
 

    

 
 

 

Date :                     Time :  75 Min.         Max. Marks : 80 
 

 
Marking Scheme : 
 
SCQ - 1 - 3, (4, –1) 
MCQ = 4 - 9, (4, –1) 
Comprehension = 10 - 18, (4, –1) 
Integer = 19 - 20, (4, –1) 

 
 

 

SECTION-1 : (Only One option correct type) 
This section contains 3 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of 
which ONLY ONE is correct.  

 

1. Consider two identical homogeneous balls, A and B, with the same initial temperatures. One of them is 

at rest on a horizontal plane, while the second one hangs on a thread as shown in figure. The same 

quantities of heat Q have been supplied to both balls. Rise of temperature of ball A is TA and of ball B 

is TB. Mass of one ball is m, radius is r, specific heat is c and coefficient of linear expansion of material  

of ball is  . Value of TA – TB  will be (All kinds of heat losses are negligible.) (Given that Q = 50 kcal, 

J = 4.16 J/cal, g = 10 m/s2,  m = 47 kg,  r = 0.1 m, c = 0.031 cal/(g⋅K), = 29 ×10–6 K–1. 

 

      
 (A) 1.5 × 10–5 K (B) 3 × 10–5 K  (C) 4.5 × 10–5 K  (D) 6 × 10–5 K 
 
2. Two planes are inclined at angles  and   with the horizontal and a particle is projected at right angle 

to the one plane from a point at a distance 'a' from the point  of intersection of the planes as shown in 

the figure . If the particle strikes to the other plane at right angle, time of flight is : 

 

   

 (A) 
 

  


cossin–sing

sina2 2

     (B) 
 

  


cossin–sing

–sina2 2

    

 (C) 
 

  


–cossin–sing

sina2 2

  (D) 
 

  


–cossin–sing

–sina2 2
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3. A rod is bent into the "L" shape and hinged at O so that it  can be rotated about z-axis in x-y plane as 

shown in the figure. At the position shown in the figure, the angular velocity is 2rad/sec and angular 

velocity is decreasing at the rate of 4rad/s2. Acceleration of end A will be :  

 

4m 

A B 

O 

z 

y 

3m 

x 

90° 



 

 (A)  ˆ ˆa –4i 28 j 


   (B)  ˆ ˆa 28i 4 j 


  (C)  ˆ ˆa 28i 4 j  


 (D)  ˆ ˆa –28i 4 j 


 

     

 SECTION-2 : (One or more option correct type) 
This section contains 6 multiple choice question. Each question has four choices (A), (B), (C) and (D) out of 
which ONE or MORE are correct. 

 
4. A small ball with mass M rests on a vertical column with height h. A bullet with mass  

m, moving with velocity v0, passes horizontally through the center of the ball. The ball reaches the 

ground at a distance s from vertical column. Choose the correct option(s) 

 Neglect resistance of the air.      

 M 
m v0 

h 

s  

 (A) The bullet reaches the ground at a distance 0
2h M

d v – s
g m

 from vertical column.      

 (B) The bullet reaches the ground at a distance s
m

M
2–

g

h2
vd 0 from vertical column.   

 (C) Fraction of kinetic energy of the bullet converted into heat when the bullet passed through the ball is 










 
m

mM
–

g

h2

s

v
2

h2

g

v

s

m

M 0
2
0

2

    

 (D) Fraction of kinetic energy of the bullet converted into heat when the bullet passed through the ball is 










 
m

mM
–

g

h2

s

v

h

g

v

s

m

M 0
2
0

2

 

  
 
 
 
 



 

    

5. On an inclined plane of 30° a block, mass m2 = 4 kg, is joined by a light cord to a uniform solid cylinder, 

mass m1 = 8 kg, radius r = 5 cm. The coefficient of friction between the block and the inclined plane µ = 

0.2. Friction at the bearing is negligible. There is no slipping between cylinder and incline plane.  

Choose the correct option(s).  

  

 

  

 (A) Acceleration of  block is 4.25m/s2   

 (B) Friction acting between cylinder and incline plane is 13.01N.    

 (C) Tension in the cord is 0.8 N.    

