Chapter 3

Classification of Elements and Periodicity in Properties

Solutions

SECTION - A

Objective Type Questions

(Modern Periodic Law and The Present form of The Periodic Table)

- Ca2+ is isoelectronic with 1.
 - (3) Ar (1) Mg²⁺ (2) Kr
- Sol. Answer (3)

Isoelectronic means same number of electrons.

Ar = 18

- An atom of an element has electronic configuration 2, 8, 1. Which of the following statement is correct? 2.
 - (1) The valency of element is 7
 - (2) The element exists as a triatomic molecule Division
 - (3) The element is metalloid
 - (4) The element forms basic oxide

Sol. Answer (4)

Electronic configuration indicates that 1 e⁻ is present in outermost shell.

It will easily lose electrons

... It is metal and form basic oxide

$$2 \operatorname{Na} + \frac{1}{2} \operatorname{O}_2 \longrightarrow \operatorname{Na}_2 \operatorname{O}$$

The symbol of element with atomic number Z = 109 3.

(2) Uns

(3) Uno

(4) Une

Sol. Answer (4)

109 = Une

22	Classification	of Elements	and Periodicity in	Properties			Solutions of	f Assignment (Level-II)
4.	Pd has exceptional electronic configuration of $4a^{10}$ 5s ⁰ . It belong to							
	(1) 4 th period,	group 11		(2	2) {	5 th period, group	10	
	(3) 6 th period,	group 9		(4) (3 rd period, group	16	
Sol.	Answer (2)							
	$Pd = 4d^{10}, 5s^{0}$	⁾ member of	4d series i.e., 5 th	period and 10) th	group.		
5.	All elements ir	n the third p	eriod have					
	(1) Three con	nplete shells	i	(2	2) -	Three complete	subshells	
	(3) Three vale	ence electror	IS	(4) -	Three electrons	less than o	ctet
Sol.	Answer (2)			,	,			
	3rd period = 3	3d ¹⁰ . 3s ² . 3p	⁶ three subshells a	re last electro	ons	s enters in <i>d</i> -sub	shell.	
	∴ It is <i>d</i> -bloo	ck elements						
6.	Which one of	the following	a represents a d-blo	ock element?				
	(1) [Rn] 6d ¹⁰	$7s^2 7p^2$		(2	2) [[Xe] 4 <i>f</i> ¹ 5 <i>d</i> ¹ 6s ²		
	(3) [Xe] 4 <i>f</i> ¹⁴ 5	$5d^1 6s^2$		(4	.) [[Xe] 5d ¹ 6s ²		
Sol.	Answer (4)			(.	/ 1			
	Last electrons	enters in d	-subshell					A.
	∴ It is d-blog	ck elements						2
7.	Which of the f	ollowing set	of atomic number	represents or	nlv	representative e	lements?	
	(1) 55 12 48	53		(2	, .	13 23 54 83	101101101	
	(3) 3 33 53	87		(4	5	22 33 55 66	Limit	
Sol	(c) c, cc, cc,	01					inces	
001.	Representative	e element in	cludes S ∝ n-block			58		
	liat no = 3	$1s^2 2s^2$			~	aliono.		
	As at 33	$1s^2 2s^2 2$	$p^6 3s^2 3p^6 4s^2 3$	d ¹⁰ 4n ³	1	- guco		
	Lat 53	$5s^2 sn^5$	p,00,0p,10,0	, ip		25M		
	Fr at 87	7s ¹		3 5	25			
8	Which of the f	ollowing nai	rs of atomic numbe	ors represents	പ	lements helonair	na to the sa	me aroun?
0.	(1) 11 and 20	onowing par	(2) 12 and 30	(3) ·	13 and 31	(4)	14 and 33
Sol	Answer (3)			(0	')		(')	
001.		or 13 = Al ar	roup 13					
		er 31 = Ga o						
q	Total number (of elements	present in 5th perio	od of modern	ne	priodic table is		
0.	(1) 2		(2) 8	(3	рс 1)	18	(4)	32
Sol	$(1) \ge$		(2) 0	(0	')		(-)	02
001.	Total number	of 18 eleme	nts are present in f	ifth period <i>i</i> e				
		8 18 32			•,			
	$ \begin{array}{c} 2, 3, 6, 7 \\ \downarrow \downarrow \downarrow \downarrow \\ 1^{st} 2^{nd} 3^{rd} 4 \end{array} $, 10, 32						

