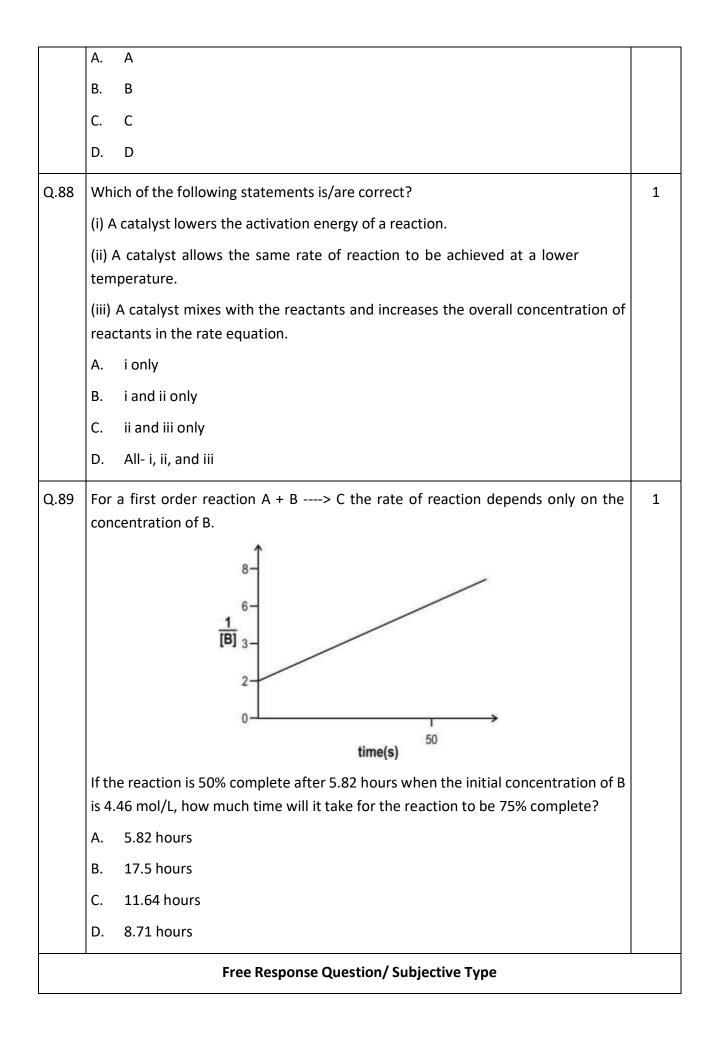