 (D) Acceleration of the block is 3.25m/s2 

 

6.  Consider an arrangement shown in the figure. The  block of mass m3 is constrained to move in the 

vertical direction only. The wedge of mass m4 moves in the horizontal direction. The slider 'S' of mass 

m2 moves on a fixed horizontal rod. The friction between all the contact surfaces is negligible. At a 

particular instant the string connecting the slider 'S' to the block of mass m1 is making angle  with the 

rod and everything is at rest. Choose the correct option (s) for the given instant. The acceleration due to 

gravity is g. 

 
 

m1m4

m3

m2

S 


 

 (A) Acceleration of m1 is 
 

 
3 1

2 2
1 2 3 4

g m m cos cos

m cos m m m cot

  

    
  

 (B) Acceleration of m1 is 
 

 
3 2 1

2 2
1 2 3 4

g m m m cos cos

m cos m m m cot

   

    
 

 (C) Acceleration of m3 is 
 

 
3 1

2 2
1 2 3 4

g m m cos cot

m cos m m m cot

  

    
  

 (D) Acceleration of m3 is 
 

 
3 2 1

2 2
1 2 3 4

g m m m cos cot

m cos m m m cot

   

    
 

 
 
 
 



 

    

7. Three balls A, B and C each of mass m and same size, are placed along same line on smooth 
horizontal surface. A is given a velocity u towards B as shown. If coefficient of restitution for collision 

between A and B is 
1

2
 and between B and C is 

1
. Choose the correct option(s).(Assume all the 

collisions to be headon) 

 
     

 (A) The total energy loss due to all possible collisions will be 
3

16
 mu2   

(B) The total energy loss due to all possible collisions will be 
5

16
 mu2 

(C) Final velocity of A and B will be same.  
(D) Final velocity of C is twice than A. 
 

8. A vertical hollow cylinder is fixed on the ground. A uniform rod can be balanced partly in and partly out 
of the cylinder with the lower end of the rod resting against the vertical wall of the cylinder, as shown in 
the figure. The angle made by rod with the vertical in equilibrium is . Maximum and minimum value of 
 are  and  respectively. Choose the correct option(s).    

 



 

 (A) Coefficient of friction between rod and cylinder is tan


























cossincossin

sinsin
tan

2

1
22

33
1   

 (B) Coefficient of friction between rod and cylinder is tan
3 3

1
2 2

1 sin sin
tan

2 sin cos sin cos
    

          
 

 (C) At maximum angle lower end of the rod will have sliding tendency upwards.    
 (D) At minimum angle lower end of the rod will have sliding tendency upwards. 
 
9. A homogeneous rod AB of mass m and length   resting with its lower end against a vertical wall and 

kept in inclined position by  a string CD as shown in the figure. Given that AD = 
4

AB
. Angles formed by 

the string and the rod with the wall are  and  respectively .Coefficient of friction between end  A of the 
rod and vertical wall is . Choose the correct options. 

 





B 

A 

D 



C 

 
 (A) If  =  friction between end A and vertical wall will be zero. 
 (B) If  >   friction on end A of the rod will be in downward direction. 
 (C) If <  friction on end A of the rod will be in vertically upward direction. 
 (D) If  = 53° and  = 37° minimum value of  required is 7/12.  



 

    

 
 

SECTION – 3 : (Paragraph Type) 
 This section contains 3 paragraphs each describing theory, experiment, data etc. Nine questions 

relate to three paragraphs. Each question of a paragraph has only one correct answer among the four 
choices (A), (B), (C) and (D). 

 

 

 

Paragraph for Questions 10 and 12 
 Three cylinders with the same mass, the same length and the same external radius are initially resting 

on an inclined plane having angle  with horizontal. The coefficient of sliding friction on the inclined is 
known and has the same value for all the cylinders. The first cylinder is empty (tube) , the second is 
homogeneous filled, and the third has a cavity exactly like the first, but closed with two negligible mass 
lids and filled with a liquid with the same density like the cylinder’s walls. The friction between the liquid 
and the cylinder wall is considered negligible. The density of the material of the first cylinder is n times 
greater than that of the second or of the third cylinder. Answer the following three questions .  

