Series : HMJ/5

SET - 3.

कोड नं. Code No.

65/5/3

रोल नं. Roll No.

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें। Candidates must write the Code on the title page of the answer-book.

नोट

- (I) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं।
- (II) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- (III) कृपया जाँच कर लें कि इस प्रश्न~पत्र में 36 प्रश्न
- (IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- (V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका में कोई उत्तर नहीं लिखेंगे।

(I) Please

- (I) Please check that this question paper contains 15 printed pages.
 (II) Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- (III) Please check that this question paper contains 36 questions.
- (IV) Please write down the Serial Number of the question in the answer-book before attempting it.
- (V) 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

गणित 🎇

MATHEMATICS

निर्धारित समय: 3 घण्टे

Time allowed : 3 hours

अधिकतम अंक : 80

Maximum Marks: 80

35/5/3.

334C

1

P.T.O.

निर्देश:

तिखत निर्देशों को बहुत सावधानी से पढ़िए और उनका अनुपालन कीजिए :

- (i) प्रश्न-पत्र चार खंडों में विभाजित किया गया है क, ख, ग एवं घ। इस प्रश्नपत्र में 36 प्रश्न है। सभी प्रश्न अनिवार्य हैं।
 - (ii) खण्ड-क में प्रश्न संख्या 1 से 20 तक 20 प्रश्न हैं एवं प्रत्येक प्रश्न एक अंक का है।
 - (iii) खण्ड-ख में प्रश्न संख्या 21 से 26 तक 6 प्रश्न हैं एवं प्रत्येक प्रश्न दी अंकों का है।
 - (iv) खण्ड-ग में प्रश्न संख्या 27 से 32 तक 6 प्रश्न हैं एवं प्रत्येक प्रश्न चार अंकों का है।
 - (v) खण्ड-घ में प्रश्न संख्या 33 से 36 तक 4 प्रश्न हैं एवं प्रत्येक प्रश्न छ: अंकों का है।
 - (vi) प्रश्न-पत्र में समग्र पर कोई विकल्प नहीं है। तथापि एक-एक अंक वाले तीन प्रश्नों में, दो-दो अंकों वाले दो प्रश्नों में, चार-चार अंकों वाले दो प्रश्नों में और छ:-छ: अंकों वाले दो प्रश्नों में आंतरिक विकल्प दिए गए हैं। ऐसे प्रश्नों में केवल एक ही विकल्प का उत्तर लिखिए।
 - (vii) इसके अतिरिक्त, आवश्यकतानुसार, प्रत्येक खण्ड और प्रश्न के साथ यथोचित निर्देश दिए गए हैं।
 - (viii) कैलकुलेटरों के प्रयोग की अनुमति नहीं है।

खण्ड - क

प्रश्न 1 से 10 तक के सभी प्रश्न बहुविकल्पी हैं। सही विकल्प चुनिए:

1. यदि A एकं कोटि 3 का विषम सममित आव्यूह है, तो |A| का मान है

(a) 3

(b) 0

(c) 9

(d) 27

यदि î, ĵ, k तीन परस्पर लंबवत मात्रक सदिश हैं, तो

(a) $\hat{i} \cdot \hat{j} = 1$

(b) $\hat{i} \times \hat{j} = 1$

(c) $\hat{i} \cdot \hat{k} = 0$

(d) $\hat{i} \times \hat{k} = 0$

General Instructions:

Read the following instructions very carefully and strictly follow them:

- This question paper comprises four sections A, B, C and D. (i) This question paper carries 36 questions. All questions are compulsory.
- Section A Question no. 1 to 20 comprises of 20 questions of one mark (ii) each.
 - Section B Question no. 21 to 26 comprises of 6 questions of two (iii) marks each.
 - Section C Question no. 27 to 32 comprises of 6 questions of four (iv) marks each.
 - Section D Question no. 33 to 36 comprises of 4 questions of six (v)
 - There is no overall choice in the question paper. However, an internal choice has been provided in 3 questions of one mark, 2 questions of two (vi) marks, 2 questions of four marks and 2 questions of six marks. Only one of the choices in such questions have to be attempted.
 - (vii) In addition to this, separate instructions are given with each section and question, wherever necessary.
 - Use of calculators is not permitted.