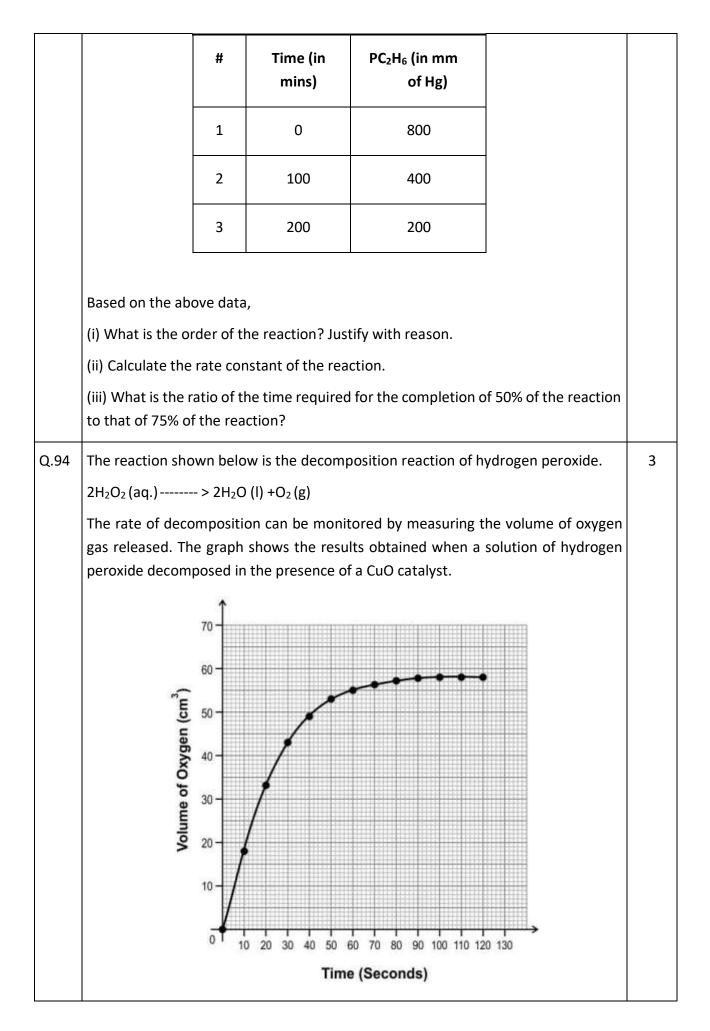
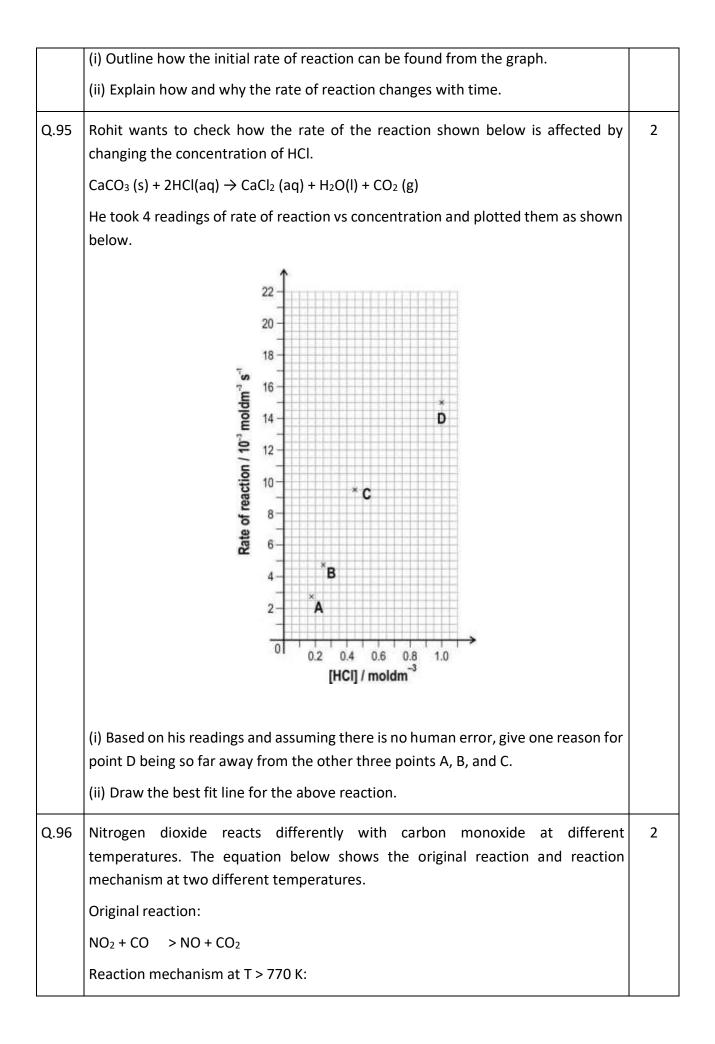
