Solutions & Explanations

1

Some Basic Concepts of Chemistry

Section-A: JEE Advanced/ IIT-JEE

- **A** 1. Carbon-12. 2. 6.02×10^{24} 3. 0.4m 4. 4.14 g 5. $+\frac{7}{3}$
- C 1. (d) 2. (c) 3. (a) 4. (a) 5. (c) 6. (a) 7. (a) 8. (d) 9. (c) 10. (c) 11. (a) 12. (b) 13. (b) 14. (d)
 - 8. (d) 9. (c) 10. (c) 11. (a) 12. (b) 13. (b) 14. (d) 15. (c) 16. (b) 17. (a) 18. (d) 19. (a) 20. (d) 21. (c)
 - 22. (a) 23. (b) 24. (d) 25. (a) 26. (a) 27. (b) 28. (d)
- **E** 1. 4.87 g 2. Al 54.87%, Mg 45.13% 3. 59.33% 4. 8.38 5. (a) 9.5 × 10⁻³ gram mole (b) 0.437 moles 6. CH 7. Na O=3.58% K O=10.62%
 - 5. (a) 9.5×10^{-3} gram mole, (b) 0.437 moles 6. CH₄ 7. Na₂O = 3.58%, K₂O = 10.62% 8. 24 9. 1.338 gm
 - **10.** (a) 1.95 parts; (b) 1 milli equivalents; (c) (i) Mg, (ii) 0.25g, (iii) 62.5 ml **11.** C_7H_8
 - **12.** 3.5×10^{-3} g **13.** 53.53 **14.** 0.588N **16.** 39.6 g t^{-1}
 - 12. $3.3 \times 10^{\circ}$ g 13. 33.33 14. 0.3661 10. 39.0 g *i* 17. (i) 37.92; (ii) 0.065; (iii) 7.74 m, 3.87 m 18. Ca 20. 2
 - **21.** $6.3648 \,\mathrm{g}$ **22.** $\mathrm{HI} < \mathrm{I}_2 < \mathrm{ICI} < \mathrm{HIO}_4$ **23.** (i) $1.446 \,\mathrm{gm}, 0.112 \,\mathrm{M};$ (ii) $1.7532 \,\mathrm{g}, 0.1344 \,\mathrm{M}$
 - **24.** (i) 0.56; (ii) 0.0999 **25.** 6.5 g **26.** +2, +4, +6, 16.66 ml
 - **27.** 1.12 g, 0.90 g **28.** 3.324 g, 1.676 g **29.** 10.43 m **30.** 1:2
 - **31.** 6 **32.** Na₂CO₃-26.5%, Na₂SO₄-31.5% **33.** 85%
 - **34.** $0.0075 \text{ M}, \text{Pb}^{2+} = 0.05357 \text{ M}, \text{NO}_3^- = 0.3214 \text{ M}, \text{Cr}^{3+} = 0.0714 \text{ M}$ **35.** 15.05%
 - **36.** $0.25 \,\mathrm{M}, 0.24 \,\mathrm{m}, 4.3 \times 10^{-3}$ **37.** 49.33%, 34.8% **38.** 0.062
 - **39.** 8.097ml **40.** 7.09×10^7 **41.** 0.1 **42.** 55.55 M
- <u>H</u> 1. (b)

Section-B : JEE Main/ AIEEE

3. 5

- 4. (a) 5. (d) (b) (c) 2. (c) 3. (a) 6. 7. (a) **8.** (a) **12.** (a) 9. (b) **10.** (d) 11. (d) **13.** (d) **14.** (a) 15. (c) **16.** (d)
- **17.** (b)

Section-A JEE Advanced/ IIT-JEE

A. Fill in the Blanks

- 1. Carbon (C-12)
- 2. 6.02×10^{24}

18 ml
$$H_2O = 18 g H_2O (\because density of water = 1 g/cc)$$

= 1 mole of H_2O .

1 Mole of $H_2O = 10 \times 6.02 \times 10^{23}$ electrons

(: Number of electrons present in one molecule of water

$$=2+8=10$$
)
= 6.02×10^{24} electrons

3. TIPS/Formulae: Molality =
$$\frac{\text{Moles of solute}}{\text{Mass of solvent in kg}}$$

$$= \frac{\text{wt. of solute in gram / M. wt. of solute}}{\text{Mass of solvent in kg}}$$

Molality =
$$\frac{3/30}{250/1000}$$
 = **0.4m**

4. TIPS/Formulae:

1 Mole = 6.023×10^{23} molecules = Molecular weight in gms. Weight of 6.023×10^{23} (Avogadro's number) molecules of $CuSO_4.5H_2O = Molecular wt. of CuSO_4.5H_2O = 249 g.$

∴ Weight of 1 × 10²² molecules of CuSO₄.5H₂O

$$=\frac{249\times1\times10^{22}}{6.023\times10^{23}}=4.14\,\mathrm{g}$$

NOTE: Sum of oxidation states of all atoms (elements) in 5. a neutral compound is zero.

