SOT

MATHEMATICS

[SINGLE ANSWER CORRECT TYPE]

1. If the sides a,b,c are the roots of the equation $x^3 - 18x^2 + 104x - 192 = 0$, then the value of $\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}$ is equal to -

- (A) $\frac{3}{64}$ (B) $\frac{29}{48}$ (C) $\frac{29}{96}$ (D) $\frac{3}{128}$
- 2. In a $\triangle ABC$, if tanA + 3 tanC = 0, then angle B lies in -

(A)
$$\left(0,\frac{\pi}{6}\right]$$
 (B) $\left(\frac{\pi}{6},\frac{\pi}{2}\right)$ (C) $\left(\frac{\pi}{2},\frac{5\pi}{6}\right)$ (D) $\left[\frac{5\pi}{6},\pi\right)$

3. In $\triangle ABC$, if $a^2 \cos 2A = 2b^2 + 2c^2 - a^2$, then A belongs to

(A)
$$\left(0, \frac{\pi}{6}\right)$$
 (B) $\left(\frac{\pi}{6}, \frac{\pi}{4}\right)$ (C) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ (D) $\left(\frac{\pi}{2}, \pi\right)$

4. In $\triangle ABC$, if $\cos A + \sin A - \frac{2}{\cos B + \sin B} = 0$, then $\frac{a+b}{c}$ is equal to

(A)
$$\sqrt{2}$$
 (B) 1 (C) $\frac{1}{\sqrt{2}}$ (D) $2\sqrt{2}$

5. If sides of $\triangle ABC$ are connected with relation $4a^2 + 9b^2 + 16c^2 = 6ab + 12bc + 8ac$, then cosA is equal to

6. Two sides of a triangle are given by the roots of the equation $x^2 - 2\sqrt{3}x + 2 = 0$ and the angle between the sides

(D) none of these

is $\frac{\pi}{3}$. Then perimeter of the triangle is (A) 6+ $\sqrt{3}$ (B) $2\sqrt{3} + \sqrt{6}$ (C) $2\sqrt{3} + \sqrt{10}$

7. If in $\triangle ABC$, $\frac{\sin A}{3} = \frac{\sin B}{3} = \frac{\sin C}{2}$, then the value of $\cos A + \cos B + \cos C$ is equal to

(A)
$$\frac{13}{9}$$
 (B) $\frac{12}{13}$ (C) $\frac{14}{9}$ (D) $\frac{9}{13}$

8. In any triangle ABC,
$$\frac{a^2 \sin(B-C)}{\sin B + \sin C} + \frac{b^2 \sin(C-A)}{\sin C + \sin A} + \frac{c^2 \sin(A-B)}{\sin A + \sin B} =$$

(A) $a + b + c$ (B) $a + b - c$ (C) $a - b + c$ (D) 0

[MULTIPLE ANSWER CORRECT TYPE]

Answers

RACE # 37

1. (C) 2. (A) 3. (D) 4. (A) 5. (D) 6. (B) 7. (A) 8. (D) 9. (BCD)

10. (AC) **11.** $\frac{4}{5}, \frac{56}{65} \text{ and } \frac{12}{13}$