Chapter 4 # Chemical Bonding and Molecular Structure # **Solutions** #### **SECTION - A** #### **Objective Type Questions** (Kossel - Lewis Approach to Chemical Bonding, Ionic Bond, Bond Parameters) 1. According to octet rule the compound which contain ionic, covalent and coordinate bonds (1) CaSO₄ (2) NH₄Cl (3) NaNO₃ (4) All of these Sol. Answer (4) All have ionic, covalent and co-ordinate covalent bond 2. Which of the following molecule is having least ionic character? (1) FeCl₂ (2) ZnCl₂ (3) MgCl₂ (4) NaCl Sol. Answer (2) Full filled and half filled have maximum covalent character \therefore ZnCl₂ have $3d^{10}$ configuration have maximum polarising power. 3. In PO₄3- ion, the effective charge on each oxygen atom and P-O bond order respectively are (1) -0.75, 1.25 (2) -0.75, 1.0 (3) -0.75, 0.6 (4) -3, 1.25 Sol. Answer (1) - A certain diatomic molecule, AB has dipole moment 1.6 D and the internuclear distance is 100 pm. The percentage of electronic charge existing on more electronegative atom is - (1) 33% - (2) 25% - (3) 50% - 10% Sol. Answer (1) % ionic = $$\frac{\mu \text{ obsc}}{\mu \text{ cal}}$$ = $\frac{1.6 \times 10^{-18} \text{ esu-cm}}{100 \times 10^{-18} \times 4.8 \times 10^{-10} \text{ esu-cm}} = 33\%$ is 1.1 D hence dipole moment of given compound will be - (1) 1.1 D - (2) 4.4 D - (3) 3.3 D - (4) 2.56 D Sol. Answer (1) - In the given structure of a compound, the correct various bond moments direction involving atoms are shown as - (1) $Br = N = CH_2 \Rightarrow SiH_2 = CH_2 \Rightarrow O = CH_3$ (2) $Br = N = CH_2 = SiH_2 = CH_2 \Rightarrow O = CH_3$ - (3) $Br \Rightarrow N \Leftarrow CH_2 \Leftarrow SiH_2 \Rightarrow CH_2 \Rightarrow O \Leftarrow CH_3$ - (4) Br \leftarrow N \Rightarrow CH, \Rightarrow SiH, \leftarrow CH, \Rightarrow O \Rightarrow CH, Sol. Answer (3) Electronegativity N > Br > C - Which molecule contains both polar and non-polar covalent bond? - (1) NH₄+ (2) HCI - (3) CH₄ Sol. Answer (4) H₂O₂ have open book structure Polar covalent bond because different electronegativity atoms are present 8. Which of the following is a polar molecule? - (1) Para dichlorobenzene - (2) Carbon tetrachloride - (3) Tetrachloroethene Sol. Answer (4) (The Valence Shell Electron Pair Repulsion Theory, Valence Bond Theory, Hybridisation) 9. Which of the following is correct for XeO_2F_2 and PCI_5 ? - (1) Both have same hybridisation and shape - (2) Both have same hybridisation but different geometry - (3) Both have different hybridisation but same shape - (4) Both have same hybridisation but different shape Sol. Answer (4) XeO_2F_2 Hybridisation = $\frac{1}{2}$ [V + M – C + A] $$H = \frac{1}{2}[8 + 2 - 0 + 0]$$ $\frac{10}{2} = 5 \ [sp^3d]$ See-saw shape PCI₅ $$H = \frac{1}{2}[V + M - C + A]$$ $$H = \frac{1}{2}[5 + 5 - 0 + 0]$$ H = 5 Trigonal bipyramidal 10. The maximum number of 180° angle possible between X-M-X bond for compounds with sp^3d^2 and sp^3d hybridisation respectively are (1) 3, 3 (2) 3, 1 - (3) 1, 3 - (4) 3, 0 Sol. Answer (2) X— M— X 180° =3. X— M— X 180° sp3d2 octahedral *sp*³*d* trigonal bipyramidal - 11. Incorrect statement regarding hybridization is - (1) It is not possible for isolated atoms - (2) Number of hybrid orbital formed is same as the number of orbitals combining - (3) Only the half filled orbitals and fully filled orbitals can participate not the empty orbital - (4) It is not a real physical process #### Sol. Answer (3) Fully filled, half filled, empty orbitals participate in 'H' in excited state e- excited to empty orbital. (1) $$sp^2$$ (2) $$sp^3$$ (3) $$sp^{3}d$$ #### Sol. Answer (2) N have three bond pair and one lone pair - ∴ its hybridisation will be sp³ - 13. The shape of I_3^- is - (1) Linear - (2) Bent - (3) Pyramidal - (4) See saw - Sol. Answer (1) $$I_3^- = [I^- \ . \ I_2]$$ $$H = \frac{1}{2}[V + M - C + A]$$ $$=\frac{1}{2}[7+2-0+1]=\frac{10}{2}=sp^3d$$ \therefore by combining with two $\rm I_2, \, I^-$ have 3 LP and 2 BP - 14. Number of angles of 109°28' is present in CCl₄ - (1) 2 (2) 4 (3) 6 Sol. Answer (3) 109.28° will be in ${}_{1}$ CI - C - Cl $_{2}$ ${}_{1}$ CI - C - Cl $_{3}$ Total '6' ${}_{3}$ CI - C ₂CI — C — Cl₃ ₂CI — C — CI₄ 3CI — C — CI 15. Number of carbon atoms present in sp² hybrid state of given molecule? (1) 9 (2) 8 2 Sol. Answer (2) - 16. In a regular trigonal bipyramidal MX_5 , the number of X-M-X bonds at 180° is - (1) One (2) Two - (3) Six - Four Sol. Answer (1) - 17. Some of the properties of the two species, NO_3^- and H_3O^+ are described below. Which one of them is correct? - (1) Dissimilar hybridization for the central atom with different structures - (2) Isostructural with same hybridization for the central atom - (3) Isostructural with different hybridization for the central atom - (4) Similar hybridization for the central atom with different structures #### Sol. Answer (1) Different hydridisation and different structural arrangement - 18. Which of the following is not a correct statement? - (1) Multiple bonds are always shorter than corresponding single