

IMPORTANT DEFINITIONS

Proton (m _P)/anode	Neutron (m _n)	Electron (m _e)
rays		/cathode rays
mass = 1.67×10^{-27} kg	$mass = 1.67 \times 10^{-27} kg$	mass = 9.1×10^{-31} kg
$mass = 1.67 \times 10^{-24} g$	$mass = 1.67 \times 10^{-24} g$	mass = 9.1×10^{-28} g
mass = 1.00750 amu	mass = 1.00850 amu	mass = 0.000549 amu
e/m value is dependent		e/m of electron is found
on the nature of gas		to be independent
taken in discharge tube.		of nature of gas &
		electrode used.

REPRESENTATION OF AN ELEMENT

Symbol Mass number \rightarrow А Ź element

Terms associated with elements:

- Atomic Number (Z): = No. of protons Electron = Z-C (charge on atom)
- Mass number (A) = Total number of neutron and proton present A = Number of proton + Number of Neutrons

of the

- **Isotopes:** Same atomic number but different mass number **Example:** ${}_{6}C^{12}$, ${}_{6}C^{13}$, ${}_{6}C^{14}$
- **Isobars:** Same mass number but different atomic number **Example:** ₁H³, ₂He³
- Isodiaphers: Same difference of number of Neutrons & protons **Example:** ₅B¹¹, ₆C¹³

- Isotones: Having same number of neutron Example: 1H³, 2He⁴
- **Isosters:** They are the molecules which have the same number of atoms & electrons

Example: CO₂, N₂O

• Isoelectronic: Species having same no. of electrons Example: Cl⁻, Ar

ATOMIC MODELS

- **Thomson:** An atom considered to be positively charged sphere where e⁻ is embedded inside it.
- **Drawback:** Cannot explain stability of an atom.
- Rutherford Model of an Atoms:

Electron is revolving around the nucleus in circular path.

 $R_{\rm N} = R_0(A)^{1/3}, R_0 = 1.33 \times 10^{-13} \text{ cm}$

 $[A = mass number, R_N = Radius of nucleus]$

SIZE OF NUCLEUS

- The volume of the nucleus is very small and is only a minute fraction of the total volume of the atom. Nucleus has a diameter of the order of 10^{-12} to 10^{-13} cm and the atom has a diameter of the order of 10^{-8} cm.
- Thus, diameter (size) of the atom is 1,00,000 times the diameter of the nucleus.

ELECTROMAGNETIC SPECTRUM

- RW→MW→IR→Visible→UV→X-ryas→CR (Radiowaves→ Microwaves → Infrared rays→Visible rays → Ultraviolet rays → X-rays → Cosmic rays)
- Wavelength decreases \rightarrow
- Frequency increases →

•
$$c = v\lambda$$
 $\lambda = \frac{c}{v}$ $\overline{v} = \frac{1}{\lambda} = \frac{v}{c}$
 $T = \frac{1}{v}$ $E = \frac{hc}{\sqrt{v}} = hv, h = 6.626 \times 10^{-34} \text{ Js}$
 $E(ev) = \frac{12400}{\lambda(\text{\AA})}$ nhc

• Total amount of energy transmitted $E = nhv = \frac{me}{\lambda}$

BOHR'S ATOMIC MODEL

Theory based on quantum theory of radiation and the classical laws of physics

- $\frac{K(Ze)(e)}{r^2} = \frac{mv^2}{r}$
- Electron remains in stationary orbit where it does not radiate its energy.

• **Radius:**
$$r = 0.529 \times \frac{n^2}{Z} Å$$

• Velocity:
$$\mathbf{v} = 2.188 \times 10^6 \frac{Z}{n} \text{ ms}^{-1}$$

• Energy (KE + PE) = Total energy =
$$-13.6 \times \frac{Z^2}{n^2} eV/atom$$

•
$$TE = -\frac{KZe^2}{2r}$$
, $PE = \frac{-KZe^2}{r}$, $KE = \frac{KZe^2}{2r}$
 $PE = -2KE$, $KE = -TE$, $PE = 2TE$

• Revolutions per sec =
$$\frac{v}{2\pi m}$$

• Time for one revolution =
$$\frac{2\pi i}{V}$$

Energy difference between n₁ and n₂ energy level

$$\Delta E = E_{n_2} - E_{n_1} = 13.6Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) \frac{eV}{atom} = IE \times \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

where IE = ionization energy of single electron species.

• Ionization energy = $E_{\infty} - E_{G.S.} = 0 - E_{G.S.}$

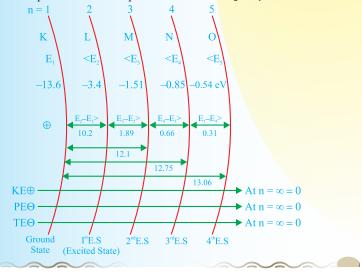
 $E_{G.S.}$ = Energy of electron in ground state.

$$E = 21.8 \times 10^{-12} \frac{z^2}{n^2} \text{ erg per atom}$$

= -21.8 × 10⁻¹⁹ $\frac{z^2}{n^2}$ per atom
= -13.6 $\frac{z^2}{n^2}$ eV/atom
1 eV = 3.8 3 × 10⁻²³ kcal
1 eV = 1.602 × 10⁻¹² erg
1 eV = 1.602 × 10⁻¹⁹ J
E = -313.6 $\frac{z^2}{n^2}$ kcal/mole (1 cal = 4.18 J)
V = $\frac{2\pi kze^2}{nh}$

$$r = \frac{n^2 h^2}{4\pi^2 m k z e^2}$$
$$E = \frac{2\pi^2 m z^2 e^4 k^2}{n^2 h^2}$$