Section - A

Question numbers 1 to 10 are multiple choice questions. Select the correct

- If A is a skew symmetric matrix of order 3, then the value of |A| is
 - (a) 3
- (c) 9
- 2. If \hat{i} , \hat{j} , \hat{k} are unit vectors along three mutually perpendicular directions, then
 - (a) $\hat{i} \cdot \hat{j} = 1$
- (b) $\hat{i} \times \hat{j} = 1$
- (c) $\hat{i} \cdot \hat{k} = 0$
- (d) $\hat{i} \times \hat{k} = 0$

	7F - St	8 80 9			(2)
3.	ताश के 52 पत्तों	की एक गड्डी से एक पत्ता,	यादृच्छया निकाला जाता	है। यदि यह पत्ता बेगा	न है. तो
	इसके हुकुम का प	त्ता होने की प्रायिकता होगी	e e e e e e e e e e e e e e e e e e e	inustegi paya do	L Mrs.
	(a) $\frac{1}{3}$	(b) $\frac{4}{13}$	(c) $\frac{1}{4}$	(d) $\frac{1}{2}$	
72					

- 4. यदि A एक 3 × 3 आव्यूह है और |A| = 8 है, तो |3A| बराबर है
 (a) 8 (b) 24 (c) 72 (d) 216
- 5. $\int x^2 e^{x^3} dx = \sqrt{16}$ (a) $\frac{1}{3} e^{x^3} + C$ (b) $\frac{1}{3} e^{x^4} + C$ (c) $\frac{1}{2} e^{x^3} + C$ (d) $\frac{1}{2} e^{x^2} + C$
- 6. यदि $y = \log_e\left(\frac{x^2}{e^2}\right)$ है, तो $\frac{d^2y}{dx^2}$ बराबर है।

 (a) $-\frac{1}{x}$ (b) $-\frac{1}{x^2}$ (c) $\frac{2}{x^2}$ (d) $-\frac{2}{x^2}$
- 7. एक पासा एक बार उछाला गया । माना घटना जहाँ पासे की संख्या 3 से अधिक है, को A तथा घटना जहाँ पासे की संख्या 5 से कम है, को B से प्रकट किया गया है । तब $P(A \cup B)$ है
 - (a) $\frac{2}{5}$ (b) $\frac{3}{5}$ (c) 0 (d) 1
- 8. \overrightarrow{ABCD} एक समचतुर्भुज है जिसके विकर्ण \overrightarrow{E} पर परस्पर काटते हैं । \overrightarrow{RBCD} एक समचतुर्भुज है जिसके विकर्ण \overrightarrow{E} पर परस्पर काटते हैं । \overrightarrow{RBCD} एक समचतुर्भुज है जिसके विकर्ण \overrightarrow{E} पर परस्पर काटते हैं ।
 - (a) $\overrightarrow{0}$ (b) \overrightarrow{AD} (c) $\overrightarrow{2BC}$ (d) $\overrightarrow{2AD}$
- 9. मूल बिन्दु (0, 0, 0) से समतल -2x + 6y 3z = -7 की दूरी है (a) 1 इकाई (b) $\sqrt{2}$ इकाई (c) $2\sqrt{2}$ इकाई (d) 3 इकाई

P.T.O.

