Alternating Current

Alternating Current:

An alternating current (a.c.) is a current which continuously, changes in magnitude and periodically reverse in direction'.

 $i = I_0 \sin \omega t = I_0 \sin (2\pi/T) t$

Here I_0 is the peak value of a.c.

- (a) Current, $I = I_0 \sin \omega t$
- (b) Angular frequency, $\omega = 2\pi n$ (*n* is the frequency of a.c.)
- (c) $I = I_0 \sin 2\pi nt$

• Mean value of A.C or D.C. value of A.C.:-

Mean value of a.c. is that value of steady current which sends the same amount of charge, through a circuit, in same time as is done by a.c. in one half-cycle.

$$(I_{av})_{half\ cycle} = (2/\pi)I_0$$

Thus, mean value of alternating current is $2/\pi$ times (0.637 times) its peak value.

$$(V_{av})_{half\ cycle} = (2/\pi)\ V_0$$

Average value of A.C. over a complete cycle:-

$$I_{av} = 0$$

The average value of a.c. taken over the complete cycle of a.c. is zero.

• Root mean square value of a.c. or virtual value of a.c.:-

Root mean square value of alternating current is defined as that value of steady current which produces same heating effect, in a resistance, in a certain time as is produced by the alternating current in same resistance in same time. The *r.m.s* value of *a.c.* is also called its virtual value.

$$I_{\rm rms} = I_0/\sqrt{2}$$

Root mean square value of alternating current is I/V2 times (or 0.707 times) the peak value of current.

Similarly, $V_{rms} = V_0/\sqrt{2}$

Here V_0 is the peak value of *e.m.f.*

Form Factor:-

Form Factor = rms value/average value = $(V_0/V_2)/(2 V_0/\pi) = \pi/2V_2$

• Current elements:-

(a) Inductive reactance:- $X_L = \omega L$

Here, ω = $2\pi n$, n being frequency of *a.c.*

L is the coefficient of self-inductance of coil.

(b) Capacitative reactance:- $X_c = 1/\omega C$

Here C is the capacity of the condenser

• Capacitor in AC circuit:-

$$q = CV_0 \sin \omega t$$

$$I = I_0 \sin(\omega t + \pi/2)$$

$$V_0 = I_0/\omega C$$

$$X_c = 1/\omega C$$

• Inductor in AC circuit:-

$$V_L = L(dI/dt) = LI_0\omega \cos\omega t$$

$$I = (V_0 / \omega L) \sin \omega t$$

Here,
$$I_0 = V_0 / \omega L$$

$$X_L = \omega L$$

And the maximum current, $I_0 = V_0/XL$

R-L circuit:-

?/ =
$$\varepsilon/R$$
 [1- $e^{-Rt/L}$]
V = ε $e^{-Rt/L}$

• Graph between I (amp) and t (sec):-

• Graph between potential difference across inductor and time:-

• L-C Circuit:-

$$f = 1/2\pi VLC$$

$$q = q_0 \sin(\omega t + ?)$$

$$I = q_0 \omega \sin(\omega t + ?)$$

$$\omega = 1/\sqrt{LC}$$

• The total energy of the system remains conserved,

$$\frac{1}{2} CV^2 + \frac{1}{2} Li^2 = \text{constant} = \frac{1}{2} CV_0^2 = \frac{1}{2} Li_0^2$$

• Series in C-R circuit:-

$$V = IZ$$

The modulus of impedance, $|Z| = \sqrt{R^2 + (1/\omega C)^2}$

The potential difference lags the current by an angle, ? = $tan^{-1}(1/\omega CR)$

• Series in L-C-R Circuit:

$$V = IZ$$

The modulus of impedance, $|Z| = \sqrt{(R^2 + (\omega L - 1/\omega C)^2)}$

The potential difference lags the current by an angle, ? = $tan^{-1}[\omega L - 1/\omega C)/R$]