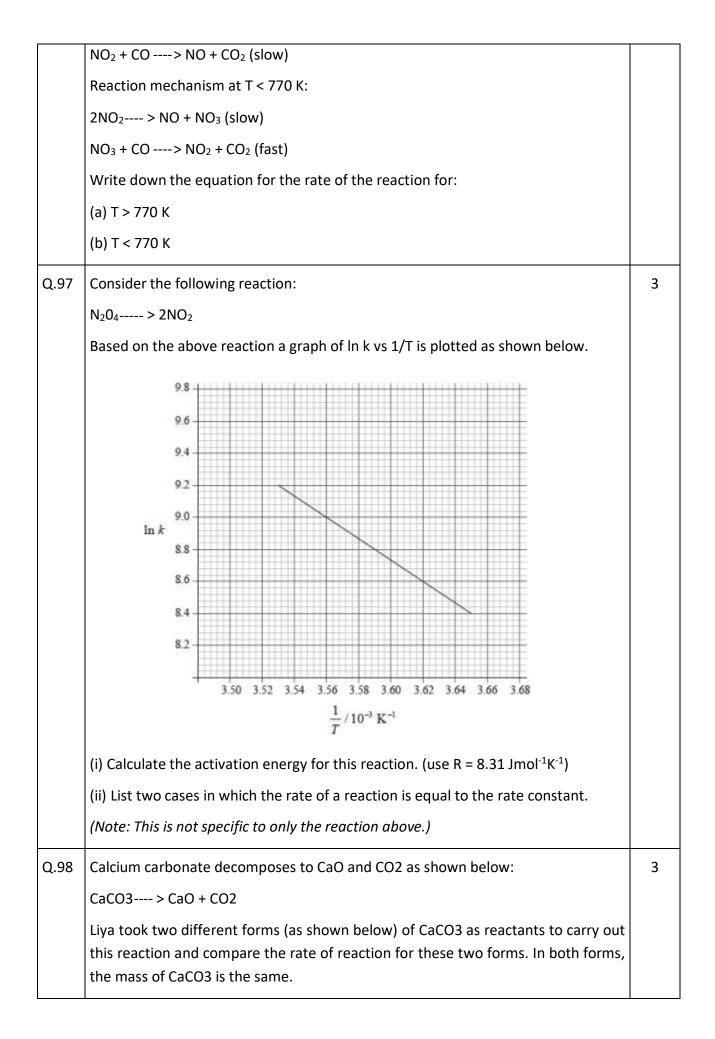

