Chemical Bonding and Molecular Structure

- 1. A diatomic molecule has a dipole moment of 1.2 D, if the bond distance is 1 Å, what percentage of electronic charge exists on each atom?
- 2. The dipole moments of a diatomic molecule AB is 0.41D and bond distance is 2.82, calculate the % ionic character of AB.
- 3. The bond angle between two hybrid orbitals is 105°. Calculate the percentage of s-character of hybrid orbital.
- In O₂⁻, O₂ and O₂⁻⁻ molecular species. Find the total number of antibonding electrons.
- 5. There are two groups of compounds A and B. Group A contains three compounds Px_4 , Qy_3 , Rz_2 . Group B also contains three compounds Sx_4 , Ty_3 , Uz_2 . Hybridization of each central atom of group A compounds is same as that of iodine in IBrCl⁻ while in group B compounds it is same as that of iodine in IBrCl⁺. Substituents X, Y and Z exhibit covalency of one in ground state. Then find the value of x/y.

Where, x and y are total number of lone pairs present at central atoms of compounds of group A and B respectively.

- **6.** Consider the following three compounds (i) AX_{2n}^{n-} , (ii) AX_{3n}
 - and (iii) AX_{4n}^{n+} , where central atom A is 15th group element and their maximum covalency is 3n. If total number of proton in surrounding atom X is n and value of n is one, then calculate value of " $x^3 + y^2 + z$ ". (Where x, y and z are total number of lone pair at central atom in compound (i), (ii) and (iii) respectively.
- 7. Calculate the value of "x + y z" here x, y and z are total number of non-bonded electron pair(s), pie(π) bond(s) and sigma (σ) bonds in hydrogen phosphite ion respectively.
- **8.** Consider the following compounds:

(i) IF₅

(ii) ClI

(iii) XeO₂F₂

(iv) NH₂

(v) BCl₂

() D C

(vi) BeCl₂

(vii) AsCl₄

(viii) B(OH)₃

(ix) NO₂

(x) ClO_2^+

The value of "x + y - z" is

where x, y and z are total number of compounds in given compounds in which central atom used their all three porbitals, only two p-orbitals and only one p-orbital in hybridisation respectively.

 Total number of species which used all three p-orbitals in hybridisation of central atoms and should be non-polar also are

- 10. Consider the following orbitals 3s, $2p_x$, $4d_{xy}$, $4d_z^2$, $3d_{x^2-y^2}$, $3p_y$, 4s, $4p_z$ and find total number of orbital(s) having even number of nodal plane.
- 11. For the following molecules:

Calculate the value of
$$\frac{a+b}{c}$$

a = Number of species having $sp^3 d$ -hybridisation

b = Number of species which are planar

c = Number of species which are non-planar

- 12. Find total number of orbital which can overlap colaterally, (if inter nuclear axis is z) s, p_x , p_y , p_z , d_{xy} , d_{yz} , d_{xz} , d_{zz} , d_{z^2} , $d_{x^2-y^2}$
- 13. The total number of lone-pairs of electrons in melamine is
- 14. Among the triatomic molecules/ions, BeCl₂, N₃⁻, N₂O,

NO₂⁺, O₃, SCl₂, ICl₂⁻, I₃⁻ and XeF₂, the total number of linear molecule(s)/ion(s) where the hybridization of the central atom does not have contribution from the d-orbital(s) is

[Atomic number : S = 16, Cl = 17, I = 53 and Xe = 54]

15. The sum of the number of lone pairs of electrons on each central atom in the following species is

$$[TeBr_6]^{2-}$$
, $[BrF_2]^+$, SNF_3 and $[XeF_3]^-$
(Atomic numbers: N = 7, F = 9, S = 16, Br = 35, Te = 52, Xe=54)

SOLUTIONS

(25) $\mu = e \times d$

$$\therefore e = \frac{\mu}{d} = \frac{1.2 \text{ D}}{1.0 \text{ A}} = \frac{1.2 \times 10^{-18} \text{ esu cm}}{1.0 \times 10^{-8} \text{ cm}}$$
$$= 1.2 \times 10^{-10} \text{ esu}$$

Percentage of electronic charge

$$= \frac{1.2 \times 10^{-10} \text{ esu}}{4.8 \times 10^{-10} \text{ esu}} \times 100 = 25\%$$

(76.94) Dipole moment = electric charge × bond length

$$=4.8 \times 10^{-10} \times 2.82 \times 10^{-8} = 13.53D$$

Now % ionic character

Actual dipole moment of the bond Dipole moment of pure ionic compound

then % ionic character in AB = $\frac{10.41}{13.53} \times 100 = 76.94\%$

For 25% s character (as in sp3 hybrid orbital), bond angle is 109.5°, for 33.3% s character (as in sp^2 hybrid orbital), bond angle is 120° and for 50% s character (as in sp hybrid orbital), bond angle is

Similarly, when the bond angle decreases below 109.5°, the s-character will decrease accordingly.