HYDROGEN SPECTRUM


• Rydberg's Equation:

$$\frac{1}{\lambda} = \overline{\nu} = \mathbf{R}_{\mathrm{H}} \left[\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right] \times \mathbf{Z}^{2}$$

 $R_{\rm H} \cong 109700 \text{ cm}^{-1} = \text{Rydberg constant}$

- For first line of a series $n_2 = n_1 + 1$
- Limiting spectral line (series limit) means $n_2 = \infty$
- H_{α} line means $n_2 = n + 1$; also known as line of longest λ , shortest v, least E
- Similarly H_{β} line means $n_2 = n_1 + 2$
- When electron de-excite from higher energy level (n) to ground state in atomic sample, then number of spectral lines observed in the spectrum = $\frac{n(n-1)}{2}$
- When electrons de-excite from higher energy level (n_2) to lower energy level (n_1) in atomic sample, then number of spectral line observed in the spectrum = $\frac{(n_2 - n_1)(n_2 - n_1 + 1)}{2}$

• No. of spectral lines in a particular series
$$= n_2 - n_1$$

DE-BROGLIE HYPOTHESIS

 All material particles posses wave character as well as particle character.

$$\lambda = \frac{h}{mv} = \frac{h}{p}$$

• The circumference of the nth orbit is equal to n times of wavelength of electron i.e., $2\pi r_n = n\lambda$

Number of waves = n = principal quantum number

• Wavelength of electron
$$(\lambda) \cong \sqrt{\frac{150}{V(\text{vols})}} \text{Å}$$

$$\lambda = \frac{h}{\sqrt{2mKE}}$$

HEISENBERG UNCERTAINTY

• According to this principle, "it is impossible to measure simultaneously the position and momentum of a microscopic particle with absolute accuracy"

If one of them is measured with greater accuracy, the other becomes less accurate.

•
$$\Delta x.\Delta p \ge \frac{h}{4\pi}$$
 or $(\Delta x)(\Delta v) \ge \frac{h}{4\pi m}$

where $\Delta x = Unc$ ertainty in position

 $\Delta p = Uncertainty$ in momentum

 $\Delta v = Un$ certainty in velocity

m = mass of microscopic particle

• Heisenberg replaced the concept of orbit by that of orbital.

QUANTUM NUMBER

• Principal Quantum number (By Bohr)

 \Rightarrow Indicates = Size and energy of the orbit, distance of e⁻ from nucleus

 \Rightarrow Values n = 1, 2, 3, 4, 5 ...

- \Rightarrow Angular momentum = n $\times \frac{h}{2\pi}$
- \Rightarrow Total number of e⁻s in an orbit = $2n^2$
- \Rightarrow Total number of orbitals in an orbit = n^2
- \Rightarrow Total number of subshell in an orbit = n

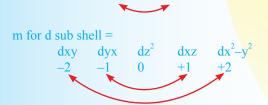
- Azimuthal/Secondary/Subsidiary/Angular momentum quantum number (*l*)
 - \Rightarrow Given by = Sommerfeld
 - \Rightarrow Indicates = Sub shells/sub orbit/sub level
 - \Rightarrow Vales $\Rightarrow 0, 1 \dots (n-1)$
 - \Rightarrow Indicates shape of orbital/Sub shell

Value of n	Values of <i>l</i> [Shape]	Initial from word
eg.	l = 0 (s) [Spherical]	Sharp
If $n = 4$	l = 1 [p] [Dumb bell]	Principal
	l = 2 [d] [Double dumb bell]	Diffused
	l = 3 [f] [Complex]	Fundamental

- \Rightarrow Total no. of e⁻s in a suborbit = 2(21 + 1)
- \Rightarrow Total no. of orbital in a suborbit = (21 + 1)
- $\Rightarrow \text{ Orbital angular momentum } = \sqrt{l(l+1)} \frac{h}{2\pi} = \sqrt{l(l+1)} \frac{h}{2\pi}$ h = Planck's constant
- \Rightarrow For H & H like species all the subshells of a shell have same energy.

i.e
$$2s = 2p$$
 $3s = 3p = 3d$

Magnetic Quantum number (m)


m for p sub shell = p_x

- \Rightarrow Given by Lande
- \Rightarrow Indicates orientation of orbital i.e. direction of electron density.

p_y +1 pz

0

- \Rightarrow Value of m = -l0.....+l
- ⇒ Maximum no of e's in an orbital = 2 (with opposite spin)

• Spin Quantum Number (m, or s) Given by Uhlenback & Goudsmit Values of $s = \pm \frac{1}{2}$ Total value of spin in an atom $= \pm \frac{1}{2} \times$ number of unpaired electrons

Spin Angular momentum = $\sqrt{s(s+1)} \frac{h}{2\pi}$

RULES FOR FILLING OF ORBITALS

- Aufbau principle: The electrons are filled up in increasing order of the energy in subshells. 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s²4d¹⁰5p⁶6s²4f¹⁴5d¹⁰6p⁶7s²5f¹⁴6d¹⁰
- (n + l) rule: The subshell with lowest (n + l) value is filled up first, but when two or more subshells have same (n + l) value then the subshell with lowest value of n is filled up first.
- **Pauli exclusion principle:** Pauli stated that no two electrons in an atom can have same values of all four quantum numbers.
- Hund's rule of maximum multiplicity: Electrons are distributed among the orbitals of subshell in such a way as to give maximum number of unpaired electrons with parallel spin.