(2) F > CI > Br > O

(4) CI > F > O > Br

(Periodic Trends in Physics Properties)

- 10. The electronegativity follows the order
 - (1) F > O > Cl > Br
 - (3) O > F > Cl > Br

Sol. Answer (1)

F > O > Cl > Br down the group e⁻ negativity decreases left to right e⁻ negativity increases

... F have more electron affinity than 'O',

```
O have more than Cl due to same
Cl and Br have less
```

11. The correct order of shielding effect of s, p, d and f orbitals is

(1)
$$s > p > d > f$$
 (2) $s f$ (3) $s (4) $s > p < d < f$$

Sol. Answer (1)

s is more closer to nucleus *i.e.*, shielding effect α distance from nucleus.

 \therefore s > p > d > f

- 12. Which of the following statement is incorrect?
 - (1) The ionization potential of nitrogen is greater than that of oxygen
 - (2) The electron affinity of fluorine is greater than that of chlorine
 - (3) The ionization potential of Mg is greater than aluminium
 - (4) The electronegativity of fluorine is greater than that of chlorine

Sol. Answer (2)

Electron affinity of F is less than chlorine because of smaller size more will be the repulsion towards new electron.

- 13. Increase in atomic size down the group is due to
 - (1) Increase in number of orbit
 - (2) Increase in number of protons and neutrons
 - (3) Increase in number of protons
 - (4) Increase in number of protons, neutrons and electrons

Sol. Answer (1)

On moving down the group no. of shells are added

- .:. Size increases
- 14. In which of the following pairs the radii of second species is greater than that of first?
 - (1) K, Ca
 - (2) H, He
 - (3) Mg⁺, Mg²⁺
 - (4) O^{2–}, O[–]
- Sol. Answer (2)

He has more size than 'H' because of $(1s^2)$ completely filled s-subshell.

15. The successive ionization energies for element X is given below

Find out the number of valence electrons for the element X.

(1) 3 (2) 4 (3) 2 (4) 1

Sol. Answer (4)

Difference between IE_1 and IE_2 is high then the number of valence electron in the element is one.

16. If you are given Avogadro's number of atoms of a gas 'X'. If half of the atoms are converted into $X_{(g)}^{+}$ by energy ΔH . The IE of X is

(1)
$$\frac{2\Delta H}{N_A}$$

(2) $\frac{2N_A}{\Delta H}$
(3) $\frac{\Delta H}{2N_A}$
(4) $\frac{N_A}{\Delta H}$
Answer (1)
 $\frac{1}{2}N_A$ atoms have ionisation energy = ΔH
 N_A atom have ionisation energy = $\frac{\Delta H \times 2}{N_A}$

17. Find the formula of halide of a metal whose successive ionization enthalpies are x, 2x, 5x, 100x kJ mol⁻¹ respectively

(1) MX (2) MX_2 (3) MX_3 (4) M_2X

Sol. Answer (3)

Sol.

There is large difference between 3rd and 4th I.E.

 \therefore +3 oxidation state will be more stable and the formula of halide is MX₃.

- 18. Which of the following equation represents first enthalpy of ionization ?
 - (1) $\operatorname{Hg}_{(s)} \longrightarrow \operatorname{Hg}^{+}_{(g)} + e^{-}$ (2) $\operatorname{Hg}_{(l)} \longrightarrow \operatorname{Hg}^{+}_{(g)} + e^{-}$ (3) $\operatorname{Hg}_{(g)} \longrightarrow \operatorname{Hg}^{+}_{(g)} + e^{-}$ (4) $\operatorname{Hg}^{+}_{(g)} \longrightarrow \operatorname{Hg}^{-}_{(g)}^{2^{+}} + e^{-}$

Sol. Answer (3)

I.E. is the amount of energy required to remove an electron from an isolated gaseous atom.