TIPS/Formulae: As YBa₂Cu₃O₇ is neutral.

$$(+3)+2(+2)+3(x)+7(-2)=0$$

or
$$3+4+3x-14=0$$

$$\Rightarrow 3x + 7 - 14 = 0$$
 or $x = +\frac{7}{3}$

C. MCQs with ONE Correct Answer

1. (d)
$$4Al + 3O_2 \longrightarrow 2Al_2O_3$$

At. wt. of $Al = 27$
Thus 4×27 g of Al reacts with oxygen $= 3 \times 32$ g
 $\therefore 27$ g of Al reacts with oxygen $= \frac{3 \times 32}{4 \times 27} \times 27$ g
 $= 24$ g

2. (c) No. of nitrogen atoms =
$$\frac{\text{Mass in grams}}{\text{Atomic wt.}} = \frac{28}{14} = 2$$

No. of oxygen atoms = $\frac{\text{Mass in grams}}{\text{Atomic wt.}} = \frac{80}{16} = 5$

Formula of compound is N_2O_5 .

- (a) (a) $18 \text{ g of H}_2\text{O} = 6.02 \times 10^{23} \text{ molecules of H}_2\text{O}$ 3. \therefore 36 g of H₂O = 2 × 6.02 × 10²³ molecules of H₂O = 12.04×10^{23} molecules of H₂O
 - (b) $28 \text{ g of CO} = 6.02 \times 10^{23} \text{ molecules of CO}$
 - (c) $46 \text{ g of } C_2H_5OH = 6.02 \times 10^{23} \text{ molecules of } C_2H_5OH$ (d) $108 \text{ g of } N_2O_5 = 6.02 \times 10^{23} \text{ molecules of } N_2O_5$

$$\therefore 54 \text{ g of N}_2\text{O}_5 = \frac{1}{2} \times 6.02 \times 10^{23} \text{ molecules of N}_2\text{O}_5$$

$$= 3.01 \times 10^{23} \text{ molecules of N}_2\text{O}_5$$

:. 36 g of water has highest number of molecules.

- (a) No. of e^- in C = 6 and in O = 8 4. \therefore Total no. of e⁻ in CO₂ = 6 + 8 × 2 = 22
- (c) Let mass of oxygen = 1g, Then mass of nitrogen = 4g Mol. wt. of $N_2 = 28g$, Mol. wt. of $O_2 = 32g$ 28 g of N₂ has = 6.02×10^{23} molecules of nitrogen

4 g of N₂ has =
$$\frac{6.02 \times 10^{23}}{28} \times 4$$
 molecules of nitrogen
= $\frac{6.02 \times 10^{23}}{7}$ molecules of nitrogen

32 g of O_2 has = 6.02×10^{23} molecules of oxygen

$$\therefore 1g \text{ of } O_2 \text{ has} = \frac{6.02 \times 10^{23}}{32} \times 1 = \frac{6.02 \times 10^{23}}{32} \text{ molecules}$$
of oxygen

Thus, ratio of molecules of oxygen: nitrogen

$$=\frac{6.02\times10^{23}/32}{6.02\times10^{23}/7}=7:32$$

5. (a)
$$Ag_2CO_3 \xrightarrow{\Delta} Ag_2O + CO_2$$

$$\downarrow \Delta$$

$$2Ag + \frac{1}{2}O_2$$
(residue)

NOTE: Ag₂O is thermally unstable and decompose on heating liberating oxygen]

Mol. wt. of $Ag_2CO_3 = 108 \times 2 + 12 + 16 \times 3 = 276 \text{ g}$ ∴ 276 g of Ag₂CO₃ on heating gives residue $= 2 \times 108 = 216 \text{ g of Ag}$

∴ 2.76 g of
$$Ag_2CO_3$$
 on heating gives = $\frac{216}{276} \times 2.76$
= 2.16g of Ag

The change involved is $MnO_4^- + e^- \longrightarrow MnO_4^{2-}$ 7. i.e. it involves only one electron

Eq.wt =
$$\frac{\text{Mol.wt}}{\text{No.of e}^- \text{ involved}} = \frac{M}{1} = M \text{ [} : \text{Mol. wt.} = M \text{]}$$

8. TIPS/Formulae:

- (i) Write balanced chemical equation for chemical change.
- (ii) Find limiting reagent.
- (iii) Amount of product formed will be determined by amount of limiting reagent.

The balanced equation is:

Limiting reagent is Na₂PO₄ (0.2 mol), BaCl₂ is in excess. From the above equation:

2.0 moles of Na_3PO_4 yields $Ba_3(PO_4)_2 = 1$ mole

∴ 0.2 moles of Na₃PO₄ will yield Ba₃(PO₄)₂ =
$$\frac{1}{2}$$
 × 0.2
= **0.1 mol.**

TIPS/Formulae: 9. (c)

- (i) Find oxidation state of N in N₂H₄.
- (ii) Find change in oxidation number with the help of number of electrons given out during formation of compound Y.

$$N_2H_4 \rightarrow Y + 10 e^-$$
, Calculation of O.S. of N in N_2H_4 :
 $2x + 4 = 0 \Rightarrow x = -2$

The two nitrogen atoms will balance the charge of 10 e. Hence oxidation state of N will increase by +5, i.e. from -2 to +3.