4. CHEMICAL KINETICS

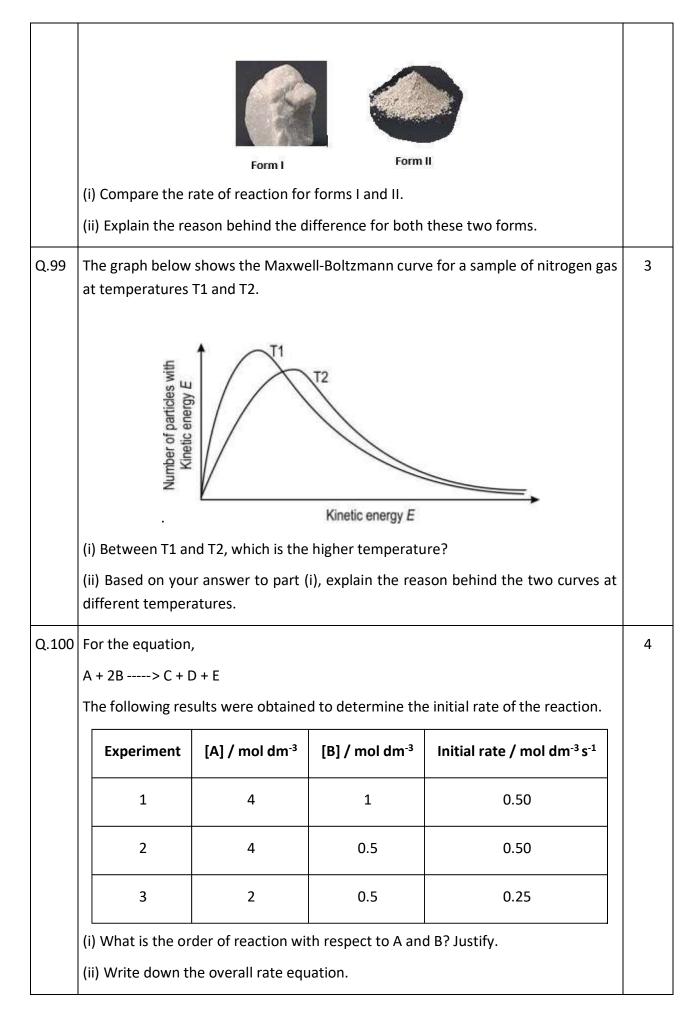

Q. No	Question	Marks		
	Multiple Choice Question			
Q.80	The reaction shown below illustrates the Haber process for manufacturing ammonia:	1		
	$N_2(g) + 3H_2(g) \xrightarrow{Fe(s)} 2NH_3(g)$			
	In this reaction, molybdenum acts as a promoter, and iron is used as a catalyst.			
	Which of these is TRUE for the reaction?			
	 Iron changes the activation energy of reaction and molybdenum increases theefficiency of the catalyst. 			
	B. Iron changes the equilibrium constant and molybdenum changes the Gibbs energy of the reaction.			
	C. Iron changes the enthalpy of reaction and molybdenum changes the equilibrium constant.			
	D. Iron and molybdenum change the Gibbs energy of the reaction.			
Q.81	Which of the following can INCREASE the rate of a chemical reaction?	1		
	P) increasing the temperature			
	Q) increasing the concentration of products			
	R) adding a catalyst			
	S) increasing the concentration of reactants			
	A. Q and S			
	B. P and Q			
	C. P, R, and S			
	D. All- P, Q, R, and S			
Q.82	The graph below shows the volume of carbon dioxide formed with time during a chemical reaction:	1		

	Volume of CO ₂ gas / cm ³ $\int_{0}^{1} \int_{1}^{1} \int_{1}$	
Q.83	 D. t4 A living organism takes in different amounts of different isotopes of the same element from the environment. The organism takes these isotopes in the same relative proportion that existed naturally in the environment. For example, it takes carbon-12 and carbon-14 and once the organism dies, it stops replenishing its carbon supply, and the total carbon-14 content in the organism slowly disappears. This is because C-14 is radioactive in nature and it decays as it's less stable whereas C-12 is very stable and does not decay. Scientists can determine how long ago an organism died by measuring how much carbon-14 is left relative to carbon-12. Similarly, the organism's age can also be found by measuring how much potassium-40 or beryllium-10 is present in relation to potassium-39 and beryllium-9. Below is the half-life of: Carbon-14 = 5730 years Potassium-40 = 1.26 billion years Based on the above data, which of the following dating methods can be used to determine the exact age of a living organism from its remains which are estimated to be 100,000 years old? 	1