- 19. The energy required to convert all atoms present in 1.2 g magnesium to Mg²⁺ ions if IE, and IE₂ of magnesium are 120 kJ mol⁻¹ and 240 kJ mol⁻¹ respectively
 - (1) 18 kJ (2) 36 kJ (3) 360 kJ (4) 24 kJ

the highest

Sol.	Answer (1)		
	Moles of Mg = $\frac{1.2}{24}$ = 0.05 moL		
	$Mg \rightarrow Mg^{2+} + 2^{e-}$ I.E. = I.E ₁ + I.E ₂ =	120 + 240	
	1 moL <u></u>		
	0.05 moL energy required = $360 \times 0.05 =$	18 kJ	
20.	The process requiring absorption of energy is		
	(1) $F \rightarrow F^-$	(2) $H \rightarrow H^+$	
	(3) $CI \rightarrow CI^{-}$	(4) $O \rightarrow O^-$	
Sol.	Answer (2)		
	I.Energy is the absorption of energy.		
21.	The least electronegative element has the following	electronic configuration	
	(1) ns^2np^5 (2) ns^2np^4	(3) n <i>s</i> ²n <i>p</i> ³	(4) n <i>s</i> ²n <i>p</i> ⁶
Sol.	Answer (4)		
	Full filled electronic configuration element do not at	tract electron	
	<i>i.e.</i> , ns ² , np ⁶		5
22.	Which of the following is correct order of metallic of	haracter for Si, Be, Mg, Na and F	22
	(1) P < Si < Be < Na < Mg	(2) P < Si < Be < Mg < Na	
	(3) Na > Be > Mg > Be > P	(4) Na > Si > Mg > Be > P	60/
Sol.	Answer (2)	A Shink	
	Left to right metallic character decreases	enice	
	Top to bottom metallic character increases		
	∴ P (less metallic due to smaller size) < Si < Be	< Mg < Na (more metallic due to	o large size)
23.	With which of the following electronic configuration	an atom has the lowest ionization	1 enthalpy?
	(1) $1s^2 2s^2 2p^3$	(2) $1s^2 2s^2 2p^6 3s^1$	
	(3) $1s^2 2s^2 2p^6$	(4) $1s^2 2s^2 2p^5$	
Sol.	Answer (2)	Sions	
24.	The electronic configuration having maximum differ	ence in first and second ionization	energies is
	(1) $1s^2 2s^2 2p^0 3s^2$	(2) $1s^2 2s^2 2p^0 3s^2 3p^1$	
0.1	(3) $1s^2 2s^2 2p^0 3s^2 3p^2$	(4) 1s ² 2s ² 2p ⁰ 3s ¹	
Sol.	Answer (4)	*********	
05	After removing 1 e ⁻ it will get stable noble gas cont	Iguration.	
25.	metallic character?	Z and J are given below. which	element nas
	(1) X = 2, 8, 4	(2) Y = 2, 8, 8	
	(3) Z = 2, 8, 8, 1	(4) J = 2, 8, 8, 7	

Sol. Answer (3)

Element Z have 1 electron in 4th shell

: it will easily lose to get noble gas configuration.

SECTION - B

Previous Years Questions

- The element Z = 114 has been discovered recently. It will belong to which of the following family group and 1. electronic configuration? [NEET-2017]
 - (1) Halogen family, [Rn] 5f¹⁴6d¹⁰7s²7p⁵
 - (3) Oxygen family, [Rn] $5f^{14}6d^{10}7s^27p^4$
- Sol. Answer (2)

26

- Z = 114 belong to Group 14, carbon family
- In which of the following options, the order of arrangement does not agree with the variation of property indicated 2. [NEET-2016] against it?
 - (1) Li < Na < K < Rb (increasing metallic radius)
 - (2) $AI^{3+} < Mg^{2+} < Na^+ < F^-$ (increasing ionic size)
 - (3) B < C < N < O (increasing first ionisation enthalpy)
 - (4) I < Br < CI < F (increasing electron gain enthalpy)

Sol. Answer (3 & 4)

For option (3) :

The correct order for 1st ionisation energy is B < C < O < N.

For option (4) :

The correct order for magnitude of electron gain enthalpy is I < Br < F < Cl

The species Ar, K⁺ and Ca²⁺ contain the same number of electrons. In which order do their radii increase? 3.