10. (c) NOTE:

The sum of oxidation states of all atoms in compound is zero. Calculation of O.S. of C in $\mathrm{CH_2O}$.

$$x+2+(-2)=0 \implies x=0$$

11. (a) TIPS/Formulae:

$$Molality = \frac{Number of moles of solute}{Mass of solvent in kg}$$

A molal solution is one which contains one mole of

solute per 1000 g of solvent.
$$\left\{ \because \text{lm} = \frac{1 \text{mole}}{1 \text{kg}} \right\}$$

12. (b) TIPS/Formulae:

Sum of oxidation state of all atoms in neutral compound is zero. Let the oxidation state of iron in the complex ion

$$[Fe(H_2O)_5(NO)]^{2+}SO_4^{2-}$$
 be x; then
 $x+5\times0+0=+2$. $x=+2$

- 13. (b) For equivalent weight of MnSO₄ to be half of its molecular weight, change in oxidation state must be equal to 2. It is possible only when oxidation state of Mn in product is + 4. Since oxidation state of Mn in MnSO₄ is + 2. So, MnO₂ is correct answer.
 - In MnO₂, O.S. of Mn = +4 \therefore Change in O.S. of Mn = +4 - (+2) = +2

14. (d) TIPS/Formulae:

- (i) Volume of substance changes with temperature and mass is not effected by change in temperature.
- (ii) Find expression which does not have volume term in it.
- (a) Molarity Moles of solute/volume of solution in
- (b) Normality gm equivalents of solute/volume of solution in L.
- (c) Formality gm formula wt./volume of solution in L.
- (d) Molality Moles of solute/mass of solvent in kg
 ∴ Molality does not involve volume term.
- .. It is independent of temperature.
- 15. (c) 2+2(2+x-4)=0 [: Ba(H₂PO₂)₂ is neutral molecule] or $2x-2=0 \Rightarrow x=+1$

16. (b) TIPS/Formulae:

- (i) Write balance chemical equation for given change.
- (ii) Identify most electronegative element and find its oxidation state.

$$BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$$

Oxygen is the most electronegative element in the reaction and has the oxidation states of -1 (in H_2O_2) and -2 (in $BaSO_4$). In H_2O_2 , peroxo ion is present.

17. (a) TIPS/Formulae:

Balance the reaction by ion electron method.

Oxidation reaction: $C_2O_4^{-2} \rightarrow 2CO_2 + 2e^-] \times 5$

Reduction reaction:

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O] \times 2$$

Net reaction:

$$2 \text{ MnO}_{4}^{-} + 16 \text{H}^{+} + 5 \text{ C}_{2} \text{O}_{4}^{2-} \rightarrow 2 \text{Mn}^{2+} + 10 \text{CO}_{2} + 8 \text{H}_{2} \text{O}$$

18. (d) TIPS/Formulae:

(i) H₃PO₃ is dibasic acid as it contains two –OH groups.

$$\begin{bmatrix} O \\ \parallel \\ P \\ OH \end{bmatrix}$$

- (ii) Normality = Molarity × basicity of acid.
- (iii) Basicity of $H_3PO_3 = 2$
- \therefore Normality= $0.3 \times 2 = 0.6$

19. (a) TIPS/Formulae:

- (i) Oxidation state of element in its free state is zero.
- (ii) Sum of oxidation states of all atoms in compound is zero.

O.N. of S in
$$S_8 = 0$$
; O.N. of S in $S_2F_2 = +1$; O.N. of S in $H_2S = -2$;

20. (d) TIPS/Formulae:

(i) In an ion sum of oxidation states of all atoms is equal to charge on ion and in a compound sum of oxidation states of all atoms is always zero.

Oxidation state of Mn in $MnO_4^- = +7$ Oxidation state of Cr in $Cr(CN)_6^{3-} = +3$ Oxidation state of Ni in $NiF_6^{2-} = +4$ Oxidation state of Cr in $CrO_2Cl_2 = +6$

21. (c) TIPS/Formulae:

- (i) In a disproportionation reaction same element undergoes oxidation as well as reduction during the reaction.
- (ii) In decomposition reaction a molecule breaks down to more than one atoms or molecules

$$3\overset{+1}{\text{Cl}}O^{-}_{(aq)} \rightarrow \overset{+5}{\text{Cl}}O^{-}_{3} + 2\overset{-1}{\text{Cl}}^{-}_{(aq)}$$

It is disproportionation reaction because Cl is both oxidised (+1 to +5) and reduced (+1 to -1) during reaction.

