Chapter 4

Chemical Bonding and Molecular Structure

Solutions

SECTION - A

Objective Type Questions

(Kossel - Lewis Approach to Chemical Bonding, Ionic Bond, Bond Parameters)

1. According to octet rule the compound which contain ionic, covalent and coordinate bonds

(1) CaSO₄

(2) NH₄Cl

(3) NaNO₃

(4) All of these

Sol. Answer (4)

All have ionic, covalent and co-ordinate covalent bond

2. Which of the following molecule is having least ionic character?

(1) FeCl₂

(2) ZnCl₂

(3) MgCl₂

(4) NaCl

Sol. Answer (2)

Full filled and half filled have maximum covalent character \therefore ZnCl₂ have $3d^{10}$ configuration have maximum polarising power.

3. In PO₄3- ion, the effective charge on each oxygen atom and P-O bond order respectively are

(1) -0.75, 1.25

(2) -0.75, 1.0

(3) -0.75, 0.6

(4) -3, 1.25

Sol. Answer (1)

- A certain diatomic molecule, AB has dipole moment 1.6 D and the internuclear distance is 100 pm. The percentage of electronic charge existing on more electronegative atom is
 - (1) 33%

- (2) 25%
- (3) 50%
- 10%

Sol. Answer (1)

% ionic =
$$\frac{\mu \text{ obsc}}{\mu \text{ cal}}$$
 = $\frac{1.6 \times 10^{-18} \text{ esu-cm}}{100 \times 10^{-18} \times 4.8 \times 10^{-10} \text{ esu-cm}} = 33\%$

is 1.1 D hence dipole moment of given compound will be

- (1) 1.1 D
- (2) 4.4 D

- (3) 3.3 D
- (4) 2.56 D

Sol. Answer (1)

- In the given structure of a compound, the correct various bond moments direction involving atoms are shown as
 - (1) $Br = N = CH_2 \Rightarrow SiH_2 = CH_2 \Rightarrow O = CH_3$ (2) $Br = N = CH_2 = SiH_2 = CH_2 \Rightarrow O = CH_3$
 - (3) $Br \Rightarrow N \Leftarrow CH_2 \Leftarrow SiH_2 \Rightarrow CH_2 \Rightarrow O \Leftarrow CH_3$
- (4) Br \leftarrow N \Rightarrow CH, \Rightarrow SiH, \leftarrow CH, \Rightarrow O \Rightarrow CH,

Sol. Answer (3)

Electronegativity N > Br > C

- Which molecule contains both polar and non-polar covalent bond?
 - (1) NH₄+

(2) HCI

- (3) CH₄

Sol. Answer (4)

H₂O₂ have open book structure

Polar covalent bond because different electronegativity atoms are present

8. Which of the following is a polar molecule?

- (1) Para dichlorobenzene
- (2) Carbon tetrachloride
- (3) Tetrachloroethene

Sol. Answer (4)

(The Valence Shell Electron Pair Repulsion Theory, Valence Bond Theory, Hybridisation)

9. Which of the following is correct for XeO_2F_2 and PCI_5 ?

- (1) Both have same hybridisation and shape
- (2) Both have same hybridisation but different geometry
- (3) Both have different hybridisation but same shape
- (4) Both have same hybridisation but different shape

Sol. Answer (4)

 XeO_2F_2

Hybridisation = $\frac{1}{2}$ [V + M – C + A]

$$H = \frac{1}{2}[8 + 2 - 0 + 0]$$

 $\frac{10}{2} = 5 \ [sp^3d]$

See-saw shape

PCI₅

$$H = \frac{1}{2}[V + M - C + A]$$

$$H = \frac{1}{2}[5 + 5 - 0 + 0]$$

H = 5

Trigonal bipyramidal

10. The maximum number of 180° angle possible between X-M-X bond for compounds with sp^3d^2 and sp^3d hybridisation respectively are

(1) 3, 3

(2) 3, 1

- (3) 1, 3
- (4) 3, 0

Sol. Answer (2)

X— M— X 180° =3.

X— M— X 180°

sp3d2 octahedral

*sp*³*d* trigonal bipyramidal

- 11. Incorrect statement regarding hybridization is
 - (1) It is not possible for isolated atoms
 - (2) Number of hybrid orbital formed is same as the number of orbitals combining
 - (3) Only the half filled orbitals and fully filled orbitals can participate not the empty orbital
 - (4) It is not a real physical process

Sol. Answer (3)

Fully filled, half filled, empty orbitals participate in 'H' in excited state e- excited to empty orbital.

(1)
$$sp^2$$

(2)
$$sp^3$$

(3)
$$sp^{3}d$$

Sol. Answer (2)

N have three bond pair and one lone pair

- ∴ its hybridisation will be sp³
- 13. The shape of I_3^- is
 - (1) Linear
 - (2) Bent
 - (3) Pyramidal
 - (4) See saw
- Sol. Answer (1)

$$I_3^- = [I^- \ . \ I_2]$$

$$H = \frac{1}{2}[V + M - C + A]$$

$$=\frac{1}{2}[7+2-0+1]=\frac{10}{2}=sp^3d$$

 \therefore by combining with two $\rm I_2, \, I^-$ have 3 LP and 2 BP

- 14. Number of angles of 109°28' is present in CCl₄
 - (1) 2

(2) 4

(3) 6

Sol. Answer (3)

109.28° will be in ${}_{1}$ CI - C - Cl $_{2}$ ${}_{1}$ CI - C - Cl $_{3}$ Total '6' ${}_{3}$ CI - C

₂CI — C — Cl₃

₂CI — C — CI₄

3CI — C — CI

15. Number of carbon atoms present in sp² hybrid state of given molecule?

(1) 9

(2) 8

2

Sol. Answer (2)

- 16. In a regular trigonal bipyramidal MX_5 , the number of X-M-X bonds at 180° is
 - (1) One

(2) Two

- (3) Six
- Four

Sol. Answer (1)

- 17. Some of the properties of the two species, NO_3^- and H_3O^+ are described below. Which one of them is correct?
 - (1) Dissimilar hybridization for the central atom with different structures
 - (2) Isostructural with same hybridization for the central atom
 - (3) Isostructural with different hybridization for the central atom
 - (4) Similar hybridization for the central atom with different structures

Sol. Answer (1)

Different hydridisation and different structural arrangement

- 18. Which of the following is not a correct statement?
 - (1) Multiple bonds are always shorter than corresponding single bonds
 - (2) The electron-deficient molecules can act as Lewis acids
 - (3) The canonical structures have no real existence
 - (4) Every AB_5 molecules does in fact have square pyramid structure

Sol. Answer (4)

AB₅ molecule geometry also depends upon the no. of lone pair

∴ always AB₅ will not have square pyramid structure.