(2) Ar < K⁺ < Ca²⁺

(4) Ca²⁺ < K⁺ < Ar

- (1) K⁺ < Ar < Ca²⁺
- (3) $Ca^{2+} < Ar < K^+$
- Sol. Answer (4)

4. Which of the following orders of ionic radii is correctly represented ?

- (2) Na⁺>F⁻>O²⁻ (1) $H^- > H^+ > H$ (4) Al³⁺>Mg²⁺>N³⁻
- (3) O²⁻ > F⁻ > Na⁺
- Sol. Answer (3)
- 5. Identify the **wrong** statement in the following.
 - (1) Atomic radius of the elements increases as one moves down the first group of the periodic table
 - (2) Atomic radius of the elements decreases as one moves across from left to right in the 2nd period of the periodic table
 - (3) Amongst isoelectronic species, smaller the positive charge on the cation, smaller is the ionic radius
 - (4) Amongst isoelectronic species, greater the negative charge on the anion, larger is the ionic radius
- Sol. Answer (3)
 - In isoelectronic species *i.e.*, same number of electrons.

(more the positive charge; smaller will be the size) more the negative charge; larger will be the size

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph. 011-47623456

- (2) Carbon family, [Rn] $5f^{14}6d^{10}7s^27p^2$
- (4) Nitrogen family, [Rn] 5f¹⁴6d¹⁰7s²7p⁶

[AIPMT-2015]

[AIPMT-2014]

[AIPMT (Prelims)-2012]

Solu	tions of Assignment (Level-II)	Classification of Elements and Pe	riodicity in Properties 27
6.	What is the value of electron gain enthalpy of Na	a⁺ if IE ₁ of Na = 5.1 eV?	[AIPMT (Mains)-2011]
	(1) +2.55 eV	(2) +10.2 eV	
	(3) -5.1 eV	(4) -10.2 eV	
Sol.	Answer (3)		
	Electron gain enthalpy is negative of I.E. <i>i.e.</i> , -5	5.1 eV	
7.	Which of the following represents the correct order elements O, S, F and Cl ?	er of increasing electron gain enthal	py with negative sign for the [AIPMT (Prelims)-2010]
	(1) CI < F < O < S	(2) O < S < F < CI	
	(3) F < S < O < CI	(4) S < O < Cl < F	
Sol.	Answer (2)		
8.	The correct order of the decreasing ionic radii am	ong the following is electronic spec	ies are
			[AIPMT (Prelims)-2010]
	(1) Ca ²⁺ > K ⁺ > S ^{2−} > Cl [−]	(2) Cl ⁻ > S ²⁻ > Ca ²⁺ > K ⁺	
	(3) S ²⁻ > Cl ⁻ > K ⁺ > Ca ²⁺	(4) K ⁺ > Ca ²⁺ > Cl ⁻ > S ^{2−}	
Sol.	Answer (3)		1.6
9.	Among the elements Ca, Mg, P and Cl, the order	er of increasing atomic radii is	[AIPMT (Mains)-2010]
	(1) Mg < Ca < Cl < P	(2) Cl < P < Mg < Ca	1
	(3) P < Cl < Ca < Mg	(4) Ca < Mg < P < Cl	Cite ^{O 1}
Sol.	Answer (2)		S
	Mg P CI {left to right size de	creases	
	Ca (down the group si	ze increases	
	i.e., Ca > Mg > P > Cl	Educio.	
10.	Amongst the elements with following electronic co energy?	nfigurations, which one of them may	y have the highest ionization [AIPMT (Prelims)-2009]
	(1) Ne [3s ² 3p ²]	(2) Ar [3d ¹⁰ 4s ² 4p ³]	
	(3) Ne [3s ² 3p ¹]	(4) Ne [3s ² 3p ³]	
Sol.	Answer (4)		
	Half filled stability $3s^2 3p^3$		
11.	Identify the correct order of the size of the following	ng	[AIPMT(Prelims)-2007]
	(1) Ca²⁺ < Ar < K⁺ < CI⁻ < S²⁻	(2) Ca ²⁺ < K ⁺ < Ar < S ²⁻ <	CI⁻
	(3) $Ca^{2+} < K^+ < Ar < Cl^- < S^{2-}$	(4) Ar < Ca ²⁺ < K ⁺ < Cl [−] <	S ²⁻
Sol.	Answer (3)		
12.	Which one of the following arrangements represent of the given atomic species ?	ts the correct order of electron gain	enthalpy (with negative sign) [AIPMT (Prelims)-2005]
	(1) CI < F < S < O	(2) O < S < F < Cl	
	(3) S < O < Cl < F	(4) F < Cl < O < S	

28 Classification of Elements and Periodicity in Properties

Sol. Answer (2)

CI have more electron gain enthalpy than F {due to smaller size of F and 'O' it will show repulsion}

S have more electron gain enthalpy than O

- \therefore Order will be O < S < F < Cl
- 13. Which one of the following arrangements represents the correct order of least negative to most negative electron gain enthalpy for C, Ca, AI, F and O?

(1) Ca < AI < C < O < F

- (2) AI < Ca < O < C < F
- (3) AI < O < C < Ca < F
- (4) C < F < O < AI < Ca
- Sol. Answer (1)

C < O < F

Left to right electronegativity increases

Down the group electronegativity decreases

- \therefore Ca < Al < C < O < F
- 14. The electronic configuration of an element is $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^2$. What is the atomic number of the element, which is just below the above element in the periodic table?

(1) 36 (2) 49 (3) 50 (4) 54

Sol. Answer (3)

Atomic number of element = 32, below element have atomic number 32 + 18 = 50.

- 15. Which of the following ion is the largest in size?
 - (1) K⁺

(3) Cl

(4) S⁻²

Sol. Answer (4)

All are isoelectronic and more the negative charge more will be the size.

(2) Ca²⁺

- 16. The electronic configuration of inner transition elements is
 - (1) ns¹
 - (2) $ns^2np^5nd^{10}$
 - (3) $ns^{0-2}(n-1) d^{1-10}(n-2) f^{1-14}$
 - (4) $ns^2 (n-1) d^{0-1} (n-2) f^{1-14}$
- Sol. Answer (4)

 $ns^{2}(n-1)d^{0-1}(n-2)f^{1-14}$

- 17. Which of the following has the smallest size?
 - (1) AI^{3+} (2) F^- (3) Na^+ (4) Mg^{2+}
- Sol. Answer (1)

More the positive charge smaller will be the size for isoelectronic elements.

- 18. Which one of the following is correct order of the size of aluminium species?
 - (1) $AI > AI^+ > AI^{2+}$
 - (2) $AI^{2+} > AI^+ > AI$
 - (3) $AI^{2+} = AI^+ = AI$
 - (4) All of these
- Sol. Answer (1)

Size of positive charge atom *i.e.*, cation is always lesser than parent atom due to increase in effective nuclear charge *i.e.*, $AI > AI^{\oplus} > AI^{2+}$

19. The first ionization potentials (eV) of N and O respectively are

(1)	8.29, 8.29	(2)	11.32, 11.32
(3)	8.29, 11.32	(4)	11.32, 8.21

Sol. Answer (4)

N $(2s^2, 2p^3)$ have half filled more ionisation than 'O' $(2s^2, 2p^4)$ stability potential not half filed

 $\therefore \begin{cases} N = 11.32 \text{ eV} \\ O = 8.21 \text{ eV} \end{cases}$

20. Correct order of Ist ionization potential among elements Be, B, C, N, O is

- (1) B < Be < C < O < N
- (2) B < Be < C < N < O
 (4) Be < B < C < O < N (3) Be < B < C < N < O

Sol. Answer (1)

Left to right in period I.E increases and half filled have more I.E.

1st I.E [B < Be (more I.E. due to half filled) < C < O < N (more I.E. than 'O' due to half filled)]

- 21. An atom has electronic configuration $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2$, you will place it in which group of periodic table?
 - (1) Fifth
 - (3) Second
- Sol. Answer (1)

 $3d^3$, $4s^2 = 5$ placed in fifth group

- 22. Ionic radii are
 - (1) Inversely proportional to effective nuclear charge
 - (2) Inversely proportional to square of effective nuclear charge
 - (3) Directly proportional to effective nuclear charge
 - (4) Directly proportional to square of effective nuclear charge
- Sol. Answer (1)

Ionic radii $\propto \frac{1}{\text{effective nuclear charge}}$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph. 011-47623456

(2) Fifteenth (4) Third

- 23. Four successive members of the first row transition elements are listed below with their atomic numbers. Which one of them is expected to have the highest third ionisation enthalpy?
 - (1) Vanadium (Z = 23)
 - (2) Chromium (Z = 24)
 - (3) Manganese (Z = 25)
 - (4) Iron (Z = 26)

Sol. Answer (3)

Mn = 25 = $4s^2$, $3d^5$ after removing 2 electrons from 4s Mn will get stable configuration *i.e.*, $3d^5$

3rd I.E. will be more

- 24. The element with highest electronegativity will belong to
 - (1) Period 2, group 17 (2) Period 3, group 17
 - (3) Period 2, group 18 (4) Period 2, group 1
- Sol. Answer (1)

Most electronegative is 'F', which belongs to group 17 and period 2.

- 25. The first, second and third ionisation energies of Al are 578, 1817 and 2745 kJ mol⁻¹ respectively. Calculate the energy required to convert all the atoms of AI to AI+3 present in 270 mg of AI vapours
 - (4) 514.0 kJ (1) 5140 kJ (2) 51.40 kJ (3) 2745 kJ
- Sol. Answer (2)

Moles of AI =
$$\frac{270 \times 10^{-3}}{27} = 10^{-2}$$
 moles

$$AI \longrightarrow AI^{3+} + 3I^{-}$$

Total I.E. = 578 + 1817 + 2745 = 5140 kJ/mol

for 1 mol have I.E = 5140

 10^{-2} mol have I.E will be = 5140 × 10^{-2} = 51.40 kJ

- 26. The size of ionic species is correctly given in the order
 - (2) Na⁺ > Mg⁺² > Si⁴⁺ > Cl⁺⁷ (1) Na⁺ > Mg⁺² > Cl⁺⁷ > Si⁴⁺ (4) Cl⁺⁷ > Na⁺ > Mq⁺² > Si⁺⁴
 - (3) Cl+7 > Si+4 > Mg+2 > Na+
- Sol. Answer (2)

For isoelectronic more than negative charge smaller will be the size

- ∴ Na⁺ > Mg²⁺ > Si⁴⁺ > Cl⁺⁷
- 27. Match the following, regarding nature of the oxides

	Column-I		Column-ll		
a.	H ₂ O	(i)	Basic		
b.	Na ₂ O	(ii)	Amphoteric		
C.	ZnO	(iii)	Acidic		
d.	SO3	(iv)	Neutral		
(1)	a(ii), b(i), c(iii), d(iv)			(2)	a(iv), b(i), c(iii), d(ii)
(3)	a(iv), b(i), c(ii), d(iii)			(4)	a(ii), b(i), c(iv), d(iii)

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph. 011-47623456

Sol. Answer (3)

 $H_2O \longrightarrow Neutral$ ZnO = amphoteric

 $Na_2O \longrightarrow Basic$ $SO_3 = Acidic$

- 28. Be^{2+} is isoelectronic with which of the following ions?
 - (1) H⁺

+

(3)	Na⁺
-----	-----

(4) Mg²⁺

Sol. Answer (2)

	e		e
Н	1	H⁺	0
Li	3	Li⁺	2
Be	4	Be ²⁺	2

SECTION - C

Assertion-Reason Type Questions

- 1. A: Be and Al show diagonal relationship.
 - R : Be and AI are diagonal to each other in the periodic table.

(2) Li⁺

Sol. Answer (2)

- 2. A: The first ionisation energy of AI is lower than magnesium.
 - R: Atomic radius of AI is smaller then magnesium.
- Sol. Answer (2)
- 3. A : He and Be have similar outer shell electronic configuration of type ns^2 .
 - R : Both are chemically inert.

Sol. Answer (3)

- 4. A : Electron affinity of oxygen is higher than sulphur.
 - R : Number of valence orbitals containing electrons are different.

Sol. Answer (4)

- 5. A : Ionization enthalpy decreases on moving down the group.
 - R: Force of attraction between nucleus and electrons decreases on moving down the group.

Sol. Answer (1)

- 6. A : Atomic radii decreases in a period upto halogen.
 - R : van der Waal radii of CI is larger than its covalent radii.
- Sol. Answer (2)
- 7. A: Lanthanum (Z: 57) is lanthanoid.
 - R : Valence electrons are present in 4*f* orbital.
- Sol. Answer (4)
- 8. A : Na_2O is more basic than AI_2O_3 .
 - R : Sodium is less electropositive than aluminium.
- Sol. Answer (3)

- 9. A: F is most electronegative element of periodic table.
 - R : CI is having highest electron affinity.
- Sol. Answer (2)
- 10. A : Cu, Ag, Au are known as coinage metal.
 - R : Coinage metals are *d*-block metals.
- Sol. Answer (2)