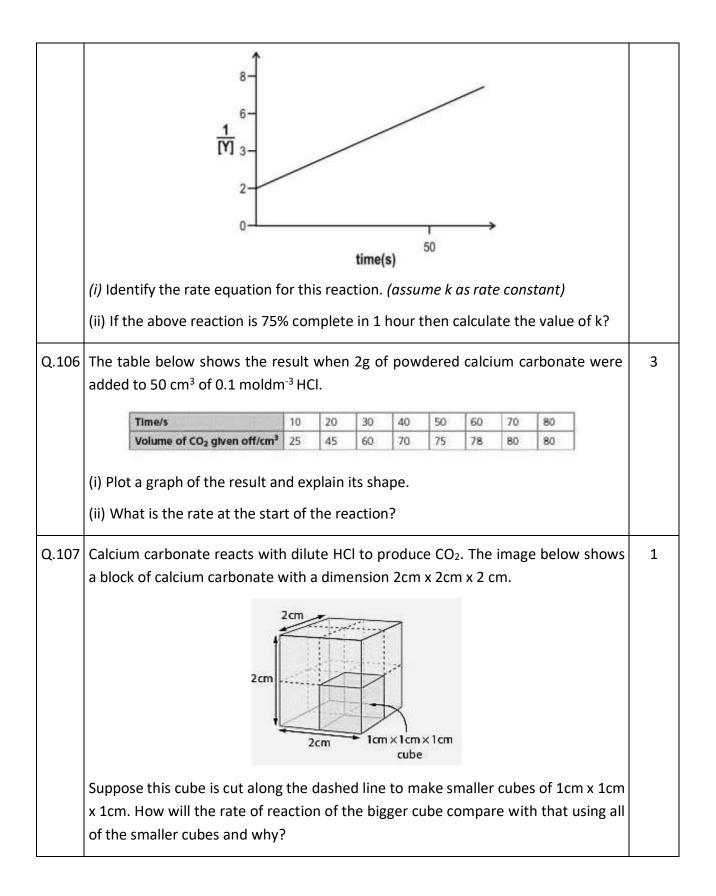


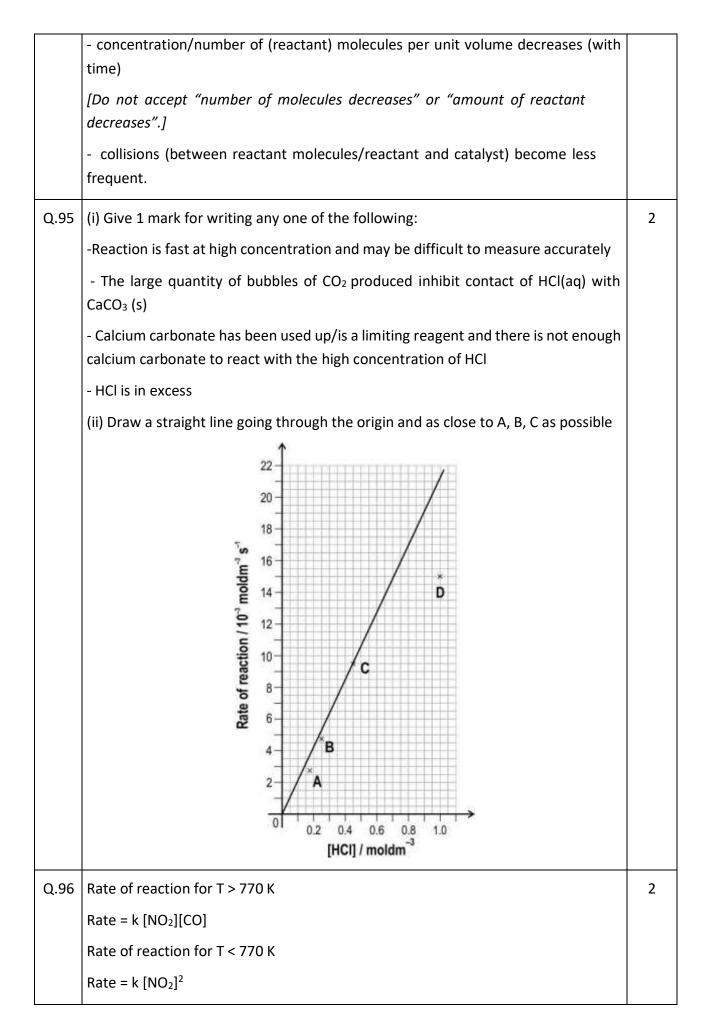


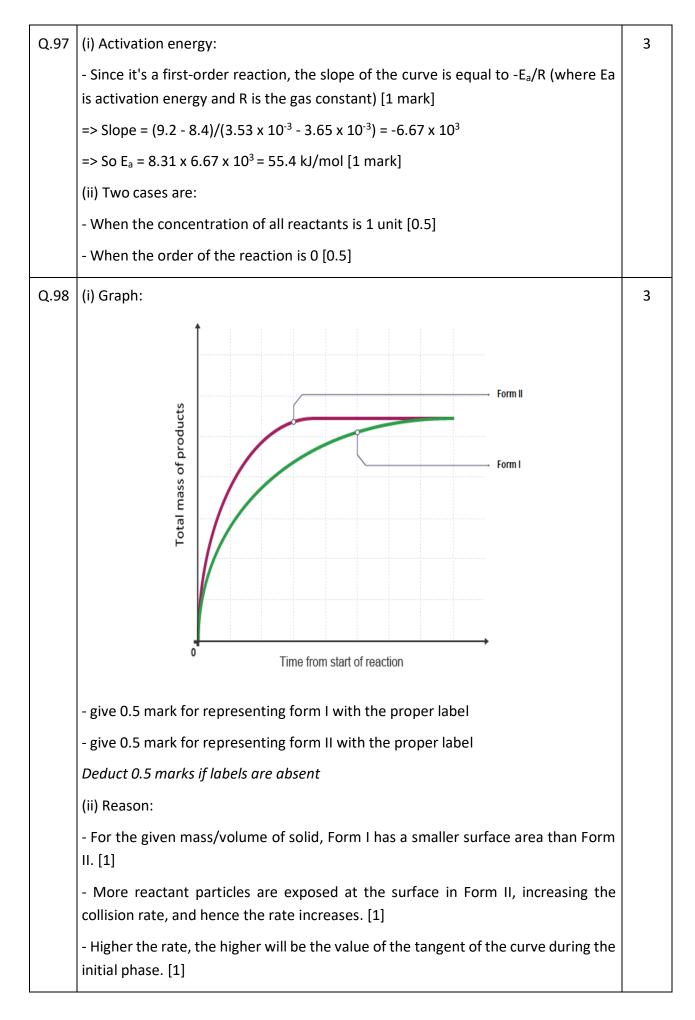




			_			
	Experiment	The initial concentration of A / mol dm ⁻³	The initial concentration of B / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹		
	1	0.12	0.26	2.10 x 10 ⁻⁴		
	2	0.36	0.26	1.89 x 10 ⁻³		
	3	0.72	0.13	3.78 x 10 ⁻³		
	between A and B.	can be used to der				
Q.91	The manufacturers of canned food use anti-microbial compounds as preservatives to control the concentration of microbes, maintaining the quality of food. The food corporation of India mandates that the concentration of a microbe in any particular canned food would be unacceptable (and the food will be expired) with a maximum +40% change from the initial concentration value of the microbe. Mitra bought canned food. She noted that the manufacturing date on the can was					2
	Infinition bought currice			' date on the ca	n was	
		on this, what should ate constant of micro		f this food?	in was	
Q.92	(Note: The average r Carbon dating is use		obial decay is 4 day ⁻¹ .	f this food?)		2
Q.92	(Note: The average r Carbon dating is use as well as human art If an archaeologist f	ate constant of micro d by archaeologists t efacts made from wo ound that the perce that carbon-14 was in	obial decay is 4 day ⁻¹ . to date trees, plants, bod and leather. ntage of carbon-14	f this food?) , and animal re in the remains	mains of an	2