bonds - (2) The electron-deficient molecules can act as Lewis acids - (3) The canonical structures have no real existence - (4) Every AB_5 molecules does in fact have square pyramid structure #### Sol. Answer (4) AB₅ molecule geometry also depends upon the no. of lone pair ∴ always AB₅ will not have square pyramid structure. AB₅ = trigonal bipyramid, or square pyramid 19. Arrange the following species in increasing order of bond angle (1) $$NF_3 < NCl_3 < NBr_3 < Nl_3$$ (3) $$NI_3 < NBr_3 < NCI_3 < NF_3$$ (4) $$NBr_3 < NI_3 < NF_3 < NCI_3$$ Sol. Answer (1) 20. Which of the following is correct representation of dipole moment of NH₃ molecule? (4) NH₃ being symmetrical will not show dipole moment #### Sol. Answer (2) #### (Molecular Orbital Theory, Hydrogen Bonding) 21. The ground state electronic configuration of valence shell electrons in nitrogen molecule (N2) is written as kk, $$\sigma 2s^2$$, $\sigma^* 2s^2$, $\begin{bmatrix} \pi 2p_y^2 \\ \pi 2p_z^2 \end{bmatrix}$, $\sigma 2p_x^2$. Hence the bond order in nitrogen molecule is (1) 2 (2) 3 (3) 0 (4) 1 #### Sol. Answer (2) Bond order = $$\frac{\text{No. of bonding} - \text{No. of antibonding}}{2} = \frac{8-2}{2} = 3$$ Bond order of $N_2 = 3$ - 22. Which of the following statements are correct? - I. Bond order of NO is 2.5 - II. Bond order of NO+ is 3.0 - III. Bond order of O_2 is 1.5 - IV. Bond order of CO is 3.0 - (1) I, II, III - (2) II, III, IV - (3) I, II, IV - (4) II, IV #### Sol. Answer (3) NO = 15 = $$\sigma$$ 1s², σ *1s², σ 2s², σ 2s², σ 2p_z², σ 2p_x² = π 2p_y², π 2p_x¹ $$B.O = \frac{10 - 5}{2} = 2.5$$ $$NO^{+} = 14 = \sigma 1s^{2}, \ \sigma^{*}1s^{2}, \ \sigma 2s^{2}, \ \sigma^{*}2s^{2}, \ \sigma 2p_{z}^{2}, \ \sigma 2p_{z}^{2} = \pi 2p_{z}^{2}, \ \pi 2p_{z}^{2}, \ \pi^{*}2p_{z}^{0}$$ B.O = $$\frac{10-4}{2}$$ = 3 $$O_2 = 16 = \sigma 1s^2, \ \sigma^* 1s^2, \ \sigma 2s^2, \ \sigma^* 2s^2, \ \sigma 2p_z^2, \ \pi 2p_x^2 = \pi 2p_y^2, \ \pi 2p_x^2$$ B.O = $$\frac{10-6}{2}$$ = 2 CO = 14 = $$\sigma$$ 1s², σ *1s², σ 2s², π *2 $_{x}$ ² = π 2p $_{y}$ ², σ 2p $_{z}$ ², σ *2ps² B.O = $$\frac{10-4}{2}$$ = 3 - 23. The number of antibonding electron pairs in O₂⁻ - (1) 2 (2) 3 (3) 1 (4) 4 #### Sol. Answer (2) $O_2^- = 17 = \sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p_z^2$, $\pi 2p_x^2 = \pi 2p_y^2$, $\pi 2p_x^2 = \pi^* 2p_y^2$ Number of antibonding electron pairs are 3. #### 24. How many bonds are formed by each oxygen atom in ice? (1) 4 (2) 2 (3) 3 (4) May be 1 or 2 #### Sol. Answer (1) #### 25. o-nitrophenol is (1) More volatile than p-nitrophenol (2) Less volatile than p-nitrophenol (3) Equally volatile as p-nitropheno (4) Non-volatile #### Sol. Answer (1) .. o-nitrophenol will easily evaporated compared to p-nitrophenol #### 26. Which of the following pair consists of only paramagnetic species? (1) H₂, O₂⁺ (2) N₂, O₂ (3) CO, N₂ (4) H_2^+ , O_2^- #### Sol. Answer (4) #### **Previous Years Questions** 1. In the structure of CIF₃, the number of lone pair of electrons on central atom 'CI' is [NEET-2018] (1) One (2) Two - (3) Three - (4) Four Sol. Answer (2) The structure of ${\rm CIF}_3$ is The number of lone pair of electrons on central Cl is 2. - 2. Magnesium reacts with an element (X) to form an ionic compound. If the ground state electronic configuration of (X) is 1s² 2s² 2p³, the simplest formula for this compound is [NEET-2018] - (1) Mg_2X_3 - (2) MgX₂ - (3) Mg₃X₂ - (4) Mg₂X Sol. Answer (3) Element (X) electronic configuration $$1s^2 2s^2 2p^3$$ So, valency of X will be 3. Valency of Mg is 2. Formula of compound formed by Mg and X will be Mg₃X₂. 3. Consider the following species: Which one of these will have the highest bond order? [NEET-2018] (1) NO (2) CN- - (3) CN - (4) CN+ Sol. Answer (2) NO : $$(\sigma 1s)^2$$, $(\sigma^* 1s)^2$, $(\sigma 2s)^2$, $(\sigma^* 2s)^2$, $(\sigma 2p_z)^2$, $(\pi 2p_y)^2 = (\pi 2p_y)^2$, $(\pi^* 2p_y)^1 = (\pi^* 2p_y)^0$ BO = $$\frac{10-5}{2}$$ = 2.5 CN⁻ : $$(\sigma 1s)^2$$, $(\sigma^* 1s)^2$, $(\sigma 2s)^2$, $(\sigma^* 2s)^2$, $(\pi 2p_x)^2$ = $$(\pi 2p_y)^2$$, $(\sigma 2p_z)^2$ BO = $$\frac{10-4}{2}$$ = 3 $$CN: (\sigma 1s)^2, \ (\sigma^* 1s)^2, \ (\sigma 2s)^2, (\sigma^* 2s)^2, \ (\pi 2p_{_X})^2$$ $$=(\pi2p_y)^2,(\sigma2p_z)^1$$ BO = $$\frac{9-4}{2}$$ = 2.5 $$CN^+$$: $(\sigma 1s)^2$, $(\sigma^* 1s)^2$, $(\sigma 2s)^2$, $(\sigma^* 2s)^2$, $(\pi 2p_x)^2$ $$= (\pi 2p_v)^2$$ BO = $$\frac{8-4}{2}$$ = 2 Hence, option(2) should be the right answer. | 4. | Which of the following pair | s of c | ompounds is i | soelectronic | and isostructura | l? | | [NEET-2017] | |------|---|--|--|------------------------|--|------------------|---------------------------------------|--------------------------| | | (1) BeCl ₂ , XeF ₂ | (2) | Tel ₂ , XeF ₂ | (3) | IBr ₂ ⁻ , XeF ₂ | (4) | IF ₃ , XeF ₂ | | | Sol. | Answer (3) | | | | | | | | | | IBr ₂ ⁻ , XeF ₂ | | | | | | | | | | Total number of valence el | ectror | ns are equal in | both the spe | ecies and both the | he species | are linear | also. | | 5. | The species, having bond | angle | s of 