10. The linear acceleration of the third cylinder in the non-sliding case will be  

 (A) 3
2gsin

a
3


    (B) 3 2

2gsin
a

1
3 – 1–

n




 
 
 

   

 (C) 












n
1

–13

sing2
a3    (D)







 




n
1

13

sing2
a3  

 
11.  Condition for angle  of the inclined plane so that no cylinder slips. 

 (A) 
1–n2

1–n4
tan     (B) 

1–n2

1–n3
tan     

 (C) 
1n2

1n4
tan




    (D) 
1n2

1–n4
tan


  

 
12. The interaction force between the liquid and the walls of the cylinder in the case of slipping of this 

cylinder, knowing that the liquid mass is m1, will be 

 (A) 2
1 1 sin gm     (B) 2

1 –1 cos gm     

 (C) 2
1 –1 sin gm     (D) 2

1 1 cos gm   

 
Paragraph for Questions 13 and 15 

 There particles A,B and C of mass m, 2m and 3m respectively lie on a smooth horizontal table. A and B 
as well as B and C are connected by light inextensible strings each of equal length l. The string 

connecting A and B is tight. The initial distance between B and C is 
2

3l
 and particle C is given a 

velocity v0 parallel to AB as shown in the figure. Answer the following 3 questions. 
 

v0 C 

3m

2m

B A 

m 


2

3
 

 
13. Velocity of the particle A, just after its starts moving is : 

 (A) 011v

38
   (B) 02v

19
  (C) 04v

19
  (D) 09v

38
 

 
 
 



 

    

14. Total energy loss due to non-conservative force devolved in strings during the time strings become taut 
is :  

 (A) 2
0

2705
mv

2888
  (B) 2

0
3705

mv
1888

  (C) 2
0

3705
mv

2888
  (D) 2

0
2705

mv
1888

 

 
15. Impulse on particle B due to the string connecting B and C during the time just before and just after 

strings become taut is :    

 (A) 03mv

19
  (B) 09mv

19
  (C) 06mv

19
  (D) 012mv

19
 

 
Paragraph for Questions 16 and 18 

 The figure shows a solid, homogeneous ball radius R. Before falling to the floor its center of mass is at 

rest, but the ball is spinning with angular velocity 0 about a horizontal axis through its center. The 

lowest point of the ball is at a height h above the floor. 

 

h 

h 

0 

 
 When released, the ball falls under gravity, and rebounds to a new height such that its lowest point is 

now h above the floor. The deformation of the ball and the floor on impact may be considered 

negligible. Ignore the presence of the air. The impact time, although, is finite. The mass of the ball is m, 

the acceleration due the gravity is g, the dynamic coefficient of friction between the ball and the floor is 

µk, and the moment of inertia of the ball about the given axis is:  

 
5

mR2 2

I  

 You are required to consider two situations, in the first, the ball slips during the entire impact time, and 

in the second the slipping stops before the end of the impact time. 

 Answer the following three questions. 

 

16. If the ball slips during the entire impact time, value of tan is (where is the rebound angle indicated in 
the diagram) 

 (A) 
 

k

1 c
tan

c


   , where c =    (B) 

 
c

c1
tan k


 , where c =   

 (C)  
 3

k 3

1 c
tan

c


   , where c =    (D) 

 
k

1 c
tan

(2 c)


  


, where c =   

17. If the ball slips during the entire impact time, minimum value of 0 required is : 

 (A) 
 k

0min

7 1 c gh

R

 
   , where c =   (B) 

 k
0min

7 1 c gh

R

 
   , where c =   

 (C) 
 k

0min

7 1 c 2gh

R

 
   , where c =   (D) 

 
R2

gh2c17 k
min0


  , where c =   

 



 

    

18. If the ball stops slipping before the end of the impact time, the horizontal distance traveled in flight 
before first and second impact is: 

 (A) 0
4 2hR

c R
7 g

 , where c =   

 (B) 0
4 hR

c R
7 g

 , where c =   

 (C) 0
2 2hR

c R
7 g

 , where c =   

 (D) 0
4 hR

c R
7 2g

 , where c =   

 
 

SECTION-4 : (Integer value correct Type) 
This section contains 2 questions. The answer to each question is a single digit integer, ranging from 0 to 9 
(both inclusive) 
 

19. Three identical planks of uniform mass density and length  are kept on each other as shown. 

 

 maximum length of AB so that all the planks remain in equilibrium is 


. Find  (Assume all surfaces 

to be smooth) : 
 

20. A sphere of mass m and radius r is released from a wedge of mass 2m as show. ABC is hemispherical 
position of radius R. Impulse imparted to the system consisting wedge and sphere by the vertical wall 
w1w2 till the time sphere reaches at the bottom most position of spherical portion for the first time is 

10g (R r)
m .




 Find  Friction between wedge and horizontal surface is absent and between sphere 

and wedge friction is sufficient to avoid slipping between them.   
   