22. (a) TIPS/Formulae:

Equivalents of $H_2C_2O_4$. $2H_2O =$ Equivalents of NaOH (At equivalence point)

Strength of
$$H_2C_2O_4$$
 . $2H_2O$ (in g/L) = $\frac{6.3}{250/1000}$
= 25.2 g/L

Normality of $H_2C_2O_4$. $2H_2O = \frac{Strength}{Eq. wt}$

$$=\frac{25.2}{63}=0.4$$
N

$$\left\{ \text{Eq. wt. of oxalic acid} = \frac{\text{Mol. wt}}{2} = \frac{126}{2} = 63 \right\}$$

Using normality equation:

$$N_1V_1 = N_2V_2$$

(H₂C₂O₄.2H₂O) (NaOH)

$$0.4 \times 10 = 0.1 \times V_2 \text{ or } V_2 = \frac{0.4 \times 10}{0.1} = 40 \text{ ml}.$$

23. (b) TIPS/Formulae:

(i) Find change in oxidation number of Cr atom.

(ii) Eq. wt. =
$$\frac{\text{Molecular wt.}}{\text{change in O.N.}}$$

In iodometry, $K_2Cr_2O_7$ liberates I_2 from iodides (NaI or KI). Thus it is titrated with $Na_2S_2O_3$ solution.

$$2Na_2S_2O_3 + I_2 \rightarrow 2NaI + Na_2S_4O_6$$

O.N. of Cr changes from +6 (in $K_2Cr_2O_7$) to +3. i.e. +3 change for each Cr atom

$$Cr_2O_7^{--} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$

Thus, one mole of $K_2Cr_2O_7$ accepts 6 mole of electrons.

$$\therefore \quad \text{Equivalent weight} = \frac{\text{Molecular weight}}{6}$$

24. (d) TIPS/Formulae:

- (i) Mass of one electron = 9.108×10^{-31} kg
- (ii) 1 mole of electron = 6.023×10^{23} electrons

Weight of 1 mole of electron

- = Mass of one electron × Avogadro Number
- $=9.108 \times 10^{-31} \times 6.023 \times 10^{23} \,\mathrm{kg}$
- .. No. of moles of electrons in 1 kg

$$= \frac{1}{9.108 \times 10^{-31} \times 6.023 \times 10^{23}} = \frac{1}{9.108 \times 6.023} \times 10^{8}$$

25. (a) TIPS/Formulae:

Atomic weight in gms = 6.023×10^{23} atoms = 1 Mole atoms

(i) Number of atoms in 24 g of C

$$= \frac{24}{12} \times 6.023 \times 10^{23} = 2 \times 6.023 \times 10^{23} \text{ atom}$$

= 2 mole atoms

(ii) Number of atoms in 56 g of Fe

$$=\frac{56}{56}\times6.023\times10^{23}=6.023\times10^{23}$$
 atom

= 1 mole atoms

(iii) Number of atoms in 27 g of Al

$$= \frac{27}{27} \times 6.023 \times 10^{23} = 6.023 \times 10^{23} \text{ atom}$$

= 1 mole atoms

(iv) Number of atoms in 108 g of Ag

$$= \frac{108}{108} \times 6.023 \times 10^{23} = 6.023 \times 10^{23}$$
 atom

= 1 mole atoms

: 24 g of C has maximum number of atoms.

26. (a) TIPS/Formulae:

Write the reaction for chemical change during reaction and equate moles of products formed.

[Co(NH₃)₅SO₄] Br has ionisable Br⁻ ions & [Co(NH₃)₅ Br] SO₄ has ionisable SO₄⁻⁻ ion.

Eiven mixture Y = 0.02 mal of $(Co(NH) \cdot SO \cdot 1)$ Br and

Given mixture X = 0.02 mol of [Co(NH₃)₅SO₄] Br and 0.02 mol of [Co(NH₃)₅Br] SO₄ Volume = 2 L

- ... Mixture X has 0.02 mol. of [Co(NH₃)₅SO₄] Br and 0.02 mol of [Co(NH₃)₅Br] SO₄ in 2 L of solution
- \therefore Conc. of [Co(NH₃)₅SO₄] Br and [Co(NH₃)₅Br]SO₄ = 0.01 mol/L for each of them.
- (i) 1 L mixture of X + excess AgNO₃ $\rightarrow Y$

$$[Co(NH_3)_5SO_4]$$
 Br + AgNO₃ \longrightarrow 0.01 mol/L soluble excess

$$[Co(NH_3)_5SO_4]NO_3 + AgBr$$
 (Y)
0.01mol

$$\left\lceil Ag^+ + Br^- \to AgBr \right\rceil$$

 \therefore No. of moles of Y = 0.01

(ii) Also 1 L mixture of X + excess BaCl₂ $\rightarrow Z$

$$[Co(NH3)5Br]SO4 + BaCl2 \longrightarrow 0.01 \text{ mol/L soluble}$$
 excess

$$\left[Ba^{++} + SO_4^- \to BaSO_4 \right]$$

 \therefore moles of Z = 0.01.

27. (b) TIPS/Formulae:

The highest O.S. of an element is equal to the number of its valence electrons

- (i) $[Fe(CN)_6]^{3-}$, O.N. of Fe = +3, $[Co(CN)_6]^{3-}$, O.N. of Co = +3
- (ii) CrO_2Cl_2 , O.N. of Cr = +6, (Highest O.S. of Cr) $[MnO_4]^-$ O.N of Mn = +7 (Highest O.S. of Mn)
- (iii) TiO_3 , O.N. of Ti = +6, MnO_2 O.N. of Mn = +4
- (iv) $[Co(CN)_6]^{3-}$, O.N. of Co = +3, MnO₃, O.N. of Mn = +6
- **28.** (d) The following reaction occurs:

$$6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \longrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$$

From the above equation, we find that Mohr's salt $(FeSO_4.(NH_4)_2SO_4.6H_2O)$ and dichromate reacts in 6:1 molar ratio.