Q.92	(Note: The average r Carbon dating is use as well as human art If an archaeologist f animal was 10% of w find the age of this s	ate constant of micro d by archaeologists t efacts made from wo ound that the perce that carbon-14 was in	obial decay is 4 day ⁻¹ . to date trees, plants, bod and leather. ntage of carbon-14 n the animal's body w	f this food?) , and animal re in the remains	mains of an	2
	(Note: The average r Carbon dating is use as well as human art If an archaeologist f animal was 10% of w find the age of this s (Given the half-life o	ate constant of micro d by archaeologists t efacts made from wo ound that the perce that carbon-14 was in ample.	obial decay is 4 day ⁻¹ . to date trees, plants, bod and leather. ntage of carbon-14 n the animal's body w ars)	f this food?) , and animal re in the remains /hen the anima	mains of an	2
Q.92 Q.93	(Note: The average r Carbon dating is use as well as human art If an archaeologist f animal was 10% of w find the age of this s (Given the half-life o	ate constant of micro d by archaeologists t efacts made from wo ound that the perce that carbon-14 was in ample. f carbon-14= 5730 year position reaction of	obial decay is 4 day ⁻¹ . to date trees, plants, bod and leather. ntage of carbon-14 n the animal's body w ars)	f this food?) , and animal re in the remains /hen the anima	mains of an	