AB₅ = trigonal bipyramid, or square pyramid

19. Arrange the following species in increasing order of bond angle

(1)
$$NF_3 < NCl_3 < NBr_3 < Nl_3$$

(3)
$$NI_3 < NBr_3 < NCI_3 < NF_3$$

(4)
$$NBr_3 < NI_3 < NF_3 < NCI_3$$

Sol. Answer (1)

20. Which of the following is correct representation of dipole moment of NH₃ molecule?

(4) NH₃ being symmetrical will not show dipole moment

Sol. Answer (2)

(Molecular Orbital Theory, Hydrogen Bonding)

21. The ground state electronic configuration of valence shell electrons in nitrogen molecule (N2) is written as kk,

$$\sigma 2s^2$$
, $\sigma^* 2s^2$, $\begin{bmatrix} \pi 2p_y^2 \\ \pi 2p_z^2 \end{bmatrix}$, $\sigma 2p_x^2$. Hence the bond order in nitrogen molecule is

(1) 2

(2) 3

(3) 0

(4) 1

Sol. Answer (2)

Bond order =
$$\frac{\text{No. of bonding} - \text{No. of antibonding}}{2} = \frac{8-2}{2} = 3$$

Bond order of $N_2 = 3$

- 22. Which of the following statements are correct?
 - I. Bond order of NO is 2.5
 - II. Bond order of NO+ is 3.0
 - III. Bond order of O_2 is 1.5
 - IV. Bond order of CO is 3.0
 - (1) I, II, III
- (2) II, III, IV
- (3) I, II, IV
- (4) II, IV

Sol. Answer (3)

NO = 15 =
$$\sigma$$
1s², σ *1s², σ 2s², σ 2s², σ 2p_z², σ 2p_x² = π 2p_y², π 2p_x¹

$$B.O = \frac{10 - 5}{2} = 2.5$$

$$NO^{+} = 14 = \sigma 1s^{2}, \ \sigma^{*}1s^{2}, \ \sigma 2s^{2}, \ \sigma^{*}2s^{2}, \ \sigma 2p_{z}^{2}, \ \sigma 2p_{z}^{2} = \pi 2p_{z}^{2}, \ \pi 2p_{z}^{2}, \ \pi^{*}2p_{z}^{0}$$

B.O =
$$\frac{10-4}{2}$$
 = 3

$$O_2 = 16 = \sigma 1s^2, \ \sigma^* 1s^2, \ \sigma 2s^2, \ \sigma^* 2s^2, \ \sigma 2p_z^2, \ \pi 2p_x^2 = \pi 2p_y^2, \ \pi 2p_x^2$$

B.O =
$$\frac{10-6}{2}$$
 = 2

CO = 14 =
$$\sigma$$
1s², σ *1s², σ 2s², π *2 $_{x}$ ² = π 2p $_{y}$ ², σ 2p $_{z}$ ², σ *2ps²

B.O =
$$\frac{10-4}{2}$$
 = 3

- 23. The number of antibonding electron pairs in O₂⁻
 - (1) 2

(2) 3

(3) 1

(4) 4

Sol. Answer (2)

 $O_2^- = 17 = \sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p_z^2$, $\pi 2p_x^2 = \pi 2p_y^2$, $\pi 2p_x^2 = \pi^* 2p_y^2$ Number of antibonding electron pairs are 3.

24. How many bonds are formed by each oxygen atom in ice?

(1) 4

(2) 2

(3) 3

(4) May be 1 or 2

Sol. Answer (1)

25. o-nitrophenol is

(1) More volatile than p-nitrophenol

(2) Less volatile than p-nitrophenol

(3) Equally volatile as p-nitropheno

(4) Non-volatile

Sol. Answer (1)

.. o-nitrophenol will easily evaporated compared to p-nitrophenol

26. Which of the following pair consists of only paramagnetic species?

(1) H₂, O₂⁺

(2) N₂, O₂

(3) CO, N₂

(4) H_2^+ , O_2^-

Sol. Answer (4)

Previous Years Questions

1. In the structure of CIF₃, the number of lone pair of electrons on central atom 'CI' is

[NEET-2018]

(1) One

(2) Two

- (3) Three
- (4) Four

Sol. Answer (2)

The structure of ${\rm CIF}_3$ is

The number of lone pair of electrons on central Cl is 2.

- 2. Magnesium reacts with an element (X) to form an ionic compound. If the ground state electronic configuration of (X) is 1s² 2s² 2p³, the simplest formula for this compound is [NEET-2018]
 - (1) Mg_2X_3
- (2) MgX₂
- (3) Mg₃X₂
- (4) Mg₂X

Sol. Answer (3)

Element (X) electronic configuration

$$1s^2 2s^2 2p^3$$

So, valency of X will be 3.

Valency of Mg is 2.

Formula of compound formed by Mg and X will be Mg₃X₂.

3. Consider the following species:

Which one of these will have the highest bond order?

[NEET-2018]

(1) NO

(2) CN-

- (3) CN
- (4) CN+

Sol. Answer (2)

NO :
$$(\sigma 1s)^2$$
, $(\sigma^* 1s)^2$, $(\sigma 2s)^2$, $(\sigma^* 2s)^2$, $(\sigma 2p_z)^2$, $(\pi 2p_y)^2 = (\pi 2p_y)^2$, $(\pi^* 2p_y)^1 = (\pi^* 2p_y)^0$

BO =
$$\frac{10-5}{2}$$
 = 2.5

CN⁻ :
$$(\sigma 1s)^2$$
, $(\sigma^* 1s)^2$, $(\sigma 2s)^2$, $(\sigma^* 2s)^2$, $(\pi 2p_x)^2$

=
$$(\pi 2p_y)^2$$
, $(\sigma 2p_z)^2$

BO =
$$\frac{10-4}{2}$$
 = 3

$$CN: (\sigma 1s)^2, \ (\sigma^* 1s)^2, \ (\sigma 2s)^2, (\sigma^* 2s)^2, \ (\pi 2p_{_X})^2$$

$$=(\pi2p_y)^2,(\sigma2p_z)^1$$

BO =
$$\frac{9-4}{2}$$
 = 2.5

$$CN^+$$
: $(\sigma 1s)^2$, $(\sigma^* 1s)^2$, $(\sigma 2s)^2$, $(\sigma^* 2s)^2$, $(\pi 2p_x)^2$

$$= (\pi 2p_v)^2$$

BO =
$$\frac{8-4}{2}$$
 = 2

Hence, option(2) should be the right answer.

