equiv \left(y-\frac{x}{2}\right)$
 - (C) $\not\in \left(\frac{y}{2} x\right)$
 - (D) $\not\equiv$ (2y x)
- 20. A part of monthly expenses of a family on milk is fixed which is ₹700 and remaining varies with quantity of milk taken extra at the rate of ₹25 per litre. Taking quantity of milk required extra as x litres and total expenditure on milk as ₹y, write a linear equation from the above information.
 - (A) -25 x + v = 700
 - (B) 20 x + y = 500
 - (C) 20 x + 10 y = 300
 - (D) x + 25 y = 900

ACHIEVERS SECTION (HOTS)

21. The equations representing the given graph is ____

(A)
$$7x + 2y = 11$$
; $y - 2x = 3$

(B)
$$2x + 7y = 11$$
; $5x + (35y/2) = 25$

(C)
$$3x - 7y = 10$$
; $8y - 6x = 4$

(D)
$$3x - 4y = 1$$
; $8y - 6x = 4$

22. If the temperature of a liquid can be measured in kelvin units as x°K or in Fahrenheit units as y°F. The relation between the two systems of measurement of temperature is given by the linear equation.

$$y = \frac{9}{5}(x - 273) + 32$$

- (i) Find the temperature of the liquid in Fahrenheit if the temperature of the liquid is 313° K.
- If the temperature is 158° F, then find the temperature in Kelvin.

(ii)

150° K

243° K

343° K 150° K

23. Fill in the blanks.

- A linear equation in two variables has P solutions(s).
- (ii) The graph of **Q** line has an equation of the form x = k.
- (iii) A line parallel to x-axis cuts the y-axis at **R** point(s).
- (iv) Distance between the graph of equation y = 2 and y = -4 is **S** units.

Q

R S Zero 2

(B) Infinite Horizontal Two 6

One 6

Vertical One 2

24. Which of the following is the graph of x + y = 6and x - y = 2?

(A)

(B)

(C)

(D) None of these

25. Match the linear equations in column-I with their solutions in column-II.

Column-I

Column-II (P) 4x + 3y = 24 (i) (2, -3)

(Q)
$$\frac{x}{2} - \frac{y}{3} = 2$$

(ii) (2, 3)

(R)
$$3x + 5y = 15$$

(iii) (3, 4)

(S)
$$\frac{x-2}{3} = y-3$$
 (iv) $\left(\frac{9}{3}, \frac{6}{5}\right)$

(A)
$$(P) \rightarrow (ii), (Q) \rightarrow (i), (R) \rightarrow (iv), (S) \rightarrow (iii)$$

(B)
$$(P) \rightarrow (iii), (Q) \rightarrow (i), (R) \rightarrow (iv), (S) \rightarrow (ii)$$

(C)
$$(P) \rightarrow (ii), (Q) \rightarrow (iv), (R) \rightarrow (i), (S) \rightarrow (iii)$$

(D)
$$(P) \rightarrow (iii), (Q) \rightarrow (iv), (R) \rightarrow (i), (S) \rightarrow (ii)$$

HINTS & EXPLANATIONS

4 Linear Equations in Two Variables

- (D): Since the point (3, 4) lies on the equation 3y = ax + 7.
- $3 \times 4 = a \times 3 + 7$
- $\Rightarrow 5 = 3a \Rightarrow a = \frac{5}{3}$
- 4. (C): Infinitely many equations in x and y can be satisfied by x = 2 and y = 3.
- **5. (C)** : We have, 2x + 3y = 6

Since the line meets x-axis i.e., y = 0

- \therefore 2x + 3 × 0 = 6 \Rightarrow x = 3
- .: Required point is (3, 0)
- **6. (C)** : x y = 0 is not the equation of one of the boundary lines.
- 7. (C) 8. (A)
- **9.** (A): Since, (2, 0) is the solution of 2x + 3y = k. So (2, 0) satisfies it.
- \therefore 2 × 2 + 3 × 0 = $k \Rightarrow k = 4$
- **10. (C)** : Put x = 0 in 4x + 3y = 12, we get
- $4 \times 0 + 3y = 12 \implies y = 4$.