		le of 50 ploying (ards. Given that the a card of spade is	
A card is picke	ed at random from a	pack of 52 playing	a and of spade is	
nicked card is	a queen, the probabi	lity of this card to be	3. X	
	λ	1	(d) $\frac{1}{2}$	
(a) $\frac{1}{3}$	(b) $\frac{4}{18}$	(c) $\frac{1}{4}$	(d) 2	
(a) 3	19			
N				
#1.4	a such that IA	l = 8, then $ 3A $ equa	ls.	
4. If A is a 3 ×	3 matrix such that A	(c) 72	(d) 216	
(a) 8	(b) 24	(c) 12		
(ω)				
		A Pile		
$5. \int x^2 e^{x^3} dx$	equals	**	8 90 8	
3. j	1 -4	(c) $\frac{1}{2} e^{x^3} + C$	(a) $\frac{1}{2} e^{x^2} + C$	
$\sqrt{\frac{1}{2}} \alpha x^3 +$	C (b) $\frac{1}{3} e^{x^4} + C$	(c) $\frac{1}{2}$ e ¹ + C	(a) 2 c	
(a) 3 °	15	a .		
(3	$\left(\frac{x^2}{x^2}\right)$, then $\frac{d^2y}{dx^2}$ equals			
6. If $y = \log_e \left(\frac{1}{e} \right)$	$\frac{1}{\sqrt{2}}$, then dx^2			
<i>i</i> .	(b) $-\frac{1}{x^2}$	(c) $\frac{2}{r^2}$	(d) $-\frac{2}{r^2}$	
(a) $-\frac{1}{r}$	(b) $-\frac{1}{x^2}$	(c) x^2	$(x) - x^2$	
	1,000		¥	
		11	on obtained is greater	
7. A die is throu	wn once. Let A be the	event that the number	then 5 Then	
than 3. Let I	B be the event that	the number obtained	is less than 5. Then	
$P(A \cup B)$ is	9		ZD 1	
(a) $\frac{2}{5}$	(b) $\frac{3}{5}$	(c) 0	(d) 1	
(a) 5				
		E		
	ombus whose diagor	E Th	nen EA + EB + EC +	
8. ABCD is a rh	ombus whose diagor	ials intersect at B. 11		
o. 11002 -		:0		
ED equals			_	
	_ →	(c) 2BC	(d) 2AD	
(a) $\overrightarrow{0}$	(b) \overrightarrow{AD}	(c) 250		
(4)				
A STATE OF THE STA		From the plane $-2x + 6$	3y - 3z = -718	
. The distance of	stance of the origin $(0, 0, 0)$ from the plane $-2x + (c) = 2\sqrt{2}$ units		(d) 3 units	
	(b) $\sqrt{2}$ units	(c) $2\sqrt{2}$ units		
(a) 1 unit	(D) V2 william		P.T.O.	

(a) 1 unit

-). असमिका 2x + 3y > 6 का आलेख होता है :
 - (a) अर्धतल जिसमें मूल बिन्दु स्थित है।
 - (b) अर्थतल जिसमें मूल बिन्दु स्थित नहीं है, और रेखा 2x + 3y = 6 के बिन्दु भी सम्मिलित नहीं है।
 - (c) पूर्ण XOY-तल, जिसमें रेखा 2x + 3y = 6 के बिन्दु सम्मिलित नहीं है।
 - (d) पूर्ण XOY-तल

प्रश्न 11 से 15 में, खाली स्थान भरने हैं

- 11. यदि A और B कोटि 3 के वर्ग आव्यूह हैं और |A| = 5, |B| = 3 हैं, तो |3 AB| का मान है _____
 - 12. फलन $f(x) = ax + \frac{b}{x}$ (a > 0, b > 0, x > 0) का न्यूनतम मान है _____.
 - 13. बिन्दुओं (3, 4, -7) तथा (1, -1, 6) से गुजरने वाली रेखा का सिदश समीकरण है ______.
 अथवा
 न्यूनतम दूरी रेखा दोनों विषमतलीय रेखाओं पर ______ होती है ।
 - 14. अवकल समीकरण $x \frac{\mathrm{d}y}{\mathrm{d}x} + 2y = x^2$ का समाकलन गुणक है _____.

अथवा

अवकल समीकरण
$$1+\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2=x$$
 की घात _____ है।

15. समुच्चय A पर परिभाषित एक संबंध _____ संबंध कहलाता है, यदि A का प्रत्येक अवयव स्वयं से संबंधित है।

प्रश्न 16 से 20 तक के सभी प्रश्न लघु उत्तरीय प्रश्न हैं

16. आव्यूह $\left[egin{array}{cc} 1 & -2 \ 4 & 3 \end{array}
ight]$ से सभी अवयवों के सह खंड ज्ञात कीजिए।

- 10. The graph of the inequality 2x + 3y > 6 is
 - (a) half plane that contains the origin.
 - (b) half plane that neither contains the origin nor the points of the line 2x + 3y = 6.
 - (c) whole XOY plane excluding the points on the line 2x + 3y = 6.
 - (d) entire XOY plane.

Fill in the blanks in Questions from 11 to 15.