E. Subjective Problems

1. TIPS/Formulae:

Write the balance chemical equation and use mole concept for limiting reagent.

$$\begin{array}{ccc} \text{AgNO}_3 + \text{NaCl} & \longrightarrow & \text{NaNO}_3 + \text{AgCl} \\ 170 \text{ g} & 58.5 \text{ g} & & 143.5 \text{ g} \end{array}$$

From the given data, we find AgNO₃ is limiting reagent as NaCl is in excess.

- \therefore 170.0 g of AgNO₂ precipitates AgCl = 143.5 g
- ∴ 5.77 g of AgNO₃ precipitates AgCl

$$= \frac{143.5}{170.0} \times 5.77 = 4.87 \,\mathrm{g}$$

2. TIPS/Formulae:

- (i) Find volume of H₂ at N.T.P.
- (ii) Total amount of \overline{H}_2 liberated = H_2 liberated by Mg & HCl + H, liberated by Al & HCl.

Conversion of volume of H₂ to N.T.P

Given conditions
 N.T.P conditions

$$P_1 = 0.92$$
 atm.
 $P_2 = 1$ atm.

 $V_1 = 1.20$ litres
 $V_2 = ?$
 $T_1 = 0 + 273 = 273$ K
 $T_2 = 273$ K

Applying ideal gas equation, $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$

$$\frac{0.92 \times 1.20}{273} = \frac{1 \times V_2}{273} , V_2 = \frac{0.92 \times 1.20 \times 273}{273 \times 1}$$
 litres

= 1.104 litres = 1104 ml

The relevant chemical equations are

(i)
$$2 \text{ Al} + 6 \text{HCl} \longrightarrow 2 \text{AlCl}_3 + 3 \text{H}_2$$

 2×27 3×22400
 $= 54 \text{ g}$ $= 67200 \text{ ml at NTP}$

(ii) Mg + 2HCl
$$\longrightarrow$$
 MgCl₂ + H₂
24 g 22400 ml at NTP
Wt. of alloy = 1 g

Let the wt. of aluminium in alloy = x g

 \therefore Wt. of magnesium in alloy = (1-x) g

According to equation (i)

 $54 \text{ g of Al} = 67200 \text{ ml of H}_2 \text{ at N.T.P}$

:.
$$x g \text{ of Al} = \frac{67200}{54} \times x = 1244.4 x \text{ ml of H}_2 \text{ at N.T.P}$$

Similarly, from equation (ii)

 $24 \text{ g of Mg} = 22400 \text{ ml of H}_2 \text{ at N.T.P}$

$$(1-x)$$
 g of Mg = $\frac{22400}{24} \times (1-x) = 933.3 (1-x)$ ml of H₂

Hence total vol. of H₂ collected at N.T.P = 1244.4 x + 933.3 (1-x) ml

But total vol. of H_2 as calculated above = 1104 ml

$$\therefore 1244.4 x + 933.3 (1-x) = 1104 \text{ ml} \\ 1244.4 x - 933.3 x = 1104 - 933.3 \\ 311.1 x = 170.7, x = 0.5487$$

Hence 1 g of alloy contains Al = 0.5487 g

.. Percentage of Al in alloy =
$$\frac{0.5487 \times 100}{1}$$
 = **54.87%**
% of Mg in alloy = $100 - 54.87 = 45.13\%$

3.
$$3 \text{ MnO}_2 \longrightarrow \text{Mn}_3 \text{O}_4 + \text{O}_2$$

 $3 (54.9 + 32) \qquad (3 \times 54.9 + 64)$
 $= 260.7 \text{ g} \qquad = 228.7 \text{ g}$

Let the amount of pyrolusite ignited = 100.00 g \therefore Wt. of MnO₂ = 80 g (80% of 100 g = 80 g)Wt. of SiO_2 and other inert substances = 15 g Wt. of water = 100 - (80 + 15) = 5 g According to equation, $260.7 \text{ g of MnO}_2 \text{ gives} = 228.7 \text{ g of Mn}_3 \text{O}_4$

:. 80 g of MnO₂ gives =
$$\frac{228.7}{260.7} \times 80 = 70.2$$
 g of Mn₃O₄

During ignition, H₂O present in pyrolusite is removed while silica and other inert substances remain as such.