 
  



 

    

 
 

ANSWER KEYS 
 

1. (A)  2. (A)  3. (D)  4. (AC)  5.         (BD) 
 
6. (AC)  7. (BCD)  8. (AC)  9. (ABCD)  10. (B) 
 
11. (A)  12. (D)  13. (B)  14. (C)  15. (D) 
 
16. (B)  17. (D)  18. (A)  19. 7  20. 7 
 
21. (A) 
 
 

SOLUTIONS 
 
Solutions: 
Sol.1  

       
  
 For A 

 mcTA = Q + mgrTA   
)gr–C(m

Q
TA 

  

 for B 

 mcTB = Q – mgrTB   
)grC(m

Q
TA 

  

 Q = 208 × 103 joule 
 c = 0.13 Jg–k 
  =  29 × 10–6 K–1 

 r = m
10

1
 

 g = 10m/s2 

   )grc(m

Q
–

gr–cm

Q
T–T BA 

  

 = 
2mc

Qgr2 
 

 = 1.5 × 10–5 k 

Sol.2 PN is perpendicular to OB, for motion parallel to OB 

 

O 


asin 



N 

B A 

p 

u 

 

 0 =  (u Sin) – ( g Sin)t 

 For motion parallel to PN (perpendicular to OB 



 

    

 asin = (u cos) t –
2

1
(g cos)t2 

 Also ,  =  – ( + ) 

 From equations (i), (ii) and (iii)  

  



cossin–sin

sinag2
u2  

 Now from equation (i) and (iv) 

 t =
 

  


cossin–sing

sina2 2

 

Sol.3 Here , = ˆ ˆ–2k, 4k   
 

 

   ĵ3î4r 


 

 Now,    rra


  

    ˆ ˆa –28i 4 j 


 

Sol.4 
 

M 
m v0 

h 

s 

d 

v – horizontal component of the 
velocity of the bullet after collision 
V – horizontal component of the 
velocity of the ball after collision 

 
 We will use notation shown in Fig. 2 
 As no horizontal force acts on the system ball + bullet, the horizontal component of momentum of this 

system before collision and after collision must be the same: 
   mv0 = mv+MV. 
 So, 

   V
m

M
–vv 0  

 From conditions described in the text of the problem it follows that 
   v > V 
 After collision both the ball and the bullet continue a free motion in the gravitational field with initial 

horizontal velocities v and V, respectively. Motion of the ball and motion of the bullet are continued for 
the same time 

   
g

h2
t   

 It is time of free fall from height h.   
 The distances passed by the ball and bullet during time t are. 
 respectively Thus. 

  
h2

g
sV   

 Therefore 

  
h2

g
s

m

M
–vv 0  

 Finally  



 

    

  s
m

M
–

g

h2
vd 0  

  
2

mv
E

2
0

0   

 Immediately after the collision the total kinetic energy of the system is equal to the sum of the kinetic 
energy of the bullet and the ball: 

 
2

MV
E,

2

mv
E

2

M

2

m   

 Their difference, converted into heat, was 
 E = E0 –(Em + EM)    
 It is the following part of the initial kinetic energy of the bullet: 

 
0

Mm

0 E

EE
–1

E

E
p





  

 By using expressions for energies and velocities (quoted earlier) we get 

 








 


m

mM
–

g

h2

s

v
2

h2

g

v

s

m

M
p 0

2
0

2

 

Sol.5 

   
 If the cord is stressed the cylinder and the block are moving with the same acceleration a. Let F be the 

tension in the cord, S the frictional force between the cylinder and the inclined plane (Fig. 2). The 
angular acceleration of the cylinder is a/r. The net force causing the acceleration of the block: 

  m2a = m2g cos+ F, 
 and the net force causing the acceleration of the cylinder: 
  m1a = m1g sin – S – F 
 The equation of motion for the rotation of the cylinder: 

  .l.
r

a
Sr   

 (I is the moment of inertia of the cylinder, S⋅r is the torque of the frictional force.) Solving the system of 
equations we get  

  
 

221

221

r

I
mm

cosm–sinmm
.ga




  

  
 

221

221
2

r

I
mm

cosm–sinmm
.g.

r

I
s




  

  

221

221

2

r

I
mm

r

sinI
–cos

r

I
m

.gmF










 

  

 The moment of inertia of a solid cylinder is 
2

rm
I

2
1 . Using the given numerical values : 

   
  2

21

221 s/m25.3
mm5.1

cosm–sinmm
.ga 




  

   
 

N01.13
mm5.1

cosm–sinmm
.