- 11. If A and B are square matrices each of order 3 and |A| = 5, |B| = 3, then
- The least value of the function $f(x) = ax + \frac{b}{x}$ (a > 0, b > 0, x > 0) is
- 13. The vector equation of a line which passes through the points (3, 4, -7)

OR

The line of shortest distance between two skew lines is _____ to both the

14. The integrating factor of the differential equation $x \frac{dy}{dx} + 2y = x^2$ is _____.

The degree of the differential equation $1 + \left(\frac{dy}{dx}\right)^2 = x$ is _

- 15. A relation in a set A is called _____ relation, if each element of A is related to itself.
 - Q. Nos. 16 to 20 are of very short answer type questions.
- 16. Find the cofactors of all the elements of $\begin{bmatrix} 1 & -2 \\ 4 & 3 \end{bmatrix}$.

- 17. फलन $f(x)=x|x|, x\in R$, की x=0 पर अवकलनीयता की जाँच कीजिए
- 18. मान ज्ञात कीजिए $\sin^{-1}\left[\sin\left(-\frac{17\pi}{8}\right)\right]$.
- 19. मान ज्ञात कीजिए $\int_{1}^{4} |x-5| dx$
- 20. यदि $f(x) = x^4 10$ है, तो f(2.1) का सन्निकट मान ज्ञात कीजिए। अथवा

वक्र $y=2\sin^2{(3x)}$ के बिन्दु $x=\frac{\pi}{6}$ पर स्पर्श रेखा की ढ़ाल ज्ञात कीजिए ।

खण्ड - ख

प्रश्न संख्या 21 से 26 तक प्रत्येक प्रश्न के 2 अंक हैं।

21. ज्ञात कीजिए :
$$\int \frac{x+1}{(x+2)(x+3)} \, \mathrm{d}x$$

22. यदि $f(x) = \frac{4x+3}{6x-4}$, $x \neq \frac{2}{3}$ हो, तो दर्शाइए कि सभी $x \neq \frac{2}{3}$ के लिए (fof) (x) = x, f का प्रतिलोम भी लिखिए।

अथवा

जाँच कीजिए कि क्या $\mathbb R$ में $\mathbb R=\{(a,\ b): a< b\}$ द्वारा परिभाषित संबंध (i) सममित है,

23. A और B दो स्वतंत्र घटनाएँ हैं, जहाँ P(A)=0.3 तथा $P(B)=0.6, P(A'\cap B')$ ज्ञात कीजिए ।

24. मान ज्ञात कीजिए
$$\int\limits_{1}^{2} \left[\frac{1}{x} - \frac{1}{2x^2} \right] e^{2x} dx$$

- 17. Let f(x) = x |x|, for all $x \in R$ check its differentiability at x = 0.
- 18. Find the value of $\sin^{-1} \left[\sin \left(-\frac{17\pi}{8} \right) \right]$.
 - 19. Find the value of $\int_{1}^{4} |x-5| dx$.
 - 20. If $f(x) = x^4 10$, then find the approximate value of f(2.1).

Find the slope of the tangent to the curve $y = 2 \sin^2(3x)$ at $x = \frac{\pi}{6}$.

Section - B

Q. Nos. 21 to 26 carry 2 marks each.

- 21. Find $\int \frac{x+1}{(x+2)(x+3)} dx$.
- 22. If $f(x) = \frac{4x+3}{6x-4}$, $x \neq \frac{2}{3}$, then show that (fof) (x) = x, for all $x \neq \frac{2}{3}$. Also, write inverse of f.

OR

Check if the relation R in the set \mathbb{R} of real numbers defined as $\mathbb{R} = \{(a, b) : a < b\}$ is (i) symmetric, (ii) transitive

- 23. Given two independent events A and B such that P(A) = 0.3 and P(B) = 0.6, find $P(A' \cap B')$
- 24. Evaluate $\int_{1}^{2} \left[\frac{1}{x} \frac{1}{2x^2} \right] e^{2x} dx$.

P.T.O.