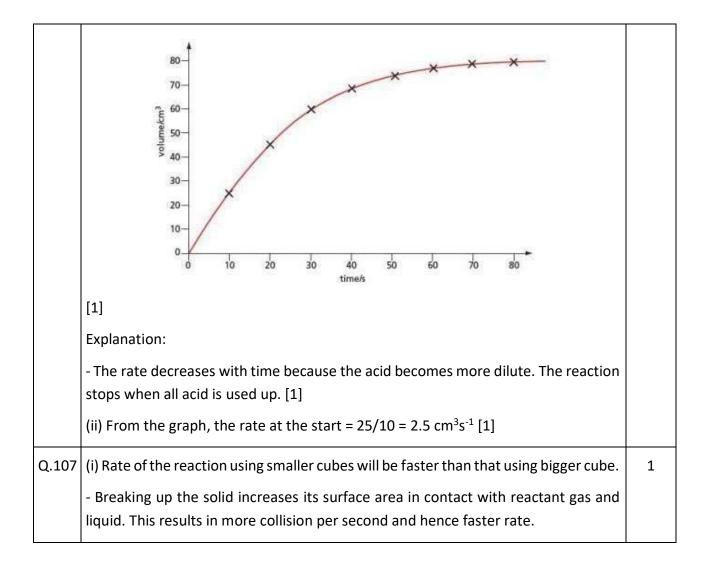



	(iii) Find the value of the rate constant for this reaction.			
Q.101	Graphically represent:	3		
	(i) Concentration of a reactant X vs time for a ZERO order reaction.			
	(ii) Rate of reaction vs concentration of a reactant X for a ZERO order reaction.			
	(iii) Rate of reaction vs concentration of a reactant X for a FIRST order reaction.			
Q.102	The rate of a reaction at 700K is 4 times faster than the rate at a lower temperature T. The energy of activation is 20.19×10^3 J/mol and the rate constant at 700K is $0.08s^{-1}$.	3		
	(i) Calculate the rate constant at temperature T.			
	(ii) Find temperature T.			
	(use R = 8.31 J/mol K)			
Q.103	In the following reaction $K_3PO_4 > 3K^+ + PO_4^{3-}$	3		
	the rate of formation of PO_4^{3-} is 50 mol litre ⁻¹ s ⁻¹ .			
	(i) What is the rate of formation of potassium ions?			
	(ii) What is the rate of loss of K_3PO_4 ?			
Q.104	For the following reaction	2		
	$2H_2O_2 > O_2 + 2H_2O$			
	the curve below shows how the volume of oxygen formed varies with time.			
	Olume of oxygen formed			
	0 Time			
	(i) Explain the shape of the graph in terms of the rate of formation of oxygen.			
Q.105	.For the first order reaction, $X + Y > Z$ the rate of reaction depends only on the concentration of Y.	3		



Answer Key & Marking Scheme

Q. No	Answers	Marks
Q.80	A. Iron changes the activation energy of reaction and molybdenum increases the efficiency of the catalyst.	1
Q.81	C. P, R, and S	1
Q.82	A. t1	1
Q.83	C. II and III only	1
Q.84	t _{1/2} ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	1
Q.85	A. P	1
Q.86	C. 3	1
Q.87	C. C	1
Q.88	B. i and ii only	1
Q.89	B. 17.5 hours	1
Q.90	 Deducing rate expression: Consider experiments 1 and 2: [B] = constant; [A] increases by 3; rate increases by 3² therefore 2nd order with respect to A [1 mark] Consider experiments 2 and 3: [A] increases by 2; the rate should increase × 2² but only increases × 2. Therefore, halving [B] halves rate and so 1st order with respect to B [1 mark] Rate equation: rate = k[A]² [B] [1 mark] 	3
Q.91	The expiry date of food:	2


	- Average rate of reaction = average change in concentration/ Δt [1 mark]	
	- Δt = 40/4 per day = 10 days	
	- Expiry date = 10th April 2022 [1 mark]	
Q.92	Age of sample	2
	- Since the concentration of ¹⁴ C decays with time at a particular rate (which depends on initial concentration), the kinetics for first-order could be used to identify the time required to change in the concentration of ¹⁴ C.	
	=> k = 0.693/ t _{1/2} = 0.693 / 5730 [1 mark]	
	=> t = (2.303/k) log(A ₀ /A)	
	=> t = (2.303 x 5730/0.693) x log 100/10	
	=> t = 19042 years (approx) [1 mark]	
Q.93	(i) Order of reaction:	3
	- Based on the table, the decrease in partial pressure of ethane is constant over time that is $t_{1/2}$ is constant. So it's a first-order reaction. [1 mark]	
	(No marks if the reason is not given)	
	(ii) Rate constant:	
	- For first-order reaction, rate constant (k) is given by $0.693/t_{1/2}$	
	=> k = 0.693/100 = 0.00693 min ⁻¹	
	or	
	=> k = 0.00011 s ⁻¹ [1mark]	
	give 1 mark for any value in mins or seconds	
	(iii) Ratio:	
	- Time required for the completion of 50% of the reaction = 1 x $t_{1/2}$	
	- Time required for the completion of 75% of the reaction = $2 \times t_{1/2}$	
	- So the ratio = 1/2 [1 mark]	
Q.94	(i) how to find the rate of reaction from a graph:	3
	- Draw a tangent to the curve at (0,0)	
	- Calculate the slope of the tangent. The slope of the tangent is the rate of reaction	
	(ii) Reason for rate change:	
	- Rate decreases with time	
J		

