RACE # 43

IONIC EQUILIBRIUM

The indicator constant for an acidic indicator, HIn is 5×10^{-6} M. This indicator appears only in the colour of acidic form 1.

when $\frac{[In^-]}{[HIn]} \le \frac{1}{20}$ and it appears only in the colour of basic form when $\frac{[HIn]}{[In^-]} \le \frac{1}{40}$. The pH range of indicator is

(A) 3.7 - 6.9 (B) 4.0 - 6.6(C) 4.0 - 6.9(D) 3.7 - 6.6

What will be the pOH at the equivalence point during the titration of a 100 mL, 0.2 M solution of NH₄Cl with 2. 0.2 M solution of NaOH ? K_{h} for ammonium hydroxide = 2 × 10⁻⁵.

(A)
$$3 - \log \sqrt{2}$$
 (B) $3 + \log \sqrt{2}$ (C) $3 - \log 2$ (D) $3 + \log 2$

To a 100 mL of 0.1 M weak acid HA solution, 22.5 mL of 0.2 M solution of NaOH are added. Now, what 3. volume of 0.1 M NaOH solution be added into above solution, so that pH of resulting solution be 4.7 [Given : $(K_{h}(A^{-}) = 5 \times 10^{-10}]$] (A) 5 mL (B) 20 mL (C) 10 mL (D) 15 mL

60 mL of 0.2 M Ba(OH)₂ solution is added to 50 mL of 0.6 N H₃PO₄ solution. The pH of the mixture would be 4. about : (K_{a1}, K_{a2} and K_{a3} for H₃PO₄ are 10⁻³, 10⁻⁸ and 10⁻¹² respectively).

(A) 11.82 (B) 3.6 (C) 12.18 (D)7.82

Solubility of sparingly soluble salt:

The solubility of A_2X salt (producing A⁺ & X²⁻ ions in aqueous solution) in pure water is y mol dm⁻³. Its 5. solubility product is :

(A) 27
$$y^4$$
 (B) 8 y^3 (C) 2 y^2 (D) 4 y^3

The solubility of sparingly soluble electrolyte $M_m A_a$ (producing M^{a+} & A^{m-} ions in aqueous solution) in water is 6. given by the expression :

(A)
$$s = \left(\frac{K_{sp}}{m^m a^a}\right)^{m+a}$$
 (B) $s = \left(\frac{K_{sp}}{m^m a^a}\right)^{1/m+a}$ (C) $s = \left(\frac{K_{sp}}{m^a a^m}\right)^{m+a}$ (D) $s = \left(\frac{K_{sp}}{m^a a^m}\right)^{1/m+a}$

- Calculate the solubility of A2X3 (producing A3+ & X2- ions in aqueous solution) in pure water, assuming that 7. neither kind of ion reacts with water. For A_2X_3 , $K_{sp} = 1.08 \times 10^{-23}$.
 - (A) $8 \times 10^{-7} \text{ mol } L^{-1}$ (B) $10^{-5} \text{ mol } L^{-1}$ (C) $6.4 \times 10^{-5} \text{ mol } L^{-1}$ (D) $2 \times 10^{-5} \text{ mol } L^{-1}$
- A particular saturated solution of silver chromate, Ag_2CrO_4 , has $[Ag^+] = 5 \times 10^{-5}$ M and $[CrO_4^{2-}] = 4.4 \times 10^{-4}$ M. 8. What is value of K_{sp} for Ag_2CrO_4 ? (C) 9.68×10^{-12} (A) 1.1×10^{-12} (B) 2.2×10^{-8} (D) 4.4×10^{-12}
- If the solubility of Ag_2SO_4 in 10^{-2} M Na_2SO_4 solution be 2 × 10^{-8} M, then K_{sp} of Ag_2SO_4 will be : 9. (B) 16×10^{-18} (C) 32×10^{-18} (D) 16×10^{-24} (A) 32×10^{-24}
- A solution is saturated with respect to SrCO₃ & SrF₂. The [CO₃²⁻] was found to be 1.2 x 10⁻³ M. The concentration 10. of F⁻ in the solution would be : K_{sp} (SrCO₃) = 10⁻⁹, K_{sp} (SrF₂) = 3 × 10⁻¹¹. (D) 6 × 10⁻² M

(A)
$$3 \times 10^{-3}$$
 M (B) 3.6×10^{-5} M (C) 6×10^{-3} M (D) 6×10^{-2} M

- Buffer solutions have constant acidity and alkalinity because : 11.
 - (A) these give unionised acid or base on reaction with added acid or alkali.
 - (B) acids and alkalies in these solution are shielded from attack by other ions.
 - (C) they have large excess of H⁺ or OH⁻ ions
 - (D) they have fixed value of pH.