यदि $x = a \cos \theta$; $y = b \sin \theta$ हो, तो $\frac{d^2y}{dx^2}$ ज्ञात कीजिए।

अथवा

 $\mathrm{e}^{\mathrm{cosx}}$ के सापेक्ष $\sin^2 x$ का अवकलज ज्ञात कीजिए।

26. मान ज्ञात कीजिए : $\int_{0}^{1} \tan^{-1} \left(\frac{1 - 2x}{1 + x - x^2} \right) dx$

खण्ड – ग

प्रश्न संख्या 27 से 32 तक प्रत्येक प्रश्न के 4 अंक हैं।

प्रश्न संख्या 27 से 32 तक प्रत्येक प्रश्न के 4 जन ए हल कीजिए।
$$27. \sin^{-1}\left(\frac{5}{x}\right) + \sin^{-1}\left(\frac{12}{x}\right) = \frac{\pi}{2} (x \neq 0)$$
 को x के लिए हल कीजिए।

- अवकल समीकरण $ye^{x/y} dx = (xe^{x/y} + y^2) dy$, $y \ne 0$ का व्यापक हल ज्ञात कीजिए।
- यदि $y = (\log x)^x + x^{\log x}$ है, तो $\frac{\mathrm{d}y}{\mathrm{d}x}$ ज्ञात कीजिए।
- सात ताजे सेबों में तीन खराब सेब मिला दिए जाते हैं । इसके बाद तीन सेब उत्तरोत्तर प्रतिस्थापना के साथ निकाले जाते हैं। खराब सेबों की संख्या का प्रायिकता बंटन ज्ञात कीजिए। खराब सेबों की संख्या का माध्य ज्ञात कीजिए।

दुकान X में एकसमान दिखने वाले 30 डिब्बे A प्रकार के घी के व 40 डिब्बे B प्रकार के घी के बेचने के लिए रखे गए हैं। जबकि दुकान Y में, एकसमान दिखने वाले 50 डिब्बे A प्रकार के घी के व 60 डिब्बे B प्रकार के घी के रखे गये हैं। यादृच्छता एक डिब्बा किसी एक दुकान से खरीदा जाता है और पाया जाता है कि यह डिब्बा B प्रकार के घी का है। प्रायिकता ज्ञात कीजिए कि यह डिब्बा दुकान Y का है।

.65/5/3.

25. If
$$x = a \cos \theta$$
; $y = b \sin \theta$, then find $\frac{d^2y}{dx^2}$.

OR

Find the differential of $\sin^2 x$ w.r.t. $e^{\cos x}$.

26. Find the value of
$$\int_{0}^{1} \tan^{-1} \left(\frac{1-2x}{1+x-x^2} \right) dx.$$

Section - C

Q. Nos. 27 to 32 carry 4 marks each.

Q. Nos. 27 to 32

27. Solve the equation
$$x : \sin^{-1}\left(\frac{5}{x}\right) + \sin^{-1}\left(\frac{12}{x}\right) = \frac{\pi}{2} (x \neq 0)$$

- Find the general solution of the differential equation $ye^{x/y} dx = (xe^{x/y} + y^2) dy, y \neq 0$
- If $y = (\log x)^x + x^{\log x}$, then find $\frac{dy}{dx}$.
- Three rotten apples are mixed with seven fresh apples. Find the probability distribution of the number of rotten apples, if three apples are drawn one by one with replacement. Find the mean of the number of rotter apples.

OR

In a shop X, 30 tins of ghee of type A and 40 tins of ghee of type B whic look alike, are kept for sale. While in shop Y, similar 50 tins of ghee of tyr A and 60 tins of ghee of type B are there. One tin of ghee is purchased from one of the randomly selected shop and is found to be of type B. Find tl probability that it is now

- 31. एक कम्पनी प्लाइवुड के दो प्रकार के अनूठे स्मृति चिह्न का निर्माण करती है । A प्रकार के प्रति स्मृति चिह्न के लिए 8 के निर्माण में 5 मिनट काटने व 10 मिनट जोड़ने में लगते हैं । B प्रकार के प्रति स्मृति चिह्न के लिए 8 मिनट काटने व 8 मिनट जोड़ने में लगते हैं । दिया गया है कि काटने के लिए कुल समय 3 घंटे 20 मिनट तथा जोड़ने के लिए 4 घंटे उपलब्ध हैं । प्रत्येक A प्रकार के स्मृति चिह्न पर ₹ 100 और प्रत्येक B प्रकार के स्मृति चिह्न पर ₹ 120 का लाभ होता है । ज्ञात कीजिए कि लाभ के अधिकतमीकरण के लिए प्रत्येक के स्मृति चिह्न पर ₹ 120 का लाभ होता है । ज्ञात कीजिए कि लाभ के अधिकतमीकरण के लिए प्रत्येक प्रकार के कितने–िकतने स्मृति चिह्नों को कम्पनी द्वारा निर्माण करना चाहिए । रैखिक प्रोग्रामन समस्या बनाकर इसे ग्राफ द्वारा हल कीजिए।
 - 32. यदि सदिश $\vec{a}=\hat{1}+2\hat{j}+3\hat{k}$ तथा $\vec{b}=2\hat{1}+4\hat{j}-5\hat{k}$ एक समांतर चतुर्भुज की दो संलग्न भुजाओं को निरूपित करते हों, तो चतुर्भुज के विकर्णों के समांतर मात्रक सदिश ज्ञात कीजिए।