• Circuit elements with A.C:-

Circuit elements	Amplitude relation	Circuit quantity	Phase of V
Resistor	$V_0 = i_0 R$	R	In phase with i
Capacitor	$V_0 = i_0 X_C$	С	Lags i by 90°
Inductor	$V_0 = i_0 X_L$	X _L = wL	Leads i by 90°

• Resonance:-

- (a) Resonance frequency:- $f_r = 1/2\pi VLC$
- (b) At resonance, $X_L = X_C$, ? = 0, Z = R(minimum), $\cos ? = 1$, $\sin ? = 0$ and current is maximum $(=E_0/R)$

• Half power frequencies:-

- (a) Lower, $f_1 = f_r R/4\pi L$ or $\omega_1 = \omega_r R/2L$
- (b) Upper, $f_2 = f_r + R/4\pi L$ or $\omega_2 = \omega_r + R/2L$
- Band width:- $\Delta f = R/2\pi L$ or $\Delta f = R/L$

Quality Factor:-

- (a) $Q = \omega_r/\Delta\omega = \omega_r L/R$
- (b) As $\omega = 1/VLC$, So $Q \propto VL$, $Q \propto 1/R$ and $Q \propto 1/VC$
- (c) $Q = 1/\omega_r CR$
- (d) $Q = X_L/R$ or $Q = X_C/R$
- (e) $Q = f_r/\Delta f$

• At resonance, peak voltages are:-

- (a) $(V_L)_{res} = e_0 Q$
- (b) $(V_{\rm C})_{\rm res} = e_0 {\rm Q}$
- (c) $(V_R)_{res} = e_0$

• Conductance, susceptance and admittance:-

- (a) Conductance, G = 1/R
- (b) Susceptance, S = 1/X
- (c) $S_L = 1/X_L$ and $S_C = 1/X_C = \omega C$
- (d) Admittance, Y = 1/Z
- (e) Impedance add in series while add in parallel

• Power in AC circuits:-

Circuit containing pure resistance:- $P_{av} = (E_0/\sqrt{2}) \times (I_0/\sqrt{2}) = E_v \times I_v$

Here E_v and I_v are the virtual values of *e.m.f* and the current respectively.

Circuit containing impedance (a combination of R,L and C):-

$$P_{av} = (E_0/V2) \times (I_0/V2) \cos? = (E_v \times I_v) \cos?$$

Here cos? is the power factor.

- (a) Circuit containing pure resistance, $P_{av} = E_v I_v$
- (b) Circuit containing pure inductance, $P_{av} = 0$
- (c) Circuit containing pure capacitance, $P_{av} = 0$
- (d) Circuit containing resistance and inductance,

$$Z = \sqrt{R^2 + (\omega L)}$$

$$\cos ? == R/Z = R/[V\{R^2 + (\omega L)^2\}]$$

(e) Circuit containing resistance and capacitance:-

$$Z = \sqrt{R^2 + (1/\omega C)^2}$$

$$\cos ? == R/Z = R/[\sqrt{R^2 + (1/\omega C)^2}]$$

(f) Power factor, \cos ? = Real power/Virtual power = $P_{av}/E_{rms}I_{rms}$

• Transformer:-

(a)
$$C_p = N_p (d?/dt)$$
 and $e_s = N_s (d?/dt)$

(b)
$$e_p/e_s = N_p/N_s$$

(c) As,
$$e_p I_p = e_s I_s$$
, Thus, $I_s / I_p = e_p / e_s = N_p / N_s$

(d) Step down:-
$$e_s < e_p$$
, $N_s < N_p$ and $I_s > I_p$

(e) Step up:-
$$e_s > e_p$$
, $N_s > N_p$ and $I_s < I_p$

(f) Efficiency,
$$\eta = e_s I_s / e_p I_p$$

• AC Generator:-

$$e = e_0 \sin(2\pi ft)$$

Here,
$$e_0 = NBA\omega$$