4.	Which of the following pair	s of c	ompounds is i	soelectronic	and isostructura	l?		[NEET-2017]
	(1) BeCl ₂ , XeF ₂	(2)	Tel ₂ , XeF ₂	(3)	IBr ₂ ⁻ , XeF ₂	(4)	IF ₃ , XeF ₂	
Sol.	Answer (3)							
	IBr ₂ ⁻ , XeF ₂							
	Total number of valence el	ectror	ns are equal in	both the spe	ecies and both the	he species	are linear	also.
5.	The species, having bond	angle	s of 120° is					[NEET-2017]
	(1) PH ₃	(2)	CIF ₃	(3)	NCI ₃	(4)	BCl ₃	
Sol.	Answer (4)							
	CI B 120°							
	B 120°							
6	CI CI		of opposite a box	ua tha aanaa	hand ardar			[NICET 2047]
6.	Which one of the following					(4)	N 0 -	[NEET-2017]
0.1	(1) CO, NO	(2)	O ₂ , NO ⁺	(3)	CN ⁻ , CO	(4)	N_2, O_2^-	
501.	Answer (3)							
_	CN ⁽⁻⁾ and CO have bond o							
7.	Which one of the following	comp	oounds shows	the presence	of intramolecula	ar hydroge		
				(0)			[NEET-	Phase-2-2016]
	(1) H ₂ O ₂			(2)	HCN			
	(3) Cellulose			(4)	Concentrated a	acetic acid		
Sol.	Answer (3)							
	Fact.							
8.	The hybridizations of atomi	c orbi	tals of nitrogen	in NO_2^+ , NO_3^-	and NH ₄ respe	ectively are	[NEET-P	hase-2-2016]
	(1) sp , sp^3 and sp^2	(2)	sp^2 , sp^3 and s	sp (3)	sp, sp ² and sp	³ (4)	<i>sp</i> ² , <i>sp</i> an	d <i>sp</i> ³
Sol.	Answer (3)							
	$[: O = N^{+1} = O:]^{(+)};$ $\begin{bmatrix} : O \\ -1 \\ : O \end{bmatrix}$	O: N -1 p ²	(a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	H (+)				
9.	Which of the following pair	s of i	ons is isoelect	ronic and iso	structural?		[NEET-P	hase-2-2016]
	(1) CO ₃ ²⁻ , NO ₃ ⁻	(2)	CIO ₃ , CO ₃ ²⁻	(3)	SO ₃ ²⁻ , NO ₃	(4)	CIO ₃ , SO ₃	2- 3

Sol. Answer (1, 4)

Option (1):

Both have 32 electrons with trigonal planar structure.

Option (4):

Both have 42 electrons with pyramidal structure.

10	Tho	correct	acomotay	and h	ybridization	for YoE	aro
10.	HILE	Correct	geometry	anu i	iybiiuizalioii	IUI AEF,	₁ are

[NEET-Phase-2-2016]

- (1) Octahedral, sp³d²
- (2) Trigonal bipyramidal, sp³d
- (3) Planar triangle, sp^3d^3
- (4) Square planar, sp³d²

Sol. Answer (1)

 ${\rm XeF_4}$, has octahedral geometry where hybridisation of Xe is ${\it sp^3d^2}$.

11. Among the following, which one is a wrong statement?

[NEET-Phase-2-2016]

(1) PH₅ and BiCl₅ do not exist

- (2) $p\pi$ - $d\pi$ bonds are present in SO_2
- (3) SeF₄ and CH₄ have same shape
- (4) I₃⁺ has bent geometry

Sol. Answer (3)

Shape of SeF₄ would be see saw whereas that of CH₄ would be tetrahedral.

12. Predict the **correct** order among the following.

[NEET-2016]

- (1) Ione pair bond pair > bond pair bond pair > Ione pair Ione pair
- (2) Ione pair Ione pair > Ione pair bond pair > bond pair bond pair
- (3) Ione pair Ione pair > bond pair bond pair > Ione pair bond pair
- (4) bond pair bond pair > lone pair bond pair > lone pair lone pair

Sol. Answer (2)

Fact

13. Consider the molecules CH₄, NH₃ and H₂O. Which of the given statements is false?

[NEET-2016]

- (1) The H C H bond angle in CH₄ is larger than the H N H bond angle in NH₃
- (2) The H C H bond angle in CH_4 , the H N H bond angle in NH_3 , and the H O H bond angle in H_2O are all greater than 90°
- (3) The H O H bond angle in H_2O is larger than the H C H bond angle in CH_4
- (4) The H O H bond angle in H_2O is smaller than the H N H bond angle in NH_3

Sol. Answer (3)

Molecules Bond angle

$$CH_{A} \longrightarrow 109.5^{\circ}$$

$$NH_3 \longrightarrow 107.5^{\circ}$$

$$H_2O \longrightarrow 104.45^{\circ}$$

14. Decreasing order of stability of O_2 , O_2^- , O_2^+ and O_2^{2-} is

[Re-AIPMT-2015]

(1)
$$O_2 > O_2^+ > O_2^{2-} > O_2^-$$

(2)
$$O_2^- > O_2^{2-} > O_2^+ > O_2$$

(3)
$$O_2^+ > O_2^- > O_2^{-2}$$

(4)
$$O_2^{2-} > O_2^{-} > O_2 > O_2^{+}$$

Sol. Answer (3)

Stability ∞ bond-order.

$$O_2^+ > O_2^- > O_2^- > O_2^{2-}$$

Bond order: 2.5 2.0 1.5 1.0

15	In which	of the	following	nairs	hoth	the	snecies	are	not	isostructura	<u>ءاہ</u>
10.	III WIIICII	OI IIIE	IOIIOWIIIQ	palls,	DOUL	แเษ	Species	are	HOL	150511 40141 6	41 !

[Re-AIPMT-2015]

(1) NH₃, PH₃

(2) XeF₄, XeO₄

(3) SiCl₄, PCl₄⁺

Diamond, silicon carbide

Sol. Answer (2)

Square planar

Tetrahedral

16. Maximum bond angle at nitrogen is present in which of the following?

[AIPMT-2015]

(1) NO_3^-

(2) NO₂

- NO_2^-
- NO_2^+

Sol. Answer (4)

NO₂[⊕] have linear geometry

17. The enolic form of ethyl acetoacetate as below has

[AIPMT-2015]

- (1) 9 sigma bonds and 1 pi-bond
- (2) 18 sigma bonds and 2 pi-bonds
- (3) 16 sigma bonds and 1 pi-bond
- (4) 9 sigma bonds and 2 pi-bonds

Sol. Answer (2)

18. Which of the following species contains equal number of σ - and π -bonds?

[AIPMT-2015]

(1) CH₂(CN)₂

(2) HCO₃-

(3) XeO₄

(4) (CN)₂

Sol. Answer (3)

19. The correct bond order in the following species is

[AIPMT-2015]