2

gm
S

21

2211 



  



 

    

   
 

N192.0
mm5.1

msin5.0–cos5.1
.gmF

11

1
2 




  

Sol.6 From the geometry of the figure. 

 

 
 

m4

m3

m2

S 

a1 

T1 

m1g 



a2 

a1 
T2 

T2 

m1 a 

 
 

 a1 = asec   ..........(i)  
 a2 = a1cot   ..........(ii) 
 For the block of mass m1 ..........(iii)  
 m1a = T1 – m1g  ..........(iv) 
 For the slider 'S' 
 m2a1 = T2 – T1 cos ..........(iv) 
 For the vertical motion of the block of mass m3 

 

 



T2

m3g 

N 

  
 m3a1 = m3g – T1 – N cos ..........(v) 
 For the horizontal motion of the block of mass m4. 

 

 

  N 

m4
a2 

 
 m4a2 = N sin  ..........(vi) 
 After solving these equations, we get 

 
 

 




2
432

2
1

13

cotmmmcosm

coscosm–mg
 

Sol.7 
m mm mv1

u v2

Just before collision Just after collision

 



 

    

 applying conservation of linear momentum  mu = mv2 + mv1   

     mu = mv2 + mv1   
 coefficient  of restitution     v2 – v1 = eu 

      v2 – v1 = eu 

  v2 = 
u

2
 (1 + e)    v1 = 

u

2
 (1 – e) 

 for collision between A and B   for collision between B and C 
 A  B    B  C  

 vB = 
u 1

1
2 2
  
 

 = 
3u

4
    vC = 

1 3u 1 u
1

2 4 3 2
     
  

 

 vA =  
u 1

1
2 2
  
 

= 
u

4
    vB = 

1 3u 1 u
1

2 4 3 4
     
  

 

 Total number of collisions = 2 
  = 2 

 Total energy loss E = 
2

21 m 1 1 m 3u 1
u 1 1

2 2 4 2 2 4 9
                
       

 

   E = 
2

21 m 1 1 m 3u 1
u 1 1

2 2 4 2 2 4 9
                
       

 

          = 2 21 3 1 9 8
mu mu

4 4 4 16 9
        
    

 

          = 
2

23mu 1
mu

16 8
  = . 25

mu
16

 

Sol.8 Suppose the radius of the cylinder is R and length of rod is 2. Consider the case when the end A slides 
up. Forces acting on the rod are shown in the figure. 

 N1 






N1 
W

BG 


N2 

N2 

A 

 
 Resolving forces horizontally and vertically, we have  
 N2 = N1 cos  + N1 sin      (i) 
 and N1 sin  = N2 + N1 cos  + W    (ii) 
 Taking moment about A, 
 N1(2R cosec ) = W ( sin )     (iii) 
 From equations (i), (ii) and (iii), we get 
 2R = [(1 – 2) sin  – 2 cos ] sin2    (iv) 
 Similarly, when the rod makes least angle , we get 
 2R = [(1 – 2) sin  + 2 cos ] sin2    (v) 
 From equations (iv) and (v), we get 

   = tan


























cossincossin

sinsin
tan

2

1
22

33
1  

Sol.9   



 

    

 

 





B

mg N A 

f 

T 

/2– 

D 

 
 Translational equilibrium  
 mg = f + T cos    ........(i) 
 N = T sin    .......  (ii) 
 Rotational equilibrium w.r.t D 

 mg 
4


 sin + f 

4


 sin= N 

4


 cos 

 mg + f = N cot    .......  (iii) 
 from (i) (ii) and (iii)  
 f = N(cot– cot)  N 

  cot – cot 
 If  =   f = 0 
  >   f = + vertically upward. 