 \therefore Total wt. of the residue = 70.2 + 15 = 85.2 g

Calculation of % of Mn in ignited Mn₃O₄

$$3 \text{ Mn} = \text{Mn}_3 \text{O}_4 \\
3 \times 54.9 = 164.7 \text{ g} \quad 3 \times 54.9 + 64 = 228.7 \text{ g}$$

Since, 228.7 g of Mn₃O₄ contains 164.7 g of Mn

70.2 g of Mn₃O₄ contains =
$$\frac{164.7}{228.7} \times 70.2 = 50.55$$
 g of Mn

Weight of residue = 85.2 g

Hence, percentage of Mn is the ignited sample

$$=\frac{50.55}{85.2}\times100=59.33\%$$

TIPS/Formulae:

- (i) Find the volume of CO₂ at NTP
- (ii) Find molecular wt. of metal carbonate
- (iii) Find the wt. of metal
- (iv) Calculate equivalent weight of metal

Given $P_1 = 700 \text{ mm}$, $P_2 = 760 \text{ mm}$, $V_1 = 1336 \text{ ml}$, $V_2 = ?$ $T_1 = 300 \text{ K}, T_2 = 273 \text{ K}$

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}, \text{ or } V_2 = \frac{P_1 V_1 T_2}{P_2 T_1} = \frac{700 \times 1336 \times 273}{760 \times 300}$$
$$= 1119.78 \text{ ml} = 1.12 \text{ L at NTP}$$

 \therefore 1.12 L of CO₂ is given by carbonate = 4.215 g

Molecular weight of metal carbonate =
$$\frac{4.215}{1.12} \times 22.4$$

= 84.3

Metal carbonate is $MCO_3 = M + 12 + 48 = M + 60$ Atomic weight of M = 84.3 - 60 = 24.3

Eq. wt. of metal =
$$\frac{1}{2} \times M$$
. wt. = $\frac{1}{2} \times 24.3 = 12.15$

(a) Equivalents of $KMnO_4 = Equivalents$ of $FeSO_4$. $7H_2O$ 5.

$$5.4 \text{ ml } 0.1 \text{ N KMnO}_4 = \frac{5.4 \times 0.1}{1000} = 5.4 \times 10^{-4} \text{ equivalents}$$

Amount of FeSO₄ = $5.4 \times 10^{-4} \times \text{Mol wt. of FeSO}_4.7\text{H}_2\text{O}$

Amount of FeSO₄ =
$$5.4 \times 10^{-4} \times \text{Mol wt. of FeSO}_4.7\text{H}_2\text{O}$$

= $5.4 \times 10^{-4} \times 278 = 0.150 \text{ g}$

Total weight of mixture = 5.5 g

Amount of ferric sulphate = 5.5 - 0.150 g = 5.35 g

Hence Moles of ferric sulphate =
$$\frac{\text{Mass}}{\text{M. wt.}} = \frac{5.35}{562}$$

$$= 9.5 \times 10^{-3}$$
 gram-mole

(b) Using the relation, Mol. wt. = $2 \times$ vapour density, Mol. wt. $= 2 \times 38.3 = 76.6$

No. of moles =
$$\frac{\text{Mass}}{\text{Mol. wt.}} = \frac{100}{76.6} = 1.30$$
(i)

Let weight of NO_2 in mixture = x g Then weight of N_2O_4 in mixture = 100 - x

No. of moles of NO₂ =
$$\frac{\text{Mass}}{\text{Mol. wt.}} = \frac{x}{46}$$
(ii)

No. of moles of
$$N_2O_4 = \frac{Mass}{Mol. wt.} = \frac{100 - x}{92}$$
 ...(iii)

According to problem

$$1.30 = \frac{x}{46} + \frac{100 - x}{92}$$

On solving the equation we find, x = 20.1

weight of $NO_2 = 20.1 g$

Moles of
$$NO_2 = \frac{Mass}{M. wt.} = \frac{20.1}{46} = 0.437$$
 moles.

Volume of oxygen taken = 30 ml, 6.

Volume of unused oxygen = 15 ml

Volume of O_2 used = Volume of O_2 added - Volume of O_2 left = 30 - 15 = 15 ml

Volume of CO₂ produced

= Volume of gaseous mixture after explosion –

Volume of unused oxygen

or Volume of CO_2 produced = 25 - 15 = 10 ml Volume of hydrocarbon = 5 ml

General equation for combustion of a hydrocarbon is as

$$C_x H_y + \left(x + \frac{y}{4}\right) O_2 \longrightarrow x C O_2 + \frac{y}{2} H_2 O$$
(Hydrocarbon)
$$5 \text{ ml} \qquad 5\left(x + \frac{y}{4}\right) \text{ml} \qquad 5x$$

.: Volume of CO_2 produced = 5x, Since Volume of CO_2 = 10 ml .: $5x = 10 \Rightarrow x = 2$, Volume of O_2 used = 15 ml

$$\therefore 5\left(x + \frac{y}{4}\right) = 15 \Rightarrow x + \frac{y}{4} = 3$$

$$\Rightarrow 2 + \frac{y}{4} = 3 \quad (\because x = 2) \qquad \Rightarrow 8 + y = 12 \therefore y = 4$$

Hence Molecular formula of hydrocarbon is C₂H₄.