(1) $O_2^- < O_2^+ < O_2^{2+}$

(2) $O_2^{2+} < O_2^+ < O_2^-$

(3) $O_2^{2+} < O_2^- < O_2^+$

(4) $O_2^+ < O_2^- < O_2^{2+}$

Sol. Answer (1)

20. Which of the following pairs of ions are isoelectronic and isostructural?

[AIPMT-2015]

- (1) CIO_3^- , SO_3^{2-} (2) CO_3^{2-} , SO_3^{2-} (3) CIO_3^- , CO_3^{2-} (4) SO_3^{2-} , NO_3^{2-}

Sol. Answer (1)

21. Which of the following options represents the correct bond order?

[AIPMT-2015]

(1) $O_2^- < O_2 > O_2^+$

(2) $O_2^- > O_2^+ > O_2^+$

(3) $O_2^- < O_2^+ < O_2^+$

(4) $O_2^- > O_2 < O_2^+$

Sol. Answer (3)

- 22. The total number of π -bond electrons in the following structure is
 - H₃C H₂C H H CH₃

(1) 16

(2)

(3) 8

(4) 12

Sol. Answer (3)

23. Which of the following molecules has the maximum dipole moment?

[AIPMT-2014]

[AIPMT-2015]

(1) CO₂

(2) CH₄

- (3) NH.
- (4) NF₃

Sol. Answer (3)

24. Which one of the following species has plane triangular shape?

[AIPMT-2014]

(1) N₃

- (2) NO_3^-
- (3) NO_2^-
- (4) CO_2

Sol. Answer (3)

25. Which one of the following molecules contains no π bond?

[NEET-2013]

(1) H₂O

- (2) SO₂
- (3) NO₂
- (4) CO₂

Sol. Answer (1)

 ${
m H_2O}$ have only sigma bond

26. Which of the following is a polar molecule?

[NEET-2013]

(1) SF₄

(2) SiF₄

- (3) XeF,
- (4) BF₃

Sol. Answer (1)

27. Which of the following is paramagnetic?

[NEET-2013]

(1) O₂

(2) CN-

(3) NO⁺

(4) CO

Sol. Answer (1)

28. The pair of species with the same bond order is

[AIPMT (Prelims)-2012]

(1) NO, CO

(2) N_2, O_2

(3) O_2^{2-} , B_2

(4) O₂+, NO+

Sol. Answer (3)

$$O_2^{2-} = 18 = \sigma 1s^2, \ \sigma^* 1s^2, \ \sigma 2s^2, \ \sigma^* 2s^2, \ \sigma 2p_z^2, \ \pi 2p_x^2 = \pi 2p_y^2, \ \pi 2p_x^2 = \pi^* 2p_y^2$$

B.O =
$$\frac{10-8}{2}$$
 = 1

$$B_2 = 10 = \sigma 1s^2, \ \sigma^* 1s^2, \ \sigma 2s^2, \ \sigma^* 2s^2, \ \pi 2p_x^{\ 1} = \pi 2p_y^{\ 1}$$

B.O =
$$\frac{6-4}{2}$$
 = 1

 ${\rm O_2}^{2-}$ and ${\rm B_2}$ have same bond order

(1) O_2^{2-}

(2) O₂

- (3) O_2^+
- O_{2}^{-} (4)

Sol. Answer (4)

30. Which one of the following pairs is isostructural (i.e. having the same shape and hybridization)?

[AIPMT (Prelims)-2012]

- (1) $[NF_3 \text{ and } BF_3]$
- (2) $[BF_4^- \text{ and } NH_4^+]$ (3) $[BCl_3 \text{ and } BrCl_3]$ (4) $[NH_3 \text{ and } NO_3^-]$

Sol. Answer (2)

$$H = \frac{1}{2}[3+4-0+1]$$

$$=\frac{8}{2}=4=sp^3$$

 $=\frac{8}{2}=4=sp^3$

 $H = \frac{1}{2}[5 + 4 - 1 + 0]$

 NH_{A}^{+}

Tetrahedral shape

Tetrahedral shape

[Both are having tetrahedral shape and same hybridisation]

31. During change of O2 to O22- ion, the electron adds on which one of the following orbitals?

[AIPMT (Mains)-2012]

- (1) π^* orbitals
- (2) π orbitals
- (3) σ^* orbitals
- σ orbitals

Sol. Answer (1)

$$O_2 = 16 = \sigma 1s^2, \ \sigma^* 1s^2 \dots *2p_x^1 = \pi^* 2p_y^1$$

 $O_2^{2-} = 18 = \sigma 1s^2, \ \sigma^* 1s^2 \dots *2p_x^2 = \pi^* 2p_y^2$
 $e^- \text{ added in } \pi^* \text{ orbital}$

32. Four diatomic species are listed below. Identify the correct order in which the bond order is increasing in them

[AIPMT (Mains)-2012]

(1) NO
$$< O_2^- < C_2^{2-} < He_2^+$$

(2)
$$O_2^- < NO < C_2^{2-} < He_2^+$$

(3)
$$C_2^{2-} < He_2^+ < O_2^- < NO$$

(4)
$$He_2^+ < O_2^- < NO < C_2^{2-}$$

Sol. Answer (4)

33. Which of the following has the minimum bond length?

[AIPMT (Prelims)-2011]

(1) O₂

- (3) O_2^-

Sol. Answer (2)

Bond length
$$\propto \frac{1}{\text{Bond order}}$$
 Bond order $O_2 = 2$ $O_2^+ = 2.5$ by molecular orbital theory $O_2^- = 1.5$

∴ [O₂⁺ have minimum bond length]