Put y = 0 in 4x + 3y = 12, we get

 $4x + 3 \times 0 = 12 \implies x = 3.$

So, OB = 4 units and OA = 3 units.

Now, in $\triangle AOB$, by pythagoras theorem $AB^2 = OB^2 + OA^2 \Rightarrow AB^2 = 4^2 + 3^2$

$$\Rightarrow$$
 AB² = 16 + 9 \Rightarrow AB = $\sqrt{25}$ = 5

Hence, hypotenuse = 5 units.

- 11. (C) 12. (B)
- **13.** (A) : $\ln x + y = 0$ put x = a, we get
- $a + y = 0 \Rightarrow y = -a$
- So, (a, -a) always satisfy x + y = 0.
- 14. (C): (A) The point (0, 0) satisfy the equation
- So, 8x + 7y = 0 is the equation of line whose graph passes through the origin.
- **15. (B)** : We have given, $\angle A + \angle B = 90^{\circ}$
- $\Rightarrow x + y = 90^{\circ} \Rightarrow y = (90^{\circ} x)$
- **16.** (D): Let the present ages of A, B, C and D are x, y, z and t respectively.

Since, present age of D = t = 48 years.

According to question,

x = y + 5

$$z = \frac{1}{2}y \qquad \dots (ii)$$

$$t = 2y + 8$$
 ... (iii)

From (iii), 48 = 2y + 8

$$\Rightarrow$$
 2y = 40 \Rightarrow y = 20 years

From (ii),
$$z = \frac{1}{2} \times 20 = 10$$
 years

From (i), x = 20 + 5 = 25 years

So, present ages of A, B and C are 25 years,

20 years and 10 years respectively.

17. (B): (i) Let Mayank contributed ₹ x and Sujata contributed ₹ y.

According to question,

- x + y = 1000... (1)
- (ii) Now, if Sujata contributed ₹ 475 then y = 475

From (1), $x + 475 = 1000 \implies x = 525$

- So, Mayank contributed ₹ 525.
- 18. (B): According to question, 2 × Cost of pen = Cost of note book
- \Rightarrow 2y = x \Rightarrow x 2y = 0.
- 19. (A): Amount of money Rakesh has
- = x + Amount of money Mohan has... (i)

Also, y = Total Amount of money

- \Rightarrow y = Amount of money with Rakesh
 - + Amount of money with Mohan
- \Rightarrow y = x + Amount of money with Mohan
 - + Amount of money with Mohan (From (i))
- Amount of money Mohan has $= \frac{(y-x)}{2}$
- **20.** (A) : Since, x litres is the extra quantity of milk and y be total expenditure on milk.
- :. Required linear equation is

$$700 + 25x = y \implies y - 25x = 700$$

or
$$-25x + y = 700$$

- **22.** (C): (i) Putting x = 313°K, in given equation, we get

$$y = \frac{9}{5}(313 - 273) + 32 = \frac{9}{5}(40) + 32 = 72 + 32 = 104^{\circ} \text{ F}$$

(ii) Putting, $y = 158^{\circ}$ F in given equation, we get,

$$158 = \frac{9}{5}(x - 273) + 32$$

$$\Rightarrow 158 - 32 = \frac{9}{5}(x - 273) \Rightarrow 126 = \frac{9}{5}(x - 273)$$

⇒
$$126 \times \frac{5}{9} = x - 273 \Rightarrow x = 343^{\circ} \text{ K}.$$

- 23. (C)
- **24.** (A): Putting x = 0 in x + y = 6, we get y = 6. Putting y = 0 in x + y = 6, we get x = 6

So the equation x + y = 6 passes through (0, 6) and (6, 0).

Also, putting x = 0 in x - y = 2, we get y = -2.

Putting y = 0 in x - y = 2, we get x = 2

So, the equation x - y = 2 passes through (0, -2) and (2, 0). Hence, option (A) shows the graphs of x + y = 6 and x - y = 2.

25. (B)

... (i)