Sol. (10, 11 & 12) 
 The inertia moments of the three cylinders are: 

   ,hr–R
2

1
I 44

11   24
22 mR

2

1
hR

2

1
I  , 4 4

3 2
1

I (R – r )h
2

    

 Because the three cylinders have the same mass : 
 m = 1(R

2 – r2) h = 2R2h 
 it results: 

  
2

12

1

222 n,
n

1
–1R–1Rr






















  

 The inertia moments can be written: 

 221 I
n

1
–2II 







 , 
n

I

n

1
.

n

1
–2II 1

23 






  

 In the expression of the inertia momentum I3 the sum of the two factors is constant: 

  2
n

1

n

1
–2 








 

 independent of n, so that their products are maximum when these factors are equal: 

 
n

1

n

1
–2  ; it results n = 1, and the products 1

n

1
.

n

1
–2 








In fact n > 1, so that the products is les than 

1. It results : 
     I1 > I2 > I3 
 For a cylinder rolling over freely on the inclined plane (fig. 1.1) we can write the equations:  
 mg sin– Ff = ma 
 N – mg cos = 0 
 FfR = I
 where  is the angular acceleration.  If the cylinder doesn’t slide we have the condition: 
 a = R 
 Solving the equation system (6-8) we find: 

 

2mR

I
1

sing
a




 , 

I
mR

1

sinmg
F

2f




  



 

    

 
 In the case of the cylinders from this problem, the condition necessary so that none of them slides is 

obtained for maximum I: 
 

 
2

1

mR 4n – 1
tan 1

I 2n – 1

 
       

 
 

 The accelerations of the cylinders are: 

 












n
1

–13

sing2
a1 , 

3

sing2
a2


  

23

n
1

–1–3

sing2
a










  

 The relation between accelerations: 
  a1 < a2 < a3  
 In the case than all the three cylinders slide: 
  Ff = N = mg cos 
 and from (7) results : 

  cosmg
I

R
 

 for the cylinders of the problem: 

 n:
n

1
–1:1

I

1
:

I

1
:

I

1
::

321
321 







  

 1 < 2 < 3 
 In the case that one of the cylinders is sliding: 
 mg sin  – Ff = ma, Ff = mg cos, 
  = g (sin– cos) 

 Let F


 be the total force acting on the liquid mass ml inside the cylinder (fig.1.2), we can write: 
 Fx + mlg sin  = ml =  mlg (sin – mcos), Fy – mlg cos= 0  

 2
y

2
x FFF   = mlg cos. 





cos

cos
gm1 2

l  

 where  is the friction angle (tg=). 

 

Sol. (13, 14 & 15) 
 Just before string gets taut : 



 

    

 

 

m 
A 

2 m 

B 60° 

V0 

03V

2

0V

2
 

3 m

 
 Just after string gets taut : 

 

m 
A 

2 m 

B 60° 

03V

2

V3 

3 m

V1 

J1 J2 

V1 

 

 

 Impulse momentum theorem :  

 3mV0/2 – J2 = 3mV3 ............. (1) 

 V3 = V1 cos60 + V2cos30  V3 = 1 2V 3V

2


 ................. (2) 

 J2 cos60 = 3mV1  .............................. (3) 

 J2 sin60 = 2mV2  .............................. (4) 

 J1 = mV1    ...............................(5) 

tan60 = 2

1

2V
3

3V
  

2V2 = 13 3V  

V3 = 

1
1

1 2

3 3V
V 3

2V 3V

2 2

 
       

=

1
1

1

9V
V 11V2

2 4


  

0
1

2V
V

19
  

0
2 0

2V3 3 3 3
V V

2 19 19
   
 

 

0 0
3

2V 11V11
V

4 19 38
   
 

 

J2 = 012mv

19
 

K = 2
0

3
mv

2
  



 

    

Kf = 2
0

627
mv

2888
 

loss = KI – Kf = 2
0

3705
mv

2888
   

Solution : (16, 17 & 18) 
Situation I: slipping throughout the impact. 
a) Calculation of the velocity at the instant before impact 
Equating the potential gravitational energy to the kinetic energy at the instant before impact we can arrive 
at the pre-impact velocity v0: 

 
2

mv
mgh

2
0     .....(1) 

from which we may solve for v0 as follows: 
 

 0v 2gh     .....(2) 

b) Calculation of the vertical component of the velocity at the instant after impact 
Let v2x and v2y be the horizontal and vertical components, respectively, of the velocity of the mass center 
an instant after impact. The height attained in the vertical direction will be h and then: 

 2
2yv 2g h      .....(3) 

from which, in terms of (or the restitution coefficient c  

  hg2v y2   = cv0   .....(4) 

General equations for the variations of linear and angular momenta in the time interval of the 
Impact 

   
Considering that the linear impulse of the forces is equal to the variation of the linear momentum and 
that the angular impulse of the torques is equal to the variation of the angular momentum, we have: 

   
2

1

t

t

y20y gh2)c1(mmvmvdttNI   .....(5)  

   x2

t

t

rx mvdttfI
2

1

       .....(6) 

      20

t

t

r

t

t

r –IdttfRdttRfI
2

1

2

1

     .....(7) 

 
Where Ix, Iy and Iare the linear and angular impulses of the acting forces and 2  is the angular velocity 
after impact. The times t1 and t2 correspond to the beginning and end of impact. 
 