7. TIPS/Formulae:

- (i) Equate given mass of AgCl against mass obtained from NaCl and KCl
- (ii) $2\text{NaCl} = \text{Na}_2\text{O} & 2\text{KCl} = \text{K}_2\text{O}$

Let amount of NaCl in mixture = x gm

 \therefore amount of KCl in mixture = (0.118 - x) gm

$$NaCl + AgNO_3 \longrightarrow AgCl + NaNO_3$$

$$58.5 g \qquad 143.5 g$$

 \therefore 58.5 g NaCl gives AgCl = 143.5g

$$\therefore x \text{ g NaCl gives AgCl} = \frac{143.5}{58.5} \times x \text{ g}$$

$$KCl + AgNO_3 \longrightarrow AgCl + KNO_3$$

74.5 g 143.5 g

 $\cdot \cdot 74.5$ g KCl gives AgCl = 143.5g

:.
$$(0.118-x)$$
 g KCl gives AgCl = $\left(\frac{143.5}{74.5} \times 0.118 - x\right)$ g

Total weight of AgCl = 0.2451g

$$\left. \therefore \left(\frac{143.5}{58.5} \times x \right) + \left[\frac{143.5}{74.5} \times (0.118 - x) \right] = 0.2451$$

x = 0.0338g

∴ Amount of NaCl in mixture = 0.0338g

 \therefore Amount of KCl in mixture = 0.118 - 0.0338 = 0.0842g

Since
$$2\text{NaCl} = \text{Na}_2\text{O}$$

 2×58.5 62
 $= 117.0$

117g NaCl is equivalent to = 62.0g Na₂O

$$\therefore 0.0338 \text{ NaCl is equivalent to} = \frac{62.0}{117} \times 0.0338 \text{ g Na}_2\text{O}$$
$$= 0.0179 \text{g}$$

% of Na₂O in 0.5g of feldspar =
$$\frac{0.0179}{0.500} \times 100 = 3.58\%$$

$$2KCl = K2O$$
2 × 74.5 = 149 94
∴ 149g of KCl is equivalent to = 94g K₂O

$$\therefore 0.0842g \text{ of KCl is equivalent to} = \frac{94}{149} \times 0.0842$$
$$= 0.0531g \text{ K}_2\text{O}$$

$$\therefore$$
 % of K₂O in 0.5g of feldspar = $\frac{0.0531}{0.5} \times 100 = 10.62\%$

% of
$$Na_2O$$
 in feldspar = 3.58%
% of K_2O in feldspar = 10.62%

- 8. According to problem, three atoms of M combine with 2 atoms of N
 - \therefore Formula of compound is M_3N_2 (Where M is the metal)

Equivalent wt of $N = \frac{14}{2}$ (: valency of N in compound is 3)

28 g N combines with = 72 g metal

$$\therefore$$
 14/3 N combines with = $\frac{72}{28} \times \frac{14}{3} = 12$

Eq. wt. of metal = 12

At wt of metal = Eq. wt \times valency = $12 \times 2 = 24$

[Valency of metal = 2]

9. Following reactions take place-

$$3MnSO4.4H2O \xrightarrow{\text{heat}}$$

$$Mn3O4 + 4H2O \uparrow + 3SO2 \uparrow + O2 \uparrow$$
(residue)

$$Mn_3O_4 + 2FeSO_4 + 4H_2SO_4 \longrightarrow Fe_2(SO_4)_3 + 3MnSO_4 + 4H_2O_4$$

Milliequivalents of FeSO₄ in 30 ml of 0.1N FeSO₄ $= 30 \times 0.1 = 3 \text{ m. eq.}$

According to problem step (iv)

25 ml of KMnO₄ reacts with = 3 m eq of FeSO₄

Thus in step (iii) of the problem,

50 ml of KMnO₄ reacts with =
$$\frac{3}{25} \times 50$$
 m.eq. of FeSO₄

$$= 6 \text{ meq of FeSO}_4$$

Milli eq. of 100 ml of 0.1N FeSO₄ = $100 \times 0.1 = 10$ m eq. $FeSO_4$ which reacted with $Mn_3O_4 = (10-6) = 4$ m eq. Milli eq of $FeSO_4 = Milli$ eq. of Mn_3O_4

(: Milli eq of oxidising agent and reducing agent are equal)

$$Mn_3O_4 \equiv 3MnSO_4.4H_2O$$

$$\therefore$$
 1 Meq of Mn₃O₄ = 3 Meq of MnSO₄ · 4H₂O

$$\therefore$$
 4 Meq of Mn₃O₄ = 12 Meq of MnSO₄ 4H₂O

Eq. wt of MnSO₄·4H₂O =
$$\frac{\text{Mol wt.}}{2}$$
 = $\frac{223}{2}$ = 111.5

Wt of MnSO₄.4H₂O in sample = 12×111.5

$$= 1338 \text{ mg} = 1.338g.$$

10. (a)
$$CaCl_2 = CaCO_3 = MgCl_2$$

M.wt. 111 100 95

From this it is evident, that $111 \text{ mg CaCl}_2 \text{ will give CaCO}_3 = 100 \text{mg}$