34.	The correct order of increasing bond length of C -	– H, C – C	C, $C - C$ and $C = C$	is	[AIPMT (Prelims)-2011]
	(1) $C - H < C - O < C - C < C = C$	(2)	C – H < C = C <	C – C) < C - C
	(3) $C - C < C = C < C - O < C - H$	(4)	C – O < C – H <	C - C	C < C = C
	Answer (2)				
35.	Which of the two ions from the list given below that I	have the g	eometry that is expla	ained b	
	of orbitals NO_2^- , NO_3^- , NH_2^- , NH_4^+ , SCN^-				[AIPMT (Prelims)-2011]
	(1) NO_2^- and NH_2^- (2) NO_2^- and NO_3^-	(3)	NH ₄ and NO ₃	(4)	SCN ⁻ and NH ₂
Sol.	Answer (2)				
36.	Which of the following structures is the most prefer	red and h	ence of lowest energ	gy for S	SO ₃ ?
					[AIPMT (Mains)-2011]
	IŌI		IOI		
	(1) 60-\$	(2)	101 10, 5 0		
		()	0, 0,		
	·		. =		
		(4)	6,50)		
Sol	Answer (2)		, ,		
001.	Molecule having covalent bond. Without resonance	e have m	aximum stability: mi	nimum	n energy
	· · · · · · · · · · · · · · · · · · ·	••	٦		
	·ić	∕ ^S ∖∷			
	_ : *	o: s o:			
37.	The pairs of species of oxygen and their magnetic be correct description?			ich of	the following presents the [AIPMT (Mains)-2011]
37.	The pairs of species of oxygen and their magnetic be	ehaviours			[AIPMT (Mains)-2011]
37.	The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ ⁺ , O ₂ - Both paramagnetic	ehaviours (2)	are noted below. Who O_2 , O_2^{2-} — Both I	oaram	[AIPMT (Mains)-2011] agnetic
	The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ ⁺ , O ₂ - Both paramagnetic (3) O ₂ ⁻ , O ₂ ²⁻ - Both diamagnetic	ehaviours (2)	are noted below. Wh	oaram	[AIPMT (Mains)-2011] agnetic
Sol.	The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ ⁺ , O ₂ - Both paramagnetic (3) O ₂ ⁻ , O ₂ ²⁻ - Both diamagnetic Answer (1)	ehaviours (2) (4)	are noted below. Who O_2 , O_2^{2-} — Both O_2^+ , O_2^{2-} — Both O_2^+	oaram oaram	[AIPMT (Mains)-2011] agnetic
Sol.	The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ ⁺ , O ₂ - Both paramagnetic (3) O ₂ ⁻ , O ₂ ²⁻ - Both diamagnetic Answer (1) Which one of the following species does not exist to	ehaviours (2) (4) under norr	are noted below. When O_2 , O_2^{2-} — Both O_2^+ 0, O_2^- 0, $O_$	oaram oaram	[AIPMT (Mains)-2011] agnetic agnetic [AIPMT (Prelims)-2010]
Sol. 38.	The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ ⁺ , O ₂ - Both paramagnetic (3) O ₂ ⁻ , O ₂ ²⁻ - Both diamagnetic Answer (1) Which one of the following species does not exist to (1) Be ₂ ⁺ (2) Be ₂	ehaviours (2) (4)	are noted below. When O_2 , O_2^{2-} — Both O_2^+ 0, O_2^- 0, $O_$	oaram oaram	[AIPMT (Mains)-2011] agnetic agnetic
Sol. 38.	The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ ⁺ , O ₂ - Both paramagnetic (3) O ₂ ⁻ , O ₂ ²⁻ - Both diamagnetic Answer (1) Which one of the following species does not exist use (1) Be ₂ Answer (2)	ehaviours (2) (4) under norr (3)	are noted below. When O_2 , O_2^{2-} — Both O_2^+ , O_2^- — Both O_2^- —	param param (4)	[AIPMT (Mains)-2011] agnetic agnetic [AIPMT (Prelims)-2010] Li ₂
Sol. 38.	The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ ⁺ , O ₂ - Both paramagnetic (3) O ₂ ⁻ , O ₂ ²⁻ - Both diamagnetic Answer (1) Which one of the following species does not exist to (1) Be ₂ ⁺ (2) Be ₂	ehaviours (2) (4) under norr (3)	are noted below. When O_2 , O_2^{2-} — Both O_2^+ , O_2^- — Both O_2^- —	param param (4)	[AIPMT (Mains)-2011] agnetic agnetic [AIPMT (Prelims)-2010] Li ₂ on?
Sol. 38.	The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ +, O ₂ - Both paramagnetic (3) O ₂ -, O ₂ Both diamagnetic Answer (1) Which one of the following species does not exist use (1) Be ₂ Answer (2) In which of the following pairs of molecules/ions, the	ehaviours (2) (4) under norr (3) e central a	are noted below. When O_2 , O_2^{2-} — Both O_2 , O_2^{2-} — Both O_2 and O_2 — Both O_2 and O_2 — Both O_2 atoms have O_2 hybridations.	param param (4)	[AIPMT (Mains)-2011] agnetic agnetic [AIPMT (Prelims)-2010] Li ₂
Sol. 38.	The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ ⁺ , O ₂ - Both paramagnetic (3) O ₂ ⁻ , O ₂ ²⁻ - Both diamagnetic Answer (1) Which one of the following species does not exist use (1) Be ₂ Answer (2)	ehaviours (2) (4) under norr (3) e central a	are noted below. When O_2 , O_2^{2-} — Both O_2 , O_2^{2-} — Both O_2 and O_2 are noted below. When O_2 is a simple of the second	param param (4)	[AIPMT (Mains)-2011] agnetic agnetic [AIPMT (Prelims)-2010] Li ₂ on?
Sol. 38.	The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ +, O ₂ - Both paramagnetic (3) O ₂ -, O ₂ Both diamagnetic Answer (1) Which one of the following species does not exist use (1) Be ₂ Answer (2) In which of the following pairs of molecules/ions, the	ehaviours (2) (4) under norr (3) e central a	are noted below. When O_2 , O_2^{2-} — Both O_2 , O_2^{2-} — Both O_2 and O_2 — Both O_2 and O_2 — Both O_2 atoms have O_2 hybridations.	param param (4)	[AIPMT (Mains)-2011] agnetic agnetic [AIPMT (Prelims)-2010] Li ₂ on?
Sol. 38. Sol. 39.	The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ ⁺ , O ₂ - Both paramagnetic (3) O ₂ ⁻ , O ₂ ²⁻ - Both diamagnetic Answer (1) Which one of the following species does not exist to (1) Be ₂ ⁺ Answer (2) In which of the following pairs of molecules/ions, the (1) NO ₂ ⁻ and NH ₃ (3) NH ₂ ⁻ and H ₂ O Answer (2)	ehaviours (2) (4) under norr (3) e central a (2) (4)	are noted below. When O_2 , O_2^{2-} — Both O_2 , O_2^{2-} — Both O_2 , O_2^{2-} — Both O_2 and O_2 are spand O_2 and O_2 BF ₃ and O_2 BF ₃ and O_2	oaram oaram (4) dizatio	[AIPMT (Mains)-2011] agnetic agnetic [AIPMT (Prelims)-2010] Li ₂ on? [AIPMT (Prelims)-2010]
Sol. 38. Sol. 39.	The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ ⁺ , O ₂ - Both paramagnetic (3) O ₂ ⁻ , O ₂ ² - Both diamagnetic Answer (1) Which one of the following species does not exist use (1) Be ₂ Answer (2) In which of the following pairs of molecules/ions, the (1) NO ₂ ⁻ and NH ₃ (3) NH ₂ ⁻ and H ₂ O	ehaviours (2) (4) under norr (3) e central a (2) (4)	are noted below. When O_2 , O_2^{2-} — Both O_2 , O_2^{2-} — Both O_2 , O_2^{2-} — Both O_2 and O_2 are spand O_2 and O_2 BF ₃ and O_2 BF ₃ and O_2	oaram oaram (4) dizatio	[AIPMT (Mains)-2011] agnetic agnetic [AIPMT (Prelims)-2010] Li ₂ on? [AIPMT (Prelims)-2010]
Sol. 39.	The pairs of species of oxygen and their magnetic be correct description? (1) O ₂ ⁺ , O ₂ - Both paramagnetic (3) O ₂ ⁻ , O ₂ ² - Both diamagnetic Answer (1) Which one of the following species does not exist to (1) Be ₂ ⁺ (2) Be ₂ Answer (2) In which of the following pairs of molecules/ions, the (1) NO ₂ ⁻ and NH ₃ (3) NH ₂ ⁻ and H ₂ O Answer (2) In which one of the following species the central atoms.	ehaviours (2) (4) under norr (3) e central a (2) (4)	are noted below. When O_2 , O_2^{2-} — Both O_2 , O_2^{2-} — Both O_2 , O_2^{2-} — Both O_2 and O_2 atoms have O_2 and O_2 BF ₃ and O_2 BF ₃ and O_2 between O_2 at O_2 between O_2 are type of hybridization	oaram oaram (4) dizatio	[AIPMT (Mains)-2011] agnetic agnetic [AIPMT (Prelims)-2010] Li ₂ on? [AIPMT (Prelims)-2010]

41. In which of the following molecules the central ator	m does not hav	ve sp ³ hybridization?	[AIPMT (Mains)-2010]
(1) CH ₄ (2) SF ₄	(3) BF ₂		NH ⁺ ₄
Sol. Answer (2)		•	7
42. Some of the properties of the two species, NO ₃ a	nd H₃O⁺ are de	escribed below. Which	n one of them is correct?
•			[AIPMT (Mains)-2010]
(1) Dissimilar in hybridization for the central atom	n with different	structures	. , , ,
(2) Isostructural with same hybridization for the ce	entral atom		
(3) Isostructural with different hybridization for the	central atom		
(4) Similar in hybridization for the central atom with	:h different stru	ctures	
Sol. Answer (1)			
43. What is the dominant intermolecular force or bond	that must be o	vercome in convertin	g liquid CH ₃ OH to a gas?
			[AIPMT (Prelims)-2009]
(1) Dipole-dipole interaction	(2) Cov	valent bonds	
(3) London dispersion force	(4) Hy	drogen bonding	
Sol. Answer (4)			
44. According to MO theory which of the following lists	ranks the nitro	gen species in terms	
			[AIPMT (Prelims)-2009]
$(1) N_2^{2-} < N_2^{-} < N_2$		$< N_2^{2-} < N_2^{-}$	
$(3) N_2^- < N_2^{2-} < N_2$	(4) N ₂	$< N_2^{} < N_2^{2-}$	
Sol. Answer (1)			
45. In which of the following molecules/ions BF ₃ , NO ₂	, $\mathrm{NH_2^-}$ and $\mathrm{H_2C}$), the central atom is	sp ² hybridized ?
			[AIPMT (Prelims)-2009]
(1) NH ₂ and H ₂ O	(2) NC	D ₂ and H ₂ O	
(3) BF_3 and NO_2^-	(4) NC) ₂ and NH ₂	
Sol. Answer (3)			
46. In the case of alkali metals, the covalent character	decreases in t	the order	[AIPMT (Prelims)-2009]
(1) MF > MCI > MBr > MI	(2) MF	> MCl > MI > MBr	
(3) MI > MBr > MCl > MF	(4) MC	CI > MI > MBr > MF	
Sol. Answer (3)			
For same cation larger anion more will be covaled	nt character		
∴ MI > MBr > MCl > MF			
47. Four diatomic species are listed below the different increasing bond order?	sequences. W	/hich of these presen	ts the correct order of their [AIPMT (Prelims)-2008]
(1) $He_2^+ < O_2^- < NO < C_2^{2-}$	(2) O ₂	$<\!NO\!<\!C_2^{2-}<\!He_2^+$	
(3) $NO < C_2^{2-} < O_2^- < He_2^+$	(4) C_2^2	$^{-}$ < He $_{2}^{+}$ < NO < O $_{2}^{-}$	
Sol. Answer (1)	_	- -	

48.	The	angular shape	of mole	ecule	(O ₃) consists of					[AIPMT (Prelims)-2008]
	(1)	2 sigma and 1	pi bond	d		(2)	1 sigr	ma and 2 pi	bonds	
	(3)	2 sigma and 2	pi bond	ls		(4)	1 sigr	ma and 1 pi l	bond	
Sol.	Ans	swer (1)								
	:Ö′	Ö Ö: O, hav	ve angι π bond	ular sl	hape have two σ bo	ond				
49.	The	correct order of	fincrea	sing b	oond angles in the fo	ollowing t	riatomi	ic species is		[AIPMT (Prelims)-2008]
	(1)	$NO_2^+ < NO_2^- < $	NO ₂			(2)	NO_2^-	< NO ₂ ⁺ < NO) ₂	
	(3)	$NO_2^- < NO_2 < N$	1O ₂ +			(4)	NO ₂ +	< NO ₂ < NO	2	
Sol.	Ans	swer (3)								
50.	The	correct order of	(C-O)	bond	length among CO,	CO ₃ ⁻² , C	O ₂ is			[AIPMT (Prelims)-2007]
	(1)	CO < CO ₂ < CO	0_3^{-2}			(2)	CO ₂ <	CO ₃ ⁻² < CO		
	(3)	CO < CO ₃ ⁻² < Co	O ₂			(4)	CO_3^{-2}	< CO ₂ < CO		
Sol.	Ans	swer (1)	_				·	_		
51.	In w	which of the follo	wing pa	irs, th	ne two species are i	so-struct	ural ?			[AIPMT (Prelims)-2007]
	(1)	BrO ₃ and XeO ₃	3	(2)	SF_4 and XeF_4	(3)	SO ₃ ²⁻	and NO_3^-	(4)	BF ₃ and NF ₃
52.	Whi (1) (2) (3) (4)	The electron-de The canonical s Every AB ₅ mole Multiple bonds	eficient structure cule do	moled es hav	orrect statement? cules can act as Lev ve no real existence fact have square py horter than correspo	e vramid str	ructure	onds		[AIPMT (Prelims)-2006]
		swer (3)				1° - 1 1°	1 .			
53.	The	e number of unpa	aired ei	ectror	ns in a paramagneti	c diatomi	c mole	cule of an ele	ement	with atomic number 16 is
	(1)	2		(2)	3	(3)	1		(4)	[AIPMT (Prelims)-2006]
Sol.		swer (1)		(2)	Ü	(0)	7		(¬)	1
		` ,	ng sped	cies h	as a linear shape?					[AIPMT (Prelims)-2006]
		NO ₂				(2)	SO ₂			
	(3)	NO_2^+				(4)	O_3			
0 - 1	Ans	swer (3)								
501.							than th	at hatwaan	M and	H yet the dipole moment
55.					between N and F is at of NF $_3$ (0.2 D). The			iat between	in and	[AIPMT (Prelims)-2006]
	of N	NH ₃ (1.5 D) is la	rger tha	an tha		nis is bed	cause			[AIPMT (Prelims)-2006]
	of N	NH_3 (1.5 D) is lating NH_3 as well a	rger than	an tha ₃ the	at of NF $_3$ (0.2 D). The atomic dipole and b	nis is bed oond dip	cause ole are	in the same	directi	[AIPMT (Prelims)-2006]

(4) $\ln NH_3$ the atomic dipole and bond dipole are in the opposite directions whereas in NF_3 these are in the same

directions

Sol. Answer (2)

56. Which of the following molecules has trigonal planar geometry?

[AIPMT (Prelims)-2005]

(1) IF₃

- (2) PCI₃
- (3) NH₃
- (4) BF₃

- Sol. Answer (4)
- 57. Which of the following would have a permanent dipole moment?

[AIPMT (Prelims)-2005]

(1) BF₃

- (2) SiF,
- (3) SF,
- (4) XeF₄

Sol. Answer (3)

58. The correct order in which the O – O bond length increases in the following is

[AIPMT (Prelims)-2005]

(1) $H_2O_2 < O_2 < O_3$

(2) $O_3 < H_2O_2 < O_3$

(3) $O_2 < O_3 < H_2O_2$

(4) $O_2 < H_2O_2 < O_3$

Sol. Answer (3)

59. The correct sequence of increasing covalent character is represented by

[AIPMT (Prelims)-2005]

(1) LiCl < NaCl < BeCl₂

(2) BeCl₂ < NaCl < LiCl

(3) NaCl < LiCl < BeCl,

(4) BeCl₂ < LiCl < NaCl

Sol. Answer (3)

60. Which one of the following oxides is expected to exhibit paramagnetic behaviour?

[AIPMT (Prelims)-2005]

(1) CO₂

- (2) SO₂
- (3) CIO₂
- (4) SiO₂

Sol. Answer (3)

- 61. Which of the following species contains three bond pairs and two lone pairs around the central atom?
 - (1) NH_{2}^{-}

- (2) CIF₂
- (3) H_2O
- (4) BF₂

Sol. Answer (2)

 CIF_3

F [3 bond pairs and 2 lone pairs]

- 62. Bond order of 2.5 is shown by
 - (1) O_2^{2-}

(2) O₂

- (3) O₂⁺
- (4) O_2^-

Sol. Answer (3)

$$O_2^{\ +} = 15 = \ \sigma 1s^2, \ \sigma^* 1s^2, \ \sigma 2s^2, \ \sigma^* 2s^2, \ \sigma 2p_z^{\ 2}, \ \pi 2p_x^{\ 2} = \pi 2p_y^{\ 2}, \ \pi^* 2p_x^{\ 1} = \pi^* 2p_y^{\ 0}$$

B.O =
$$\frac{10-5}{2}$$
 = 2.5

- 63. The outer orbitals of C in ethene molecule can be considered to be hybridized to give three equivalent sp^2 orbitals. The total number of sigma (σ) and pi (π) bonds in ethene molecule is
 - (1) 1 sigma (σ) and 2 pi (π) bonds

(2) 3 sigma (σ) and 2 pi (π) bonds

(3) 4 sigma (σ) and 1 pi (π) bonds

(4) 5 sigma (σ) and 1 pi (π) bonds

Sol. Answer (4)

Ethene =
$$H \circ C = \frac{\pi}{sp^2} \circ C \circ H$$
 Total no. of σ bond = 5 π bond = 1

64. Which of the following is paramagnetic?

(1) C_2^{2-}

- (2) Na₂O₂
- (3) NO₂
- (4) CO

Sol. Answer (3)

 C_2^{2-} , O_2^{2-} , CO have even number of electron will be diamagnetic, NO_2 have unpaired electron will be

65. The geometry of electron pairs around I in IF₅ is

- (1) Octahedral
- (2) Trigonal bipyramidal (3) Square pyramidal (4) Pentagonal planar

Sol. Answer (1)

IF₅
$$H = \frac{1}{2}[7+5-0+0] = \frac{12}{2} = 6 \text{ sp}^3 d^2$$
 Geometry = octahedral

66. In which of the following pair both the species have sp³ hybridization?

- (1) H₂S, BF₃
- (2) SiF₄, BeH₂ (3) NF₃, H₂O (4) NF₃, BF₃

Sol. Answer (3)

NH₃ H =
$$\frac{1}{2}[5+3-0+0] = \frac{8}{2} = sp^3$$

$$H_2O$$
 $H = \frac{1}{2}[6+2-0+0] = \frac{8}{2} = sp^3$

[NH₃ and H₂O have same hybridisation but have different shape.]

67. In the hydrocarbon

$$CH_3$$

 $CH_3 - C = C - CH - C = CH$

The state of hybridization of carbons 1, 3 and 5 are in the following sequence

- (1) sp^3 , sp^2 , sp

- (2) sp^2 , sp, sp^3 (3) sp, sp^3 , sp (4) sp, sp^2 , sp^3

Sol. Answer (3)

68. Which of the following molecule does not possess a permanent dipole moment?

(1) CS₂

- (2) SO_3^{2-}
- (3) H_2S
- (4) SO₂

Sol. Answer (1)

$$\mu = 0$$
 for CS_2
 -8
 $S = C = S$ linear geometry

sp hybridisation

69.	In which of the following compound there is more than	one	kind of hybridization (sp , sp^2 , sp^3) for carbon?
	(1) $CH_2 = CH - CH = CH_2$	(2)	$H-C \equiv C-H$
	(3) CH ₃ CH ₂ CH ₂ CH ₃	(4)	CH_3 - $CH = CH$ - CH_3
Sol.	Answer (4)		
	$H_3C - CH = CH - CH_3$ contain both $sp \propto sp^3$ $sp^3 - sp^2 - sp^2 - sp^3$		

70. Which of the following bonds has the highest energy?

(1) C-C

(2) C≡C

- (3) C=C
- (4) C-H

Sol. Answer (2)

 $C \equiv C$ have two π bond and one σ bond, therefore will be more stronger.

71. The structure and hybridization of Si(CH₃)₄ is

- (1) Octahedral, sp³d
- (2) Tetrahedral, sp³
- (3) Bent, sp
- (4) Trigonal, sp²

Sol. Answer (2)

$$\left[\text{Si}(\text{CH}_3)_4\right] \qquad \text{H} = \frac{1}{2}[4+4-0+0] = \frac{8}{2} = 4 \text{ sp}^3$$

$$\text{CH}_3$$

$$\text{Si}$$

$$\text{CH}_3$$

$$\text{Tetrahedral and } sp^3$$

72. The number of bonding electron pairs in ${\rm N_2}$ on the basis of molecular orbital theory is

(1) 3

(2) 2

(3) 5

(4) 4

Sol. Answer (3)

$$N_2 = 14 = \sigma 1s^2, \ \sigma^* 1s^2, \ \sigma 2s^2, \ \sigma^* 2s^2, \ \pi 2p_x^2 = \pi 2p_y^2, \ \sigma^* 2p_z^2$$

$$B B B B B B$$

[No. of bonding pair = 5]

73. Which compound is electron deficient?

(1) NCl_3

- (2) BCl₃
- (3) CCI₄
- (4) PCI₅

Sol. Answer (2)

BCl₃ is electron deficient molecule CI—CI Planar s

74. Which compound form polymer due to H-bond?

(1) H₂S

(2) NF₃

- (3) HF
- (4) HCI

Sol. Answer (3)

- 75. Cation and anion combines in a crystal to form following type of compound
 - (1) Ionic

(2) Metallic

(3) Covalent

(4) Dipole-dipole

Sol. Answer (1)

Cation and anion form ionic bond in crystal.

- 76. Which compound has tetrahedral structure?
 - (1) XeF₄

- (2) XeOF₂
- (3) XeO₂F₂
- (4) XeO

Sol. Answer (4)

XeO₄ $H = \frac{1}{2}[8+0-0+0]$

 $\frac{8}{2}$ = 4 sp³ tetrahedral structure

- 77. In which of the following bond angle is maximum?
 - (1) NH₃

- (2) PCI₄+
- (3) BCl₃
- (4) PCI₆⁻

Sol. Answer (4)

$$[PCI_6]^ H = \frac{1}{2}[5+6-0+1] = \frac{12}{2} = 6 sp^3d^2 = 180^\circ$$

As the bond angle is asked which is maximum in PCI₆⁻ i.e. 180° between linear pair.

- 78. In X H ... Y, X and Y both are electronegative elements. Then
 - (1) Electron density on X will increase and on H will decrease
 - (2) In both electron density will increase
 - (3) In both electron density will decrease
 - (4) On X electron density will decrease and on H increases
- Sol. Answer (1)

- 79. Main axis of a diatomic molecule is z, molecular orbital p_x and p_x overlap to form which of the following orbitals?
 - (1) π molecular orbital

(2) σ molecular orbital

(3) δ molecular orbital

(4) No bond will form

Sol. Answer (1)

 π molecular orbital $P_x - P_x$

80. The state of hybridization of C_2 , C_3 , C_5 and C_6 of the hydrocarbon,

$$\begin{array}{c|cccc}
CH_3 & CH_3 \\
CH_3 & C & CH = CH - CH - C = CH \\
7 & 6 & 5 & 4 & 3 & 2 & 1
\end{array}$$

$$CH_3 & CH_3 &$$

is in the following sequence

- (1) sp, sp^2 , sp^3 and sp^2
- (2) sp, sp^3 , sp^2 and sp^3
- (3) sp^3 , sp^2 , sp^2 and sp
- (4) sp, sp^2 , sp^2 and sp^3

Sol. Answer (2)

$$\begin{array}{c|cccc} CH_{3} & CH_{3} \\ & | & sp^{2} & | & sp \\ H_{3}C & -C & -CH = CH - CH - C = CH \\ 6| & 5 & 4 & 3 & 2 & 1 \\ sp^{3} & CH_{3} & & sp^{3} \end{array}$$

- 81. For two ionics solids CaO and KI, identify the wrong statement among the following.
 - (1) CaO has high melting point
 - (2) Lattice energy of CaO is much larger than that of KI
 - (3) KI has high melting point
 - (4) KI is soluble in benzene

Sol. Answer (4)

- 82. Which of the following organic compounds has same hybridization as its combustion product –(CO₂)?
 - (1) Ethane

(2) Ethyne

(3) Ethene

(4) Ethanol

Sol. Answer (2)

$$H-C \equiv C-H$$
 $O=C=O$ sp sp

SECTION - C

Assertion - Reason Type Questions

1. A: N₂, CO and CN⁻ are having same bond order.

R: Isoelectronic species always have same bond order.

Sol. Answer (3)

2. A: Bond angle of BF₃ and NF₃ are different.

R: Both the molecules are having different shape.

Sol. Answer (2)

3. A: CO₂ is resonance stabilized molecule.

 ${\bf R}$: Bond length of ${\bf C-O}$ in ${\bf CO_2}$ is intermediate of single and double bond length.

Sol. Answer (3)

4. A: BeCl₂ in vapour phase is electron deficient molecule.

R: Any molecule in which central atom is having incomplete octet is known as electron deficient molecule.

Sol. Answer (1)

5. A: H–F forms stronger hydrogen bond than H₂O.

R: F is more electronegative than oxygen.

Sol. Answer (1)

A: Each molecule of H₂O forms four H-bond in the form of ice.

R: Ice is solid state of H₂O.

Sol. Answer (2)

7. A: Both methane and tetrachloromethane are nonpolar.

R: C-Cl bond is polar bond.

Sol. Answer (2)

8. A: N_2 is more stable than N_2^+ .

R : Bond order of $\rm N_2$ is 3 $\,$ while $\rm N_2^{\, +}$ is 2.5.

Sol. Answer (1)

9. A: Lattice energy of CaO is higher than LiCl.

R: Lattice energy of ionic compound is directly proportional to the product of charges of ion.

Sol. Answer (1)

10. A : All P–Cl bond lengths are equal in PCl_3 but different in PCl_5

R: Hybrid state of central atom is different in both molecules.

Sol. Answer (2)

11. A: Equal number of sigma and π bonds are present in ethyne.

R : π bond is stronger than σ bond.

Sol. Answer (4)

12. A: Bond order of H_2^+ is 0.5.

R: Electrons are removed from the antibonding molecular orbital from H₂.

Sol. Answer (3)

13. A: LiCl is more covalent than BeCl₂.

R: Li+ ion is smaller than Be2+.

Sol. Answer (4)

14.	A: O ₂ is paramagnetic.		
	R: N ₂ is paramagnetic.		
Sol.	Answer (3)		
15.	A: PCl ₅ exist but NCl ₅ does not.		
	R: Nitrogen is highly inert.		
Sol.	Answer (2)		