120° is | | | | | [NEET-2017] | | | (1) PH ₃ | (2) | CIF ₃ | (3) | NCI ₃ | (4) | BCl ₃ | | | Sol. | Answer (4) | | | | | | | | | | CI B 120° | | | | | | | | | | B 120° | | | | | | | | | 6 | CI CI | | of opposite a box | ua tha aanaa | hand ardar | | | [NICET 2047] | | 6. | Which one of the following | | | | | (4) | N 0 - | [NEET-2017] | | 0.1 | (1) CO, NO | (2) | O ₂ , NO ⁺ | (3) | CN ⁻ , CO | (4) | N_2, O_2^- | | | 501. | Answer (3) | | | | | | | | | _ | CN ⁽⁻⁾ and CO have bond o | | | | | | | | | 7. | Which one of the following | comp | oounds shows | the presence | of intramolecula | ar hydroge | | | | | | | | (0) | | | [NEET- | Phase-2-2016] | | | (1) H ₂ O ₂ | | | (2) | HCN | | | | | | (3) Cellulose | | | (4) | Concentrated a | acetic acid | | | | Sol. | Answer (3) | | | | | | | | | | Fact. | | | | | | | | | 8. | The hybridizations of atomi | c orbi | tals of nitrogen | in NO_2^+ , NO_3^- | and NH ₄ respe | ectively are | [NEET-P | hase-2-2016] | | | (1) sp , sp^3 and sp^2 | (2) | sp^2 , sp^3 and s | sp (3) | sp, sp ² and sp | ³ (4) | <i>sp</i> ² , <i>sp</i> an | d <i>sp</i> ³ | | Sol. | Answer (3) | | | | | | | | | | $[: O = N^{+1} = O:]^{(+)};$ $\begin{bmatrix} : O \\ -1 \\ : O \end{bmatrix}$ | O:

 N
 -1
 p ² | (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c | H (+) | | | | | | 9. | Which of the following pair | s of i | ons is isoelect | ronic and iso | structural? | | [NEET-P | hase-2-2016] | | | (1) CO ₃ ²⁻ , NO ₃ ⁻ | (2) | CIO ₃ , CO ₃ ²⁻ | (3) | SO ₃ ²⁻ , NO ₃ | (4) | CIO ₃ , SO ₃ | 2-
3 | **Sol.** Answer (1, 4) ## Option (1): Both have 32 electrons with trigonal planar structure. ### Option (4): Both have 42 electrons with pyramidal structure. | 10 | Tho | correct | acomotay | and h | ybridization | for YoE | aro | |-----|------|---------|----------|-------|----------------|----------|-------| | 10. | HILE | Correct | geometry | anu i | iybiiuizalioii | IUI AEF, | ₁ are | [NEET-Phase-2-2016] - (1) Octahedral, sp³d² - (2) Trigonal bipyramidal, sp³d - (3) Planar triangle, sp^3d^3 - (4) Square planar, sp³d² #### Sol. Answer (1) ${\rm XeF_4}$, has octahedral geometry where hybridisation of Xe is ${\it sp^3d^2}$. 11. Among the following, which one is a wrong statement? [NEET-Phase-2-2016] (1) PH₅ and BiCl₅ do not exist - (2) $p\pi$ - $d\pi$ bonds are present in SO_2 - (3) SeF₄ and CH₄ have same shape - (4) I₃⁺ has bent geometry #### Sol. Answer (3) Shape of SeF₄ would be see saw whereas that of CH₄ would be tetrahedral. 12. Predict the **correct** order among the following. [NEET-2016] - (1) Ione pair bond pair > bond pair bond pair > Ione pair Ione pair - (2) Ione pair Ione pair > Ione pair bond pair > bond pair bond pair - (3) Ione pair Ione pair > bond pair bond pair > Ione pair bond pair - (4) bond pair bond pair > lone pair bond pair > lone pair lone pair #### Sol. Answer (2) Fact 13. Consider the molecules CH₄, NH₃ and H₂O. Which of the given statements is false? [NEET-2016] - (1) The H C H bond angle in CH₄ is larger than the H N H bond angle in NH₃ - (2) The H C H bond angle in CH_4 , the H N H bond angle in NH_3 , and the H O H bond angle in H_2O are all greater than 90° - (3) The H O H bond angle in H_2O is larger than the H C H bond angle in CH_4 - (4) The H O H bond angle in H_2O is smaller than the H N H bond angle in NH_3 #### Sol. Answer (3) #### Molecules Bond angle $$CH_{A} \longrightarrow 109.5^{\circ}$$ $$NH_3 \longrightarrow 107.5^{\circ}$$ $$H_2O \longrightarrow 104.45^{\circ}$$ 14. Decreasing order of stability of O_2 , O_2^- , O_2^+ and O_2^{2-} is [Re-AIPMT-2015] (1) $$O_2 > O_2^+ > O_2^{2-} > O_2^-$$ (2) $$O_2^- > O_2^{2-} > O_2^+ > O_2$$ (3) $$O_2^+ > O_2^- > O_2^{-2}$$ (4) $$O_2^{2-} > O_2^{-} > O_2 > O_2^{+}$$ Sol. Answer (3) Stability ∞ bond-order. $$O_2^+ > O_2^- > O_2^- > O_2^{2-}$$ Bond order: 2.5 2.0 1.5 1.0 | 15 | In which | of the | following | nairs | hoth | the | snecies | are | not | isostructura | <u>ءاہ</u> | |-----|-------------|---------|------------|--------|------|-----|---------|-----|-----|----------------|-------------| | 10. | III WIIICII | OI IIIE | IOIIOWIIIQ | palls, | DOUL | แเษ | Species | are | HOL | 150511 40141 6 | 41 ! | [Re-AIPMT-2015] (1) NH₃, PH₃ (2) XeF₄, XeO₄ (3) SiCl₄, PCl₄⁺ Diamond, silicon carbide #### Sol. Answer (2) Square planar Tetrahedral 16. Maximum bond angle at nitrogen is present in which of the following? [AIPMT-2015] (1) NO_3^- (2) NO₂ - NO_2^- - NO_2^+ #### Sol. Answer (4) NO₂[⊕] have linear geometry 17. The enolic form of ethyl acetoacetate as below has [AIPMT-2015] - (1) 9 sigma bonds and 1 pi-bond - (2) 18 sigma bonds and 2 pi-bonds - (3) 16 sigma bonds and 1 pi-bond - (4) 9 sigma bonds and 2 pi-bonds Sol. Answer (2) 18. Which of the following species contains equal number of σ - and π -bonds? [AIPMT-2015] (1) CH₂(CN)₂ (2) HCO₃- (3) XeO₄ (4) (CN)₂ Sol. Answer (3) 19. The correct bond order in the following species is [AIPMT-2015] (1) $O_2^- < O_2^+ < O_2^{2+}$ (2) $O_2^{2+} < O_2^+ < O_2^-$ (3) $O_2^{2+} < O_2^- < O_2^+$ (4) $O_2^+ < O_2^- < O_2^{2+}$ Sol. Answer (1) 20. Which of the following pairs of ions are isoelectronic and isostructural? [AIPMT-2015] - (1) CIO_3^- , SO_3^{2-} (2) CO_3^{2-} , SO_3^{2-} (3) CIO_3^- , CO_3^{2-} (4) SO_3^{2-} , NO_3^{2-} Sol. Answer (1) 21. Which of the following options represents the correct bond order? [AIPMT-2015] (1) $O_2^- < O_2 > O_2^+$ (2) $O_2^- > O_2^+ > O_2^+$ (3) $O_2^- < O_2^+ < O_2^+$ (4) $O_2^- > O_2 < O_2^+$ Sol. Answer (3) - 22. The total number of π -bond electrons in the following structure is - H₃C H₂C H H CH₃ (1) 16 (2) (3) 8 (4) 12 Sol. Answer (3) 23. Which of the following molecules has the maximum dipole moment? [AIPMT-2014] [AIPMT-2015] (1) CO₂ (2) CH₄ - (3) NH. - (4) NF₃ Sol. Answer (3) 24. Which one of the following species has plane triangular shape? [AIPMT-2014] (1) N₃ - (2) NO_3^- - (3) NO_2^- - (4) CO_2 Sol. Answer (3) 25. Which one of the following molecules contains no π bond? [NEET-2013] (1) H₂O - (2) SO₂ - (3) NO₂ - (4) CO₂ Sol. Answer (1) ${ m H_2O}$ have only sigma bond 26. Which of the following is a polar molecule? [NEET-2013] (1) SF₄ (2) SiF₄ - (3) XeF, - (4) BF₃ Sol. Answer (1) 27. Which of the following is paramagnetic? [NEET-2013] (1) O₂ (2) CN- (3) NO⁺ (4) CO Sol. Answer (1) 28. The pair of species with the same bond order is [AIPMT (Prelims)-2012] (1) NO, CO (2) N_2, O_2 (3) O_2^{2-} , B_2 (4) O₂+, NO+ Sol. Answer (3) $$O_2^{2-} = 18 = \sigma 1s^2, \ \sigma^* 1s^2, \ \sigma 2s^2, \ \sigma^* 2s^2, \ \sigma 2p_z^2, \ \pi 2p_x^2 = \pi 2p_y^2, \ \pi 2p_x^2 = \pi^* 2p_y^2$$ B.O = $$\frac{10-8}{2}$$ = 1 $$B_2 = 10 = \sigma 1s^2, \ \sigma^* 1s^2, \ \sigma 2s^2, \ \sigma^* 2s^2, \ \pi 2p_x^{\ 1} = \pi 2p_y^{\ 1}$$ B.O = $$\frac{6-4}{2}$$ = 1 ${\rm O_2}^{2-}$ and ${\rm B_2}$ have same bond order (1) O_2^{2-} (2) O₂ - (3) O_2^+ - O_{2}^{-} (4) Sol. Answer (4) 30. Which one of the following pairs is isostructural (i.e. having the same shape and hybridization)? [AIPMT (Prelims)-2012] - (1) $[NF_3 \text{ and } BF_3]$ - (2) $[BF_4^- \text{ and } NH_4^+]$ (3) $[BCl_3 \text{ and } BrCl_3]$ (4) $[NH_3 \text{ and } NO_3^-]$ Sol. Answer (2) $$H = \frac{1}{2}[3+4-0+1]$$ $$=\frac{8}{2}=4=sp^3$$ $=\frac{8}{2}=4=sp^3$ $H = \frac{1}{2}[5 + 4 - 1 + 0]$ NH_{A}^{+} Tetrahedral shape Tetrahedral shape [Both are having tetrahedral shape and same hybridisation] 31. During change of O2 to O22- ion, the electron adds on which one of the following orbitals? [AIPMT (Mains)-2012] - (1) π^* orbitals - (2) π orbitals - (3) σ^* orbitals - σ orbitals Sol. Answer (1) $$O_2 = 16 = \sigma 1s^2, \ \sigma^* 1s^2 \dots *2p_x^1 = \pi^* 2p_y^1$$ $O_2^{2-} = 18 = \sigma 1s^2, \ \sigma^* 1s^2 \dots *2p_x^2 = \pi^* 2p_y^2$ $e^- \text{ added in } \pi^* \text{ orbital}$ 32. Four diatomic species are listed below. Identify the correct order in which the bond order is increasing in them [AIPMT (Mains)-2012] (1) NO $$< O_2^- < C_2^{2-} < He_2^+$$ (2) $$O_2^- < NO < C_2^{2-} < He_2^+$$ (3) $$C_2^{2-} < He_2^+ < O_2^- < NO$$ (4) $$He_2^+ < O_2^- < NO < C_2^{2-}$$ Sol. Answer (4) 33. Which of the following has the minimum bond length? [AIPMT (Prelims)-2011] (1) O₂ - (3) O_2^- Sol. Answer (2) Bond length $$\propto \frac{1}{\text{Bond order}}$$ Bond order $O_2 = 2$ $O_2^+ = 2.5$ by molecular orbital theory $O_2^- = 1.5$ ∴ [O₂⁺ have minimum bond length] | 34. | The correct order of increasing bond length of C - | – H, C – C | C, $C - C$ and $C = C$ | is | [AIPMT (Prelims)-2011] | |---------------------------------|--|--|--|----------------------------------|---| | | (1) $C - H < C - O < C - C < C = C$ | (2) | C – H < C = C < | C – C |) < C - C | | | (3) $C - C < C = C < C - O < C - H$ | (4) | C – O < C – H < | C - C | C < C = C | | | Answer (2) | | | | | | 35. | Which of the two ions from the list given below that I | have the g | eometry that is expla | ained b | | | | of orbitals NO_2^- , NO_3^- , NH_2^- , NH_4^+ , SCN^- | | | | [AIPMT (Prelims)-2011] | | | (1) NO_2^- and NH_2^- (2) NO_2^- and NO_3^- | (3) | NH ₄ and NO ₃ | (4) | SCN ⁻ and NH ₂ | | Sol. | Answer (2) | | | | | | 36. | Which of the following structures is the most prefer | red and h | ence of lowest energ | gy for S | SO ₃ ? | | | | | | | [AIPMT (Mains)-2011] | | | IŌI | | IOI | | | | | (1) 60-\$ | (2) | 101
10, 5 0 | | | | | | () | 0, 0, | | | | | · | | . = | | | | | | (4) | 6,50) | | | | Sol | Answer (2) | | , , | | | | 001. | Molecule having covalent bond. Without resonance | e have m | aximum stability: mi | nimum | n energy | | | · · · · · · · · · · · · · · · · · · · | •• | ٦ | | | | | | | | | | | | | | | | | | | ·ić | ∕ ^S ∖∷ | | | | | | _ : * | o:

 s
 o: | | | | | 37. | The pairs of species of oxygen and their magnetic be correct description? | | | ich of | the following presents the [AIPMT (Mains)-2011] | | 37. | The pairs of species of oxygen and their magnetic be | ehaviours | | | [AIPMT (Mains)-2011] | | 37. | The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ ⁺ , O ₂ - Both paramagnetic | ehaviours
(2) | are noted below. Who O_2 , O_2^{2-} — Both I | oaram | [AIPMT (Mains)-2011] agnetic | | | The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ ⁺ , O ₂ - Both paramagnetic (3) O ₂ ⁻ , O ₂ ²⁻ - Both diamagnetic | ehaviours
(2) | are noted below. Wh | oaram | [AIPMT (Mains)-2011] agnetic | | Sol. | The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ ⁺ , O ₂ - Both paramagnetic (3) O ₂ ⁻ , O ₂ ²⁻ - Both diamagnetic Answer (1) | ehaviours
(2)
(4) | are noted below. Who O_2 , O_2^{2-} — Both O_2^+ , O_2^{2-} — Both O_2^+ | oaram
oaram | [AIPMT (Mains)-2011] agnetic | | Sol. | The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ ⁺ , O ₂ - Both paramagnetic (3) O ₂ ⁻ , O ₂ ²⁻ - Both diamagnetic Answer (1) Which one of the following species does not exist to | ehaviours (2) (4) under norr | are noted below. When O_2 , O_2^{2-} — Both O_2^+ 0, O_2^- $O_$ | oaram
oaram | [AIPMT (Mains)-2011] agnetic agnetic [AIPMT (Prelims)-2010] | | Sol. 38. | The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ ⁺ , O ₂ - Both paramagnetic (3) O ₂ ⁻ , O ₂ ²⁻ - Both diamagnetic Answer (1) Which one of the following species does not exist to (1) Be ₂ ⁺ (2) Be ₂ | ehaviours
(2)
(4) | are noted below. When O_2 , O_2^{2-} — Both O_2^+ 0, O_2^- $O_$ | oaram
oaram | [AIPMT (Mains)-2011] agnetic agnetic | | Sol. 38. | The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ ⁺ , O ₂ - Both paramagnetic (3) O ₂ ⁻ , O ₂ ²⁻ - Both diamagnetic Answer (1) Which one of the following species does not exist use (1) Be ₂ Answer (2) | ehaviours (2) (4) under norr (3) | are noted below. When O_2 , O_2^{2-} — Both O_2^+ O_2^- — Both O_2^+ , O_2^- — Both | param
param
(4) | [AIPMT (Mains)-2011] agnetic agnetic [AIPMT (Prelims)-2010] Li ₂ | | Sol. 38. | The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ ⁺ , O ₂ - Both paramagnetic (3) O ₂ ⁻ , O ₂ ²⁻ - Both diamagnetic Answer (1) Which one of the following species does not exist to (1) Be ₂ ⁺ (2) Be ₂ | ehaviours (2) (4) under norr (3) | are noted below. When O_2 , O_2^{2-} — Both O_2^+ O_2^- — Both O_2^+ , O_2^- — Both | param
param
(4) | [AIPMT (Mains)-2011] agnetic agnetic [AIPMT (Prelims)-2010] Li ₂ on? | | Sol. 38. | The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ +, O ₂ - Both paramagnetic (3) O ₂ -, O ₂ Both diamagnetic Answer (1) Which one of the following species does not exist use (1) Be ₂ Answer (2) In which of the following pairs of molecules/ions, the | ehaviours (2) (4) under norr (3) e central a | are noted below. When O_2 , O_2^{2-} — Both O_2 , O_2^{2-} — Both O_2 and O_2 — Both O_2 and O_2 — Both O_2 atoms have O_2 hybridations. | param
param
(4) | [AIPMT (Mains)-2011] agnetic agnetic [AIPMT (Prelims)-2010] Li ₂ | | Sol. 38. | The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ ⁺ , O ₂ - Both paramagnetic (3) O ₂ ⁻ , O ₂ ²⁻ - Both diamagnetic Answer (1) Which one of the following species does not exist use (1) Be ₂ Answer (2) | ehaviours (2) (4) under norr (3) e central a | are noted below. When O_2 , O_2^{2-} — Both O_2 , O_2^{2-} — Both O_2 and O_2 are noted below. When O_2 is a simple of the second | param
param
(4) | [AIPMT (Mains)-2011] agnetic agnetic [AIPMT (Prelims)-2010] Li ₂ on? | | Sol. 38. | The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ +, O ₂ - Both paramagnetic (3) O ₂ -, O ₂ Both diamagnetic Answer (1) Which one of the following species does not exist use (1) Be ₂ Answer (2) In which of the following pairs of molecules/ions, the | ehaviours (2) (4) under norr (3) e central a | are noted below. When O_2 , O_2^{2-} — Both O_2 , O_2^{2-} — Both O_2 and O_2 — Both O_2 and O_2 — Both O_2 atoms have O_2 hybridations. | param
param
(4) | [AIPMT (Mains)-2011] agnetic agnetic [AIPMT (Prelims)-2010] Li ₂ on? | | Sol. 38. Sol. 39. | The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ ⁺ , O ₂ - Both paramagnetic (3) O ₂ ⁻ , O ₂ ²⁻ - Both diamagnetic Answer (1) Which one of the following species does not exist to (1) Be ₂ ⁺ Answer (2) In which of the following pairs of molecules/ions, the (1) NO ₂ ⁻ and NH ₃ (3) NH ₂ ⁻ and H ₂ O Answer (2) | ehaviours (2) (4) under norr (3) e central a (2) (4) | are noted below. When O_2 , O_2^{2-} — Both O_2 , O_2^{2-} — Both O_2 , O_2^{2-} — Both O_2 and O_2 are spand O_2 and O_2 BF ₃ and O_2 BF ₃ and O_2 | oaram
oaram
(4)
dizatio | [AIPMT (Mains)-2011] agnetic agnetic [AIPMT (Prelims)-2010] Li ₂ on? [AIPMT (Prelims)-2010] | | Sol. 38. Sol. 39. | The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ ⁺ , O ₂ - Both paramagnetic (3) O ₂ ⁻ , O ₂ ² - Both diamagnetic Answer (1) Which one of the following species does not exist use (1) Be ₂ Answer (2) In which of the following pairs of molecules/ions, the (1) NO ₂ ⁻ and NH ₃ (3) NH ₂ ⁻ and H ₂ O | ehaviours (2) (4) under norr (3) e central a (2) (4) | are noted below. When O_2 , O_2^{2-} — Both O_2 , O_2^{2-} — Both O_2 , O_2^{2-} — Both O_2 and O_2 are spand O_2 and O_2 BF ₃ and O_2 BF ₃ and O_2 | oaram
oaram
(4)
dizatio | [AIPMT (Mains)-2011] agnetic agnetic [AIPMT (Prelims)-2010] Li ₂ on? [AIPMT (Prelims)-2010] | | Sol. 39. | The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ ⁺ , O ₂ - Both paramagnetic (3) O ₂ ⁻ , O ₂ ² - Both diamagnetic Answer (1) Which one of the following species does not exist to (1) Be ₂ ⁺ (2) Be ₂ Answer (2) In which of the following pairs of molecules/ions, the (1) NO ₂ ⁻ and NH ₃ (3) NH ₂ ⁻ and H ₂ O Answer (2) In which one of the following species the central atoms. | ehaviours (2) (4) under norr (3) e central a (2) (4) | are noted below. When O_2 , O_2^{2-} — Both O_2 , O_2^{2-} — Both O_2 , O_2^{2-} — Both O_2 and O_2 atoms have O_2 and O_2 BF ₃ and O_2 BF ₃ and O_2 between O_2 at O_2 between O_2 are type of hybridization | oaram
oaram
(4)
dizatio | [AIPMT (Mains)-2011] agnetic agnetic [AIPMT (Prelims)-2010] Li ₂ on? [AIPMT (Prelims)-2010] | | 41. In which of the following molecules the central ator | m does not hav | ve sp ³ hybridization? | [AIPMT (Mains)-2010] | |---|---|--|--| | (1) CH ₄ (2) SF ₄ | (3) BF ₂ | | NH ⁺ ₄ | | Sol. Answer (2) | | • | 7 | | 42. Some of the properties of the two species, NO ₃ a | nd H₃O⁺ are de | escribed below. Which | n one of them is correct? | | • | | | [AIPMT (Mains)-2010] | | (1) Dissimilar in hybridization for the central atom | n with different | structures | . , , , | | (2) Isostructural with same hybridization for the ce | entral atom | | | | (3) Isostructural with different hybridization for the | central atom | | | | (4) Similar in hybridization for the central atom with | :h different stru | ctures | | | Sol. Answer (1) | | | | | 43. What is the dominant intermolecular force or bond | that must be o | vercome in convertin | g liquid CH ₃ OH to a gas? | | | | | [AIPMT (Prelims)-2009] | | (1) Dipole-dipole interaction | (2) Cov | valent bonds | | | (3) London dispersion force | (4) Hy | drogen bonding | | | Sol. Answer (4) | | | | | 44. According to MO theory which of the following lists | ranks the nitro | gen species in terms | | | | | | [AIPMT (Prelims)-2009] | | $(1) N_2^{2-} < N_2^{-} < N_2$ | | $< N_2^{2-} < N_2^{-}$ | | | $(3) N_2^- < N_2^{2-} < N_2$ | (4) N ₂ | $< N_2^{} < N_2^{2-}$ | | | Sol. Answer (1) | | | | | 45. In which of the following molecules/ions BF ₃ , NO ₂ | , $\mathrm{NH_2^-}$ and $\mathrm{H_2C}$ |), the central atom is | sp ² hybridized ? | | | | | [AIPMT (Prelims)-2009] | | (1) NH ₂ and H ₂ O | (2) NC | D ₂ and H ₂ O | | | (3) BF_3 and NO_2^- | (4) NC |) ₂ and NH ₂ | | | Sol. Answer (3) | | | | | 46. In the case of alkali metals, the covalent character | decreases in t | the order | [AIPMT (Prelims)-2009] | | (1) MF > MCI > MBr > MI | (2) MF | > MCl > MI > MBr | | | (3) MI > MBr > MCl > MF | (4) MC | CI > MI > MBr > MF | | | Sol. Answer (3) | | | | | For same cation larger anion more will be covaled | nt character | | | | ∴ MI > MBr > MCl > MF | | | | | 47. Four diatomic species are listed below the different increasing bond order? | sequences. W | /hich of these presen | ts the correct order of their [AIPMT (Prelims)-2008] | | (1) $He_2^+ < O_2^- < NO < C_2^{2-}$ | (2) O ₂ | $<\!NO\!<\!C_2^{2-}<\!He_2^+$ | | | (3) $NO < C_2^{2-} < O_2^- < He_2^+$ | (4) C_2^2 | $^{-}$ < He $_{2}^{+}$ < NO < O $_{2}^{-}$ | | | Sol. Answer (1) | _ | - - | | | 48. | The | angular shape | of mole | ecule | (O ₃) consists of | | | | | [AIPMT (Prelims)-2008] | |-------|---------------------------------|--|----------------------------------|----------------------------|--|-----------------------------------|-------------------------------|-------------------------------------|----------------|-------------------------------------| | | (1) | 2 sigma and 1 | pi bond | d | | (2) | 1 sigr | ma and 2 pi | bonds | | | | (3) | 2 sigma and 2 | pi bond | ls | | (4) | 1 sigr | ma and 1 pi l | bond | | | Sol. | Ans | swer (1) | | | | | | | | | | | :Ö′ | Ö
Ö: O, hav | ve angι
π bond | ular sl | hape have two σ bo | ond | | | | | | 49. | The | correct order of | fincrea | sing b | oond angles in the fo | ollowing t | riatomi | ic species is | | [AIPMT (Prelims)-2008] | | | (1) | $NO_2^+ < NO_2^- < $ | NO ₂ | | | (2) | NO_2^- | < NO ₂ ⁺ < NO |) ₂ | | | | (3) | $NO_2^- < NO_2 < N$ | 1O ₂ + | | | (4) | NO ₂ + | < NO ₂ < NO | 2 | | | Sol. | Ans | swer (3) | | | | | | | | | | 50. | The | correct order of | (C-O) | bond | length among CO, | CO ₃ ⁻² , C | O ₂ is | | | [AIPMT (Prelims)-2007] | | | (1) | CO < CO ₂ < CO | 0_3^{-2} | | | (2) | CO ₂ < | CO ₃ ⁻² < CO | | | | | (3) | CO < CO ₃ ⁻² < Co | O ₂ | | | (4) | CO_3^{-2} | < CO ₂ < CO | | | | Sol. | Ans | swer (1) | _ | | | | · | _ | | | | 51. | In w | which of the follo | wing pa | irs, th | ne two species are i | so-struct | ural ? | | | [AIPMT (Prelims)-2007] | | | (1) | BrO ₃ and XeO ₃ | 3 | (2) | SF_4 and XeF_4 | (3) | SO ₃ ²⁻ | and NO_3^- | (4) | BF ₃ and NF ₃ | | 52. | Whi
(1)
(2)
(3)
(4) | The electron-de
The canonical s
Every AB ₅ mole
Multiple bonds | eficient
structure
cule do | moled
es hav | orrect statement? cules can act as Lev ve no real existence fact have square py horter than correspo | e
vramid str | ructure | onds | | [AIPMT (Prelims)-2006] | | | | swer (3) | | | | 1° - 1 1° | 1 . | | | | | 53. | The | e number of unpa | aired ei | ectror | ns in a paramagneti | c diatomi | c mole | cule of an ele | ement | with atomic number 16 is | | | (1) | 2 | | (2) | 3 | (3) | 1 | | (4) | [AIPMT (Prelims)-2006] | | Sol. | | swer (1) | | (2) | Ü | (0) | 7 | | (¬) | 1 | | | | ` , | ng sped | cies h | as a linear shape? | | | | | [AIPMT (Prelims)-2006] | | | | NO ₂ | | | | (2) | SO ₂ | | | | | | (3) | NO_2^+ | | | | (4) | O_3 | | | | | 0 - 1 | Ans | swer (3) | | | | | | | | | | 501. | | | | | | | than th | at hatwaan | M and | H yet the dipole moment | | 55. | | | | | between N and F is at of NF $_3$ (0.2 D). The | | | iat between | in and | [AIPMT (Prelims)-2006] | | | of N | NH ₃ (1.5 D) is la | rger tha | an tha | | nis is bed | cause | | | [AIPMT (Prelims)-2006] | | | of N | NH_3 (1.5 D) is lating NH_3 as well a | rger than | an tha
₃ the | at of NF $_3$ (0.2 D). The atomic dipole and b | nis is bed
oond dip | cause
ole are | in the same | directi | [AIPMT (Prelims)-2006] | (4) $\ln NH_3$ the atomic dipole and bond dipole are in the opposite directions whereas in NF_3 these are in the same directions #### Sol. Answer (2) 56. Which of the following molecules has trigonal planar geometry? [AIPMT (Prelims)-2005] (1) IF₃ - (2) PCI₃ - (3) NH₃ - (4) BF₃ - Sol. Answer (4) - 57. Which of the following would have a permanent dipole moment? [AIPMT (Prelims)-2005] (1) BF₃ - (2) SiF, - (3) SF, - (4) XeF₄ Sol. Answer (3) 58. The correct order in which the O – O bond length increases in the following is [AIPMT (Prelims)-2005] (1) $H_2O_2 < O_2 < O_3$ (2) $O_3 < H_2O_2 < O_3$ (3) $O_2 < O_3 < H_2O_2$ (4) $O_2 < H_2O_2 < O_3$ Sol. Answer (3) 59. The correct sequence of increasing covalent character is represented by [AIPMT (Prelims)-2005] (1) LiCl < NaCl < BeCl₂ (2) BeCl₂ < NaCl < LiCl (3) NaCl < LiCl < BeCl, (4) BeCl₂ < LiCl < NaCl Sol. Answer (3) 60. Which one of the following oxides is expected to exhibit paramagnetic behaviour? [AIPMT (Prelims)-2005] (1) CO₂ - (2) SO₂ - (3) CIO₂ - (4) SiO₂ Sol. Answer (3) - 61. Which of the following species contains three bond pairs and two lone pairs around the central atom? - (1) NH_{2}^{-} - (2) CIF₂ - (3) H_2O - (4) BF₂ Sol. Answer (2) CIF_3 F [3 bond pairs and 2 lone pairs] - 62. Bond order of 2.5 is shown by - (1) O_2^{2-} (2) O₂ - (3) O₂⁺ - (4) O_2^- Sol. Answer (3) $$O_2^{\ +} = 15 = \ \sigma 1s^2, \ \sigma^* 1s^2, \ \sigma 2s^2, \ \sigma^* 2s^2, \ \sigma 2p_z^{\ 2}, \ \pi 2p_x^{\ 2} = \pi 2p_y^{\ 2}, \ \pi^* 2p_x^{\ 1} = \pi^* 2p_y^{\ 0}$$ B.O = $$\frac{10-5}{2}$$ = 2.5 - 63. The outer orbitals of C in ethene molecule can be considered to be hybridized to give three equivalent sp^2 orbitals. The total number of sigma (σ) and pi (π) bonds in ethene molecule is - (1) 1 sigma (σ) and 2 pi (π) bonds (2) 3 sigma (σ) and 2 pi (π) bonds (3) 4 sigma (σ) and 1 pi (π) bonds (4) 5 sigma (σ) and 1 pi (π) bonds Sol. Answer (4) Ethene = $$H \circ C = \frac{\pi}{sp^2} \circ C \circ H$$ Total no. of σ bond = 5 π bond = 1 64. Which of the following is paramagnetic? (1) C_2^{2-} - (2) Na₂O₂ - (3) NO₂ - (4) CO Sol. Answer (3) C_2^{2-} , O_2^{2-} , CO have even number of electron will be diamagnetic, NO_2 have unpaired electron will be 65. The geometry of electron pairs around I in IF₅ is - (1) Octahedral - (2) Trigonal bipyramidal (3) Square pyramidal (4) Pentagonal planar Sol. Answer (1) IF₅ $$H = \frac{1}{2}[7+5-0+0] = \frac{12}{2} = 6 \text{ sp}^3 d^2$$ Geometry = octahedral 66. In which of the following pair both the species have sp³ hybridization? - (1) H₂S, BF₃ - (2) SiF₄, BeH₂ (3) NF₃, H₂O (4) NF₃, BF₃ Sol. Answer (3) NH₃ H = $$\frac{1}{2}[5+3-0+0] = \frac{8}{2} = sp^3$$ $$H_2O$$ $H = \frac{1}{2}[6+2-0+0] = \frac{8}{2} = sp^3$ [NH₃ and H₂O have same hybridisation but have different shape.] 67. In the hydrocarbon $$CH_3$$ $CH_3 - C = C - CH - C = CH$ The state of hybridization of carbons 1, 3 and 5 are in the following sequence - (1) sp^3 , sp^2 , sp - (2) sp^2 , sp, sp^3 (3) sp, sp^3 , sp (4) sp, sp^2 , sp^3 Sol. Answer (3) 68. Which of the following molecule does not possess a permanent dipole moment? (1) CS₂ - (2) SO_3^{2-} - (3) H_2S - (4) SO₂ Sol. Answer (1) $$\mu = 0$$ for CS_2 -8 $S = C = S$ linear geometry sp hybridisation | 69. | In which of the following compound there is more than | one | kind of hybridization (sp , sp^2 , sp^3) for carbon? | |------|---|-----|--| | | (1) $CH_2 = CH - CH = CH_2$ | (2) | $H-C \equiv C-H$ | | | (3) CH ₃ CH ₂ CH ₂ CH ₃ | (4) | CH_3 - $CH = CH$ - CH_3 | | Sol. | Answer (4) | | | | | $H_3C - CH = CH - CH_3$ contain both $sp \propto sp^3$
$sp^3 - sp^2 - sp^2 - sp^3$ | | | 70. Which of the following bonds has the highest energy? (1) C-C (2) C≡C - (3) C=C - (4) C-H Sol. Answer (2) $C \equiv C$ have two π bond and one σ bond, therefore will be more stronger. 71. The structure and hybridization of Si(CH₃)₄ is - (1) Octahedral, sp³d - (2) Tetrahedral, sp³ - (3) Bent, sp - (4) Trigonal, sp² Sol. Answer (2) $$\left[\text{Si}(\text{CH}_3)_4\right] \qquad \text{H} = \frac{1}{2}[4+4-0+0] = \frac{8}{2} = 4 \text{ sp}^3$$ $$\text{CH}_3$$ $$\text{Si}$$ $$\text{CH}_3$$ $$\text{Tetrahedral and } sp^3$$ 72. The number of bonding electron pairs in ${\rm N_2}$ on the basis of molecular orbital theory is (1) 3 (2) 2 (3) 5 (4) 4 Sol. Answer (3) $$N_2 = 14 = \sigma 1s^2, \ \sigma^* 1s^2, \ \sigma 2s^2, \ \sigma^* 2s^2, \ \pi 2p_x^2 = \pi 2p_y^2, \ \sigma^* 2p_z^2$$ $$B B B B B B$$ [No. of bonding pair = 5] 73. Which compound is electron deficient? (1) NCl_3 - (2) BCl₃ - (3) CCI₄ - (4) PCI₅ Sol. Answer (2) BCl₃ is electron deficient molecule CI—CI Planar s 74. Which compound form polymer due to H-bond? (1) H₂S (2) NF₃ - (3) HF - (4) HCI Sol. Answer (3) - 75. Cation and anion combines in a crystal to form following type of compound - (1) Ionic (2) Metallic (3) Covalent (4) Dipole-dipole #### Sol. Answer (1) Cation and anion form ionic bond in crystal. - 76. Which compound has tetrahedral structure? - (1) XeF₄ - (2) XeOF₂ - (3) XeO₂F₂ - (4) XeO Sol. Answer (4) XeO₄ $H = \frac{1}{2}[8+0-0+0]$ $\frac{8}{2}$ = 4 sp³ tetrahedral structure - 77. In which of the following bond angle is maximum? - (1) NH₃ - (2) PCI₄+ - (3) BCl₃ - (4) PCI₆⁻ Sol. Answer (4) $$[PCI_6]^ H = \frac{1}{2}[5+6-0+1] = \frac{12}{2} = 6 sp^3d^2 = 180^\circ$$ As the bond angle is asked which is maximum in PCI₆⁻ i.e. 180° between linear pair. - 78. In X H ... Y, X and Y both are electronegative elements. Then - (1) Electron density on X will increase and on H will decrease - (2) In both electron density will increase - (3) In both electron density will decrease - (4) On X electron density will decrease and on H increases - Sol. Answer (1) - 79. Main axis of a diatomic molecule is z, molecular orbital p_x and p_x overlap to form which of the following orbitals? - (1) π molecular orbital (2) σ molecular orbital (3) δ molecular orbital (4) No bond will form Sol. Answer (1) π molecular orbital $P_x - P_x$ 80. The state of hybridization of C_2 , C_3 , C_5 and C_6 of the hydrocarbon, $$\begin{array}{c|cccc} CH_3 & CH_3 \\ CH_3 & C & CH = CH - CH - C = CH \\ 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{array}$$ $$CH_3 & CH_3 &$$ is in the following sequence - (1) sp, sp^2 , sp^3 and sp^2 - (2) sp, sp^3 , sp^2 and sp^3 - (3) sp^3 , sp^2 , sp^2 and sp - (4) sp, sp^2 , sp^2 and sp^3 Sol. Answer (2) $$\begin{array}{c|cccc} CH_{3} & CH_{3} \\ & | & sp^{2} & | & sp \\ H_{3}C & -C & -CH = CH - CH - C = CH \\ 6| & 5 & 4 & 3 & 2 & 1 \\ sp^{3} & CH_{3} & & sp^{3} \end{array}$$ - 81. For two ionics solids CaO and KI, identify the wrong statement among the following. - (1) CaO has high melting point - (2) Lattice energy of CaO is much larger than that of KI - (3) KI has high melting point - (4) KI is soluble in benzene Sol. Answer (4) - 82. Which of the following organic compounds has same hybridization as its combustion product –(CO₂)? - (1) Ethane (2) Ethyne (3) Ethene (4) Ethanol Sol. Answer (2) $$H-C \equiv C-H$$ $O=C=O$ sp sp #### **SECTION - C** #### **Assertion - Reason Type Questions** 1. A: N₂, CO and CN⁻ are having same bond order. R: Isoelectronic species always have same bond order. Sol. Answer (3) 2. A: Bond angle of BF₃ and NF₃ are different. R: Both the molecules are having different shape. Sol. Answer (2) 3. A: CO₂ is resonance stabilized molecule. ${\bf R}$: Bond length of ${\bf C-O}$ in ${\bf CO_2}$ is intermediate of single and double bond length. Sol. Answer (3) 4. A: BeCl₂ in vapour phase is electron deficient molecule. R: Any molecule in which central atom is having incomplete octet is known as electron deficient molecule. Sol. Answer (1) 5. A: H–F forms stronger hydrogen bond than H₂O. R: F is more electronegative than oxygen. Sol. Answer (1) A: Each molecule of H₂O forms four H-bond in the form of ice. R: Ice is solid state of H₂O. Sol. Answer (2) 7. A: Both methane and tetrachloromethane are nonpolar. R: C-Cl bond is polar bond. Sol. Answer (2) 8. A: N_2 is more stable than N_2^+ . R : Bond order of $\rm N_2$ is 3 $\,$ while $\rm N_2^{\, +}$ is 2.5. Sol. Answer (1) 9. A: Lattice energy of CaO is higher than LiCl. R: Lattice energy of ionic compound is directly proportional to the product of charges of ion. Sol. Answer (1) 10. A : All P–Cl bond lengths are equal in PCl_3 but different in PCl_5 R: Hybrid state of central atom is different in both molecules. Sol. Answer (2) 11. A: Equal number of sigma and π bonds are present in ethyne. R : π bond is stronger than σ bond. Sol. Answer (4) 12. A: Bond order of H_2^+ is 0.5. R: Electrons are removed from the antibonding molecular orbital from H₂. Sol. Answer (3) 13. A: LiCl is more covalent than BeCl₂. R: Li+ ion is smaller than Be2+. Sol. Answer (4) | 14. | A: O ₂ is paramagnetic. | | | |------|--|--|--| | | R: N ₂ is paramagnetic. | | | | Sol. | Answer (3) | | | | 15. | A: PCl ₅ exist but NCl ₅ does not. | | | | | R: Nitrogen is highly inert. | | | | Sol. | Answer (2) | | | | | | | | | | | | |