अथवा

सिंदशों का प्रयोग करके, त्रिभुज ABC जिसके शीर्ष A (1, 2, 3), B(2, -1, 4) तथा C (4, 5, -1), का क्षेत्रफल ज्ञात कीजिए !

खण्ड – घ

प्रश्न संख्या 33 से 36 तक प्रत्येक प्रश्न के 6 अंक हैं।

- 33. बिन्दु P(3,4,4) से उस बिन्दु की दूरी ज्ञात कीजिए जिस पर बिन्दुओं A(3,-4,-5) तथा B(2,-3,1) को मिलाने वाली रेखा, समतल 2x+y+z=7 को काटती है।
- 34.~~(ax+by) का न्यूनतम मान ज्ञात कीजिए, जहाँ x $y=c^2$

company manufactures two types of novelty souvenirs made of plywood. ouvenirs of type A requires 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 8 minutes each for assembling. Given that total time for cutting is 3 hours 20 minutes and for assembling 4 hours. The profit for type A souvenir is ₹ 100 each and for type B souvenir, profit is ₹ 120 each. How many souvenirs of each type should the company manufacture in order to maximize the profit? Formulate the problem as an LPP and solve it graphically.

32. If $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ represent two adjacent sides of a parallelogram, find unit vectors parallel to the diagonals of the parallelogram.

OR

Using vectors, find the area of the triangle ABC with vertices A (1, 2, 3), B(2, -1, 4) and C (4, 5, -1).

Section - D

Q. 33 to 36, carry 6 marks each.

- 33. Find the distance of the point P(3, 4, 4) from the point, where the line joining the points A(3, -4, -5) and B(2, -3, 1) intersects the plane 2x + y + z = 7.
- 34. Find the minimum value of (ax + by), where $xy = c^2$.

P.T.O.

35. यदि a, b, c गुणोत्तर श्रेढ़ी के क्रमशः p, q, r वें पद हैं, तो सिद्ध कीजिए कि

$$\begin{vmatrix} \log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1 \end{vmatrix} = 0$$

अथवा

यदि
$$A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$$
है, तो A^{-1} ज्ञात कीजिए ।

 A^{-1} का प्रयोग करके, निम्न समीकरण निकाय का हल ज्ञात कीजिए।

$$2x - 3y + 5z = 11$$

 $3x + 2y - 4z = -5$
 $x + y - 2z = -3$

36. समाकलन के प्रयोग से दो वृत्तों $x^2 + y^2 = 9$ एवं $(x - 3)^2 + y^2 = 9$ के मध्यवर्ती क्षेत्र का क्षेत्रफल ज्ञात कीजिए।

अथवा

योग की सीमा के रूप में निम्न समाकलन का मान ज्ञात कीजिए:

$$\int_{1}^{4} (x^2 - x) \, \mathrm{d}x$$

35. If a, b, c are pth, qth and rth terms respectively of a G.P, then prove that

$$\begin{vmatrix} \log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1 \end{vmatrix} = 0$$

OR

If
$$A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$$
, then find A^{-1} .

Using A^{-1} , solve the following system of equations:

$$2x - 3y + 5z = 11$$

 $3x + 2y - 4z = -5$
 $x + y - 2z = -3$

36. Using integration find the area of the region bounded between the two circles $x^2 + y^2 = 9$ and $(x-3)^2 + y^2 = 9$.

OR

Evaluate the following integral as the limit of sums $\int_{1}^{4} (x^2 - x) dx$.