- 12. Three sparingly soluble salts M_2X , MX and MX_3 have the solubility product are in the ratio of 4: 1 : 27. Their solubilities will be in the order :
 - (A) $MX_3 > MX > M_2 X$ (B) $MX_3 > M_2 X > MX$ (C) $MX > MX_3 > M_2 X$ (D) $MX > M_2 X > MX_3$

13. A student wants to prepare a saturated solution containing Ag⁺ ion. He has got three salts : AgCl ($K_{sp} = 10^{-10}$), AgBr ($K_{sp} = 1.6 \times 10^{-13}$) and Ag₂CrO₄ ($K_{sp} = 3.2 \times 10^{-11}$). Which of the above compounds will be used by him in minimum weight to prepare 1 L of saturated solution ?

(A) AgCl (B) AgBr (C) $Ag_2 CrO_4$ (D) any of the above

14. The solubility of CaF_2 in water at 1518°C is 2×10^{-4} mole/litre. Calculate K_{sp} of CaF_2 and its solubility in 0.1 M NaF solution. Assume no hydrolysis of cation or anion.

- (A) $K_{sp} = 3.2 \times 10^{-11}$ (B) Solubility = 3.2×10^{-9} mole/litre (C) Both (A) & (B) (D) None of these
- 15. The precipitate of CaF_2 ($K_{sp} = 1.7 \times 10^{-10}$) is obtained when equal volumes of the following solutions are mixed:
 - (A) 10^{-3} M Ca²⁺ + 10^{-2} M F⁻ (B) 10^{-2} M Ca²⁺ + 10^{-3} M F⁻ (C) 10^{-4} M Ca²⁺ + 10^{-1} M F⁻ (D) 10^{-1} M Ca²⁺ + 10^{-4} M F⁻
- **16.** If the amount given below is added in pure water, will all of the salt dissolve before equilibrium can be established, or will some salt remain undissolved ?
 - (a) 4.96 mg of MgF₂ in 125 mL of pure water, K_{sp} of MgF₂ = 3.2 x 10⁻⁸
 - (b) 3.9 mg of CaF₂ in 100 mL of pure water, K_{sp} of CaF₂ = 4 x 10⁻¹²

Also find the percentage saturation in each case. Assume no hydrolysis of cation or anion.

- (A) MgF_2 will completely dissolve (B) MgF_2 solution will have 32% saturation
- (C) CaF_2 will not completely dissolve (D) CaF_2 solution will have 100% saturation
- 17. The solubility product for silver iodate $AgIO_3$ is 1 x 10^{-8} . If 0.1 g of solid $AgIO_3$ is added to 100 mL of 0.02 M KIO_3 solution, what are the concentrations of K⁺, IO_3^{-} & Ag⁺ at equilibrium?
 - (A) $[Ag^+] = 5 \times 10^{-7} M$ (B) $[IO_3^-] = 2 \times 10^{-2} M$ (C) $[K^+] = 2 \times 10^{-2} M$ (D) $[IO_3^-] = 0.023 M$
- **18.** Calculate [F⁻] in a solution saturated with respect of both MgF₂ and SrF₂. Assume no hydrolysis of cation or anion.

 $K_{sn}(MgF_2) = 9.5 \times 10^{-9}, K_{sn}(SrF_2) = 4 \times 10^{-9}.$

Report your answer after multiplying by 10⁴.

19. pH of a saturated solution of $Ba(OH)_2$ is 12. The value of solubility product (K_{SP}) of $Ba(OH)_2$ is(A) 3.3×10^{-7} (B) 5.0×10^{-7} (C) 4.0×10^{-6} (D) 5.0×10^{-6}

20. The solubility product of As_2O_3 is 10.8×10^{-9} . It is 50% dissociated in saturated solution. The solubility of salt is :

(A)
$$10^{-2}$$
 (B) 2×10^{-2} (C) 5×10^{-3} (D) 5.4×10^{-9}

21. On adding 0.1 M solution each of $[Ag^+]$, $[Ba^{2+}]$, $[Ca^{2+}]$ in a Na₂SO₄ solution, species first precipitated is $[K_{sp} BaSO_4 = 10^{-11}, K_{sp} CaSO_4 = 10^{-6}, K_{sp} Ag_2SO_4 = 10^{-5}]$ (A) Ag_2SO_4 (B) $BaSO_4$ (C) $CaSO_4$ (D) All of these

Answers

RACE # 43

 1.
 (C)
 2.
 (A)
 3.
 (A)
 4.
 (A)
 5.
 (D)
 6.
 (B)
 7.
 (B)
 8.
 (A)
 9.
 (B)
 10.
 (C)

 11.
 (A)
 12.
 (B)
 13.
 (B)
 14.
 (C)
 15.
 (ABC)
 16.
 (ABCD)
 17.
 (ABC)

 18.
 (30)
 19.
 (B)
 20.
 (B)
 21.
 (B)
 21.
 (B)