Decreasing in angle = $120^{\circ} - 109.5^{\circ} = 10.5^{\circ}$

Decrease in s-character = 33.3 - 25 = 8.3

Actual decrease in bond angle

$$=109.5^{\circ}-105^{\circ}=4.5^{\circ}$$

Expected decrease in s-character

$$=\frac{8.3}{10.5}\times4.5=3.56\%$$

Thus, the s-character should decrease by about 3.56% i.e., s-character = 25 - 3.56 = 21.44%

(21)Molecular orbital electronic configuration of these species are:

$$O_2^-(17e^-): \sigma ls^2, \sigma * ls^2, \sigma 2s^2, \sigma * 2s^2, \sigma 2p_z^2,$$

$$\pi 2p_x^2 = \pi 2p_y^2, \pi * 2p_x^2 = \pi * 2p_y^1$$

$$O_2(16e^-): \sigma ls^2, \sigma * ls^2, \sigma 2s^2, \sigma * 2s^2, \sigma 2p_z^2,$$

$$\pi 2p_x^2 = \pi 2p_y^2, \pi * 2p_x^1 = \pi * 2p_y^1$$

$$O_2^{2-}(18e^-): \sigma ls^2, \sigma * 1s^2, \sigma 2s^2, \sigma * 2s^2, \sigma 2p_z^2,$$

$$\pi 2p_x^2 : \pi 2p_y^2, \, \pi * 2p_x^2 = \pi * 2p_y^2$$

Hence number of antibonding electrons are 7, 6 and 8 respectively.

 $I_3^- \Rightarrow sp^3d$ Group A5. (2)

Hybridisation sp3d Hybridisation sp³d Origeture : Linear Structure : Linear

Groups Bion sp

Structure : Linear

Only BeCl₂, N_3^- , N_2^0 and NO_2 are linear with

l.p.

x/v = 6/3 = 2

(9) n = 1, then X = H; A = N6.

(i) NH₂ (ii) NH₃ (iii) NH₄⁺

lone pair x = 2, y = 1, z = 0

$$x^3 + y^2 + z = (2)^3 + (1)^2 + (0) = 9$$

7.

$$x = 7, y = 1, z = 1$$

 $7 + 1 - 5 = 3$

(8) (i) IF₅ (sp^3d)

(ii) $CII_4^ (sp^3d^2)$

(iii) $XeO_2F_2(sp^3d)$

(iv) $NH_2^- (sp^3)$

(v) $BCl_3(sp^2)$

(vi) BeCl₂(sp)

(vii) $AsCl_4^+(sp^3)$

(viii) B(OH)₃ (sp²)

(ix) $NO_2^-(sp^2)$

(x) $ClO_2^+(sp^2)$

$$x = (sp^3)2 + sp^3d(1) + sp^3d^2(2) = 5$$

$$y = 4, z = 1;$$

$$\therefore x+y-z=5+4-1=8$$

(2) XeO_4 , XeF_7^+

Polar

$$\operatorname{Sn}_{\operatorname{Sp}^2}$$

Polar

$$F \bigvee_{sp^3d^2} F$$

Polar

Polar

$$F = \begin{cases} Non-polar \\ F \\ Xe \\ F \end{cases} = \begin{cases} F \\ F \end{cases}$$

Polar

$$\begin{bmatrix} F & F \\ F & Xe \\ F & F \end{bmatrix}^{+}$$

Non-polar

$$\begin{array}{c}
F \\
Se \\
F \\
sp^3d
\end{array}$$

Polar

10. (2) 3s: 0 Nodal plane

 $4d_{z^2}$: 0 Nodal plane

4s: 0 Nodal plane

 $2p_r$: 1 Nodal plane

 $3d_{x^2-y^2}$: 2 Nodal plane

4p_: 1 Nodal plane

 $4d_{xy}$: 2 Nodal plane

 $3 p_v$: 1 Nodal plane

 $4d_{xy} \ 4_{z^2}, 3d_{x^2-y^2}, (Two)$

11. (3) $PCl_5 \longrightarrow sp^3d$, non-planar

 $BrF_3 \longrightarrow sp^3d$, bent, T-shape, planar

 $ICl_2^- \longrightarrow sp^3d$, linear, planar

 $XeF_5^- \longrightarrow sp^3d^3$, pentagonal planar

 $NO_3^- \longrightarrow sp^2$, planar

 $XeO_2F_2 \longrightarrow sp^3d$, see-saw, non-planar

 $PCl_4^+ \longrightarrow sp^3$, tetrahedral, non-planar

 $CH_3^+ \longrightarrow sp^2$, Trigonal planar

$$a = 4, b = 5, c = 3$$

so,
$$\frac{a+b}{c} = 3$$

12. (6)
$$(p_x, p_y, d_{xy}, d_{yz}, d_{xz}, d_{x^2-v^2})$$

13. (6) Structure of melamine is as follows,

$$H_2\ddot{N}$$
 $\ddot{N}H_2$
 $\ddot{N}H_2$

Total no. of lone pairs of electron is '6'.

(4) Cl-Be-Cl 14.

$$N \equiv N - N$$
:

Hybridization sp Structure: linear Hybridisation sp Structure: linear

 $O = \stackrel{+}{N} \rightarrow O$

Hybridisation sp

Hybridisation sp2

Structure: Linear

Structure: Trigonal planar

$$[Cl-I-Cl]$$

Hybridisation sp3 Structure: Angular Hybridisation sp3d Structure : linear

$$\begin{bmatrix} I - I - I \end{bmatrix}^T$$
 $F - Xe - F$
Hybridisation sp^3d Hybridisation sp^3d
Structure: Linear Structure: Linear

N = N = O

Hybridisation sp Structure: Linear

Only BeCl₂, N₃ , N₂O and NO₂ are linear with sp-hybridisation.

15. (6) Number of electron pairs around the central atom

$$=\frac{V+M\pm C}{2}$$

Compounds No. of lone pairs on central atom $\frac{(6+6+2)}{2} - 6 = 1$ [TeBr₆]²⁻

 $\frac{(7+2-1)}{2}-2=2$ $[BrF_2]^+$

 $\frac{6-1+3}{2}-4=0$ SNF₃

 $\frac{(8+3+1)}{2} - 3 = 3$ [XeF₃]

 \therefore Sum of number of lone pairs = 1 + 2 + 0 + 3 = 6