∴ 1 mg CaCl₂ will give CaCO₃ =
$$\frac{100}{111}$$
 mg = 0.90 mg

 $95 \text{ mg MgCl}_2 \text{ gives CaCO}_3 = 100 \text{ mg}$

∴ 1 mg MgCl₂ gives CaCO₃ =
$$\frac{100}{95}$$
 mg = 1.05 mg

.. Total CaCO₃ formed by 1 mg CaCl₂ and 1 mg MgCl₂ =0.90+1.05=1.95 mg

:. Amount of CaCO₃ present per litre of water = 1.95mg

$$\therefore$$
 wt of 1 ml of water = 1g = 10^3 mg

: wt of 1000 ml of water =
$$10^3 \times 10^3 = 10^6$$
mg

: Total hardness of water in terms of parts of CaCO₂ per 10^6 parts of water by weight = 1.95 parts.

(b) Eq wt of Ca⁺⁺ =
$$\frac{\text{Mol.wt}}{\text{Charge}} = \frac{40}{2} = 20$$

$$Ca^{2+} + Na_2CO_3 \longrightarrow CaCO_3 + 2Na^+$$

1 milliequivalent of $Ca^{2+} = 20 \text{ mg}$

1 milliequivalent of Na₂CO₃ is required to soften 1 litre

(c)
$$2Mg + O_2 \longrightarrow 2MgO$$

 $2 \times 24 = 48g \quad 32g \quad 2(24 + 16) = 80g$
 $\therefore 32g \text{ of } O_2 \text{ reacts with} = 48g Mg$

$$\therefore 0.5g \text{ of } O_2 \text{ reacts with} = \frac{48}{32} \times 0.5 = 0.75g$$

Weight of unreacted Mg = 1.00 - 0.75 = 0.25gThus Mg is left in excess.

Weight of MgO formed =
$$\frac{80}{48} \times 0.75 = 1.25g$$

$$MgO + H_2SO_4 \longrightarrow MgSO_4 + H_2O$$

(40g)

According to reaction

- ∴ 40g MgO is dissolved it gives 1000 ml of 1 N. H₂SO₄
- ∴ 40 g MgO is dissolved it gives 2000 ml 0.5 N H₂SO₄
- : 1.25 MgO is dissolved it gives

$$= \frac{2000 \times 1.25}{40} \,\text{ml of } 0.5 \,\text{NH}_2 \text{SO}_4$$

= **62.5ml of 0.5N H**₂**SO**₄ **11.** Given P = 1 atm V = 1L, T = 127°C = 127 + 273 = 400 K PV = nRT (Ideal gas equation)

or
$$n = \frac{PV}{RT} = \frac{1 \times 1}{0.082 \times 400} = 0.0304$$

Mol. wt =
$$\frac{\text{Mass}}{\text{Moles}} = \frac{2.8}{0.0304} = 92.10$$

Element	wt.of element	Relative no. of atoms	Ratio of of atoms	Whole no. of atoms
С	10.5	10.5/12	0.875/0.875	$1 \times 7 = 7$
		= 0.875	= 1	
H	1.0	1.0/1 = 1	1/0.875 = 1.14	$1.14 \times 7 = 8$

Emperical formula = C_7H_8 Emperical formula, wt = $12 \times 7 + 1 \times 8 = 92$

$$n = \frac{\text{Molecular wt}}{\text{Empirical formula wt}} = \frac{92.10}{92} = 1$$

Molecular formula = $n \times \text{empirical formula}$

$$= 1(C_7H_8) = C_7H_8$$

No. of C atoms in 14g of ${}^{14}C = 6.02 \times 10^{23}$ **12.** (i)

 \therefore No. of C atom in 7 mg (7/1000g) of 14 C

$$=\frac{6.02\times10^{23}\times7}{14\times1000}=3.01\times10^{20}$$

No. of neutrons in 1 carbon atom = 7

.. Total no. of neutrons in 7 mg of
$${}^{14}C = 3.01 \times 10^{20} \times 7$$

= 21.07×10^{20}

Wt of 1 neutron = wt of 1 hydrogen atom

$$=\frac{1}{6.02\times10^{23}}g$$

 \therefore Wt of $3.01 \times 10^{20} \times 7$ neutrons

$$= \frac{3.0 \times 10^{20} \times 7}{6.02 \times 10^{23}} = 3.5 \times 10^{-3} g$$

Weight of AgCl formed = $2.567 \,\mathrm{g}$

Amount of AgCl formed due to MCl = 1.341 g

(∴ NaCl does not decompose on heating to 300°C)

Weight of AgCl formed due to NaCl

$$=2.567-1.341=1.226g$$

$$NaCl \equiv AgCl \equiv MCl$$

58.5 143.5

$$\begin{cases} NaCl + AgNO_3 \rightarrow AgCl + NaNO_3 \\ MCl + AgNO_3 \rightarrow AgCl + MNO_3 \end{cases}$$

- \therefore 143.5g of AgCl is obtained from NaCl = 58.5g
- ∴ 1.226 g of AgCl is obtained from NaCl

$$= \frac{58.5}{143.5} \times 1.226 = 0.4997 \,\mathrm{g}$$

- