Applications of Vectors in Mechanics

Type – 1

Choose the most appropriate option (a, b, c or d).

- P is a point in the plane of the ABC whose orthocenter is H and the circumcentre is O. Forces Q 1. $\vec{AP}, \vec{BP}, \vec{CP}$ and \vec{PH} act at P. The force that will keep the given forces in equilibrium is (a) 20P (b) 30P (c) 2PÓ (d) none of these Three forces P,O and R each of 15 units, act along AB, BC and CA respectively. The position Q 2. vectors of A, B and C are $\vec{OA} = 2\vec{i} - j + 3\vec{k}$, $\vec{OB} = 5\vec{i} + 3j - 2\vec{k}$ and $\vec{OC} = 2\vec{i} + 2j + 3\vec{k}$. The resultant force vector is (a) $\left(12\frac{9}{\sqrt{2}}-7\sqrt{3}\right)\vec{i}-(9-6\sqrt{2}+\sqrt{3})\vec{j}+\left(5\sqrt{3}-\frac{15}{\sqrt{2}}\right)\vec{k}$ (b) $\left(12+\frac{9}{\sqrt{2}}-7\sqrt{3}\right)\vec{i}+(9-6\sqrt{2}+\sqrt{3})\vec{j}+\left(\frac{15}{\sqrt{2}}-5\sqrt{3}\right)\vec{k}$ (c) $75\vec{i}+60\vec{j}+60\vec{k}$ (d) none of these Q 3. A ship is sailing towards north at a speed of 1.25 m/s. The current is taking it towards east at the rate of 1 m/s. A sailor is climbing a vertical pole on the ship at the rate of 0.5 m/s. The magnitude of the velocity of the sailor in space is (b) $\frac{3\sqrt{5}}{4}$ m/s (c) $\frac{3\sqrt{5}}{2}$ m/s (a) 2.75 m/s (d) none of these A force $10\vec{i}-5\vec{j}+7\vec{k}$ displaces a particle from the point A to the point B. The position vectors of Q4. A and B are $3\vec{i} - \vec{j} + 2\vec{k}$ and $\vec{i} + 3\vec{j} + 2\vec{k}$ respectively. Then the work done is (C) 60 (a) 40 (b) 20 (d) none of these Constant forces $\vec{P} = \vec{i} - 2\vec{j} + 3\vec{k}, \vec{Q} = -\vec{i} + 3\vec{j} - \vec{k}$ and $\vec{R} = 2\vec{i} - 4\vec{j} + 3\vec{k}$ act on a particle. The work Q 5. $\vec{4i-3j-2k}$ to the point B with position vector $\vec{6i+j-3k}$ is
 - (a) 15 (b) 13 (c) $\sqrt{13}$ (d) none of these
- Q 6. The vertices of a triangle ABC are A(-1, 0, 2), B(1,2, 0) and C(2, 3, 4). The moment of a force of magnitude 10 acting at A along AB about C is

(a)
$$\frac{50\sqrt{6}}{3}$$
 (b) $20\sqrt{6}$ (c) $\frac{50}{\sqrt{3}}$ (d) none of these

Q 7. The vector moment about the point $\vec{i} + 2\vec{j} + 3\vec{k}$ of the resultant of the forces $\vec{i} - 2\vec{j} + 5\vec{k}$ and $3\vec{j} - 4\vec{k}$ acting at the point $2\vec{i} + 3\vec{j} - \vec{k}$ is (a) $5\vec{i} + \vec{j} - 4\vec{k}$ (b) $5\vec{i} - \vec{j} - 4\vec{k}$ (c) $3\vec{i} + \vec{j} - 4\vec{k}$ (d) none of these Q 8. A rigid body is rotating at 5 radians per second about an axis AB, where A and B are points whose position vectors are $2\vec{i} + \vec{j} + \vec{k}$ and $8\vec{i} - 2\vec{j} + 3\vec{k}$ respectively. The velocity of the particle of

the body at the point whose position vector is $\vec{5 i + 2 j - k}$ is

(a)
$$\frac{15}{7}(2\vec{i}+6\vec{j}+3\vec{k})$$
 (b) $\frac{5}{7}(4\vec{i}-6\vec{j}-3\vec{k})$ (c) $\frac{15}{7}(4\vec{i}-6\vec{j}-3\vec{k})$ (d) none of these

Type 2

Choose the correct options. One or more options may be correct.

Q 9. A particle is in equilibrium when the forces

$$\vec{F}_1 = -10\vec{k}, \vec{F}_2 = \frac{u}{13}(4\vec{i} - 12\vec{j} + 3\vec{k}), \vec{F}_3 = \frac{v}{13}(-4\vec{i} - 12\vec{j} + 3\vec{k}) \text{ and } \vec{F} = w(\cos\theta\vec{i} + \sin\theta\vec{j}) \text{ act on it.}$$

Then

(a)
$$u = 65(1 - 3\cot \theta)$$
 (b) $v = \frac{65}{3} + 65\cot \theta$ (c) $w = 40\csc \theta$ (d) none of these

Q 10. The resolved parts of the force vector $\vec{5i+4j+2k}$ along and perpendicular to the vector

$$3\vec{i} + 4\vec{j} - 5\vec{k} \text{ are } \vec{u} \text{ and } \vec{v} \text{ respectively. Then}$$
(a) $\vec{u} = \frac{21}{50}(3\vec{i} + 4\vec{j} - 5\vec{k})$
(b) $\vec{u} = \frac{21}{5\sqrt{2}}(3\vec{i} + 4\vec{j} - 5\vec{k})$
(c) $\vec{v} = \frac{1}{50}(187\vec{i} + 116\vec{j} + 5\vec{k})$
(d) $\frac{1}{5\sqrt{2}}(\vec{i} - 2\vec{j} - \vec{k})$

Answers

1c 2a 3b 4a 5b 6a 7b 8a 9b,c 10a,c