Q.99	(i) T2>T1	3		
	(ii) Explanation:			
	- Mean Kinetic energy of the gaseous particle is directly proportional to the temperature of the reaction mixture. So higher energy means a wider spread of values.			
	- Higher the energy, the higher will be the proportion of successful collisions.			
	-This means, a higher proportion of the particles possess the minimum amount of energy (activation energy) to cause a chemical reaction			
	- Hence, with higher temperatures, the Boltzmann distribution curve flattens, and the peak shifts to the right.			
	Note: give 0.5 marks for each point			
Q.100	(i) Order of reaction:	4		
	- For exp. 1 and 2, [A] is constant, but [B] is halved. However, rate is constant. So, it's zero-order wrt B. [1 mark]			
	- For experiments 2 and 3, [A] is halved with constant [B] and rate is also halved, so it's 1st order wrt A. [1 mark]			
	(ii) Rate of reaction = k[A]			
	(iii) k = 0.50/4 = 0.125 s ⁻¹			
Q.101		3		
	$X \downarrow$ t $Rate \downarrow$ t $Rate \downarrow$ K = 1 K =			
	(i) (ii) (iii)			
Q.102	(i) Let the rate constant at 700K be k1 and that at T be k2.	3		
	=> k1/k2 = 4			
	=> k2 = 0.08/4 = 0.02 [1 mark]			
	(ii) Temperature:			
	=> As per the Arrhenius equation, $k1/k2 = e^{-Ea/(R \times 700)} / e^{-Ea/(R \times T)}$			
	$=>4 = e^{-Ea/(R \times 700)} / e^{-Ea/(R \times T)} [1mark]$			

	Solving for T gives, T = 500 K [1 mark]	
Q.103	The overall rate of a reaction is given by:	3
	-1/1 Δ[K ₃ PO ₄]/Δt = +1/3 Δ[K ⁺]/Δt = +1/1 Δ[PO ₄ ³⁻]/Δt [1 mark]	
	(i) rate of formation of potassium ions	
	$=> +1/3 \Delta[K^+]/\Delta t = +50$	
	=> Δ [K ⁺]/ Δ t = 150 mol litre ⁻¹ s ⁻¹ [1 mark]	
	(ii) Rate of loss of K ₃ PO ₄	
	$=> -1/1 \Delta [K_3 PO_4] / \Delta t = +50$	
	$=> \Delta[K_3PO_4]/\Delta t = -50 \text{ gs}^{-1} [1 \text{ mark}]$	
Q.104	(i) Explanation:	2
	- the slope of the curve defines the rate of formation of oxygen. Initially, the slope is high which means the rate of formation is high. [0.5]	
	- After some time slope is constant/zero, which means the reactants are exhausted and the reaction is completed so the volume is constant. [0.5]	
Q.105	(i) Rate equation	3
	Rate = $k[Y]^2$	
	(ii) Time for completion to 75%	
	For second order, $1/[A_0] = 1/[A] + kt$; where A is initial concentration, A_0 is concentration of A left after 1 hour. [1 mark]	
	=> 1/0.25 = 1/1 + k x 1	
	$=> k = 3 Lmol^{-1}h^{-1}[1 mark]$	
Q.106	(i) Graph:	3