Variants 
At the beginning of the impact the ball will always be sliding because it has a certain angular velocity 0. 
There are, then, two possibilities: 
 
I. The entire impact takes place without the friction being able to spin the ball enough for it to stop at the 
contact point and go into pure rolling motion. 
 
II. For a certain time t (t1, t2), the point that comes into contact with the floor has a velocity equal to 
zero and from that moment the friction is zero. Let us look at each case independently. 



 

    

 
Case I 
In this variant, during the entire moment of impact, the ball is sliding and the friction relates to the normal 
force as: 

fr = kN(t)      .....( 8) 
Substituting (8) in relations (6) and (7), and using (5), we find that: 

   
2

1

t

x k k y k 2x

t

I N t dt I 1 c 2gh mv          .....(9) 

and 

     
2

1

t

k k 0 2

t

I R N t dt R m 1 c 2gh I –          .....(10) 

which can give us the horizontal component of the velocity v2x and the final angular velocity in the form: 

  gh2c1V kx2        .....(11) 

 
gh2

I

c1mR
– k

02


      .....(12) 

With this we have all the basic magnitudes in terms of data. The range of validity of the solution under 
consideration may be obtained from (11) and (12). This solution will be valid whenever at the end of the 
impact the contact point has a velocity in the direction of the negative x. That is, if: 
 2R > v2x 

   
gh2

R

c1
gh2

I

c1mR
– kk

0





  

 
2

k
0

2gh mR
1 c 1

R I

 
     

 
   .....(13) 

so, for angular velocities below this value, the solution is not valid. 
Case II 
In this case, rolling is attained for a time t between the initial time t1 and the final time t2 of the impact. 
Then the following relationship should exist between the horizontal component of the velocity v2x and the 
final angular velocity: 

2R = v2x    .....(14) 
Substituting (14) and (6) in (7), we get that: 









R

v
–ImRv x2

0x2     .....(15) 

which can be solved for the final values: 

R
7

2

ImR

RI

R
I

mR

I
V 02

00
x2 









    .....(16) 

and: 

02
0

2 7

2

ImR

I





      .....(17) 

Calculation of the tangents of the angles 
Case I 
For tan we have, from (4) and (11), that: 

   
c

c1

gh2c

gh2c1

v

v
tan k

k

y2

x2 



     

 
c

c1
tan k


      .....(18) 

i.e., the angle is independent of 0 

Case II 
Here (4) and (16) determine for tan that : 

  gh2cmRI

RI

gh2c

1

mRI

RI

v

v
tan

2
0

2
0

y2

x2









    

gh2c7

R2
tan 0      .....(19) 



 

    

then (18) and (19) give the solution. 

  
We see that does not depend on 0 if 0 > 0 min ; where 0min is given as 

 
2

k

0min

,mR
1 c 2gh 1

I

R

 
    

    

 
R2

gh2c17 k
min0


  

Calculation of the distance to the second point of impact 
Case I 
The rising and falling time of the ball is: 

g

h2
c2

g

gh2c2

g

v
2t y2

v   

The distance to be found, then, is; 

 I 2x v k
2h

d v t 1 c 2gh2c
g

     

 chc14d kI   

which is independent of 0. 

 

Case II 
In this case, the rising and falling time of the ball will be the one given in (21). Thus the distance we are 
trying to find may be calculated by multiplying tv by the velocity v2x so that: 

g

h2

2
5

1

Rc2

g

h2
c2

mR
tvd 0

2
0

vx2











I

I
II  

0R
g

hR2
c

7

4
d II  

Thus, the distance to the second point of impact of the ball increases linearly with 0. 
 

Sol.19 

 

 (AB)max =  + 
4 2


 
 = 

7

4


 

 

Sol.20 mg (R – r) = 
7

10
 mV2 = 

27P

10m
 



 

    

 

 P = 
10g(R r)

m
7


 = Impulse on the system by wall 

 

 


