

DETERMINACY AND INDETERMINACY

The structure that can be analysed by the equations of static equilibrium alone.

2.1. Equation of Static Equilibrium

2D Planar structure

 $\Sigma F_x = 0$ $\Sigma F_y = 0$ $\Sigma M = 0$

3D Space Structure

ΣF_x	=	0	$\Sigma m_x = 0$
ΣF_y	=	0	$\Sigma m_y = 0$
ΣF_z	=	0	$\Sigma m_z = 0$

Statically indeterminate structure are the one which cannot be found by equations of static equilibrium.

2.1.1. Degree of Static Indeterminacy

Can be termed as equations in addition to static equilibrium equation required to completely analyse the structure.

 D_S = Number of unknown forces in member or at support – equation of static equilibrium available.

D_s	$= D_{Si} +$	$-D_{Se}$
5	5	5
Ş	ξ	ξ
÷	+	¥
Total	Internal	External

2.1.2. Support Reaction

Plane

-	Fix	R_x, R_y, M_z	Reactions
		$\delta_x, \delta_y, \theta_z$	Restrains
<u>~</u>	Pin	$R_x, R_y,$	Reactions
		$\delta_x, \delta_y,$	Restrains
	Roller	R_y	Reactions
		δ_y	Restrains

Spa	ace Struc	ture	
-	Fix	$R_x, R_y, R_z, M_x, M_y, M_z$	Reactions
-	Pin	R_x, R_y, R_z	Reactions
-	Roller	R_{y}	Reactions
2.1	.3. Exte	ernal Indeterminacy	
			r = R - 3 Plane
		- 50	= R - 6 Space
2.1	A Into	un al Indatanuina au	
2.1	.4. Inte	rnal Indeterminacy	
		D_{si}	m = m - (2j - 3) Truss plane
			= m - (3j - 6) Truss space
			= 3C Rigid plane frame
			= 6C Rigid space frame
		j	= No. of Joints
		С	= No. of cuts required for obtaining open configuration.
		m	= No. of members
Sin	plified H	Formula of <i>Ds</i>	
	• Plan	the truss D_S	k = (m+R)-2j
	• Space	ce truss D_s	k = (m+R) - 3j
	• Rigi	d plane frame D_s	a = (3m+R) - 3j
	• Rigi	d space frame D_S	f = (6m+R) - 6j

2.2. Truss (Static Indeterminacy)

- Every joint is a Hinge Joint.
- Each joint has 2 nos. of equation (planar)
- Internal indeterminacy should be checked for individual loop. e.g.,

• All support reactions should not be parallel as may lead to unstability e.g.,

• All support reactions should not be concurrent as may lead to unstability. e.g.,

- If a truss is unstable we never discuss SD, or SID.
- If in any truss are appreciable deformation which can be due to no proper bracing it makes the structure unstable. e.g.,

Simple Truss

In a triangle when two bar and one joint are progressively added to form a truss.

Compound Truss

Two simple truss connected by a set of joints and bars.

Complex Truss

There is no joint where only two bars meet.

Simple Truss

Compound Truss

Complex Truss

• Truss having members which crossover each other or member that serves as side for more than 2 triangle are likely to be indeterminate.

Difference between SD & SI

	Statically Determinate	Statically Indeterminate
(1)	Equilibrium equation sufficient to analyse	Insufficient
(2)	BM independent of material	Dependent
(3)	BM is independent of sections Area	Dependent
(4)	Stresses are not caused due to temperature change & lack of fit.	Stresses caused

2.3. Frames/Beams

2.3.1. Internal Pin/Hinge

Pin cannot transmit moment from one part to other. Thus, provides extra condition $\Sigma M = 0$.

Internal Link

Bar with pin @ each end

incapable of transmitting moment as well as horizontal force.

Two additional conditions are, $\Sigma M = 0$, $\Sigma H = 0$

Loading Type

- General Loading has both vertical and horizontal component.
- Vertical loading condition is important for beams but not frames.

Open tree like Structure Concept used for Finding Indeterminacy

- trees have only one root
- trees cannot have closed looped branch.

Unstable or Deficient Structure

If there are not sufficient number of Restraint the structure under go Rigid Body movement upon application of a small displacement. e.g.,

2.4. Restraining Members/Joint

The concept relates to making structure completely rigid and then analyzing it for indeterminacy.

• Plane frame = (m'-1)

m' = no. of members joining the Hinged Joint.

• Space frame = 3(m'-1)

Concept = Rotation of Members

• $R_H \& M$ are the restrains required to make rigid.

• R_H are the restrains required to make rigid.

• R_{ν} is restraint required to make rigid.

2.4.1. Rigid Frames

In a plane frame, every member carries 3 forces. (BM, SF, Axial)

Total no. of unknown = $3m_{member} + R_{Support}$

At each joint equilibrium equation = 3j

$$\Sigma f_x = 0$$

$$\Sigma f_y = 0$$

$$\Sigma M = 0$$

$$D_S = 3m + R - 3j$$

$$D_S = 3m + R - 3j - \Sigma(m' - 1)$$

where m' is the number of members (a) hinge it.

$$D_S = 6m + R - 6j - \Sigma 3(m' - 1)$$

Denote by D_K.

- Also called as degrees of freedom (DOF)
- Kinematic indeterminacy:

The no of unknown joint displacements is called degrees of freedom

	Types of support	Degrees of Freedom
1	Free end.	$3\left(\delta_{x},\delta_{y},\theta\right)$
2	Roller support.	$2(\theta,\delta_x).$

2.3. Effect of force release on D.O.F.

1. Internal moment hinge.

Note: Each member connected to a hinge can have its own notation, in addition to δx and δy .

Example:

5 notations and 2 translations.

2. Horizontal shear releases.

3. Vertical, shear release

4. (2 rotations - θ_1 and θ_2 2 translations - δ_x and δ_y)

4. D.O.F

(2 horizontal trans- δ_{x1} and δ_{y1} vertical trans - δ_y and θ .)

4. D.O.F

 $(\delta_{y1}, \delta_{y2}, \delta x \& \theta).$

D_k of rigid jointed plane frame:

D_k of rigid jointed plane Frame:

D_k = 52 (Considering axial deformations)

For a rigid joint with infinite member, there is only single rotation for a hinged joint, there will be infinite rotations:

Note: Practically the axial deformations of members or rigid jointed structures are negligilire. Assume axial deformation of all members are neglected then Dk = 52 - total no. of members. = 52 - 22 = 30 (neglection axial deformations)

D_K of Pin jointed Plane Frames:

Note: Rotations are not considered in trusses the only possible D.O.F in trusses are axial deformations. Hence the equation of neglecting AD do not arise in pin-jointed trusses

Formula for D_K:

$D_{\rm K} = NJ - C$ where	Ν	=	D.O.F at a joint	-	
	J	=	no of joints		
N = 3; rigid jointed plane frame	c c	=	compatibility equations		
N = 6: rigid jointed space frame					
	Ν	=	2; pin jointed plane frame		
	Ν	=	3 ; pin jointed space frame	7777	7777
	J	=	4 (supports are also considered as jointed)		
	0	=	Reactions, if actual deformations consider		
		=	m + r; if axial deformations are neglect		
Where $m \rightarrow$ no of members.					
	D_K	=	$3 \times 4 - 6 = 6$		

 $D_K = 6 \times 4$ (joints)

= 24 (considering AD)

 $D_{K} = 24 - 8 \text{ (member)}$ = 16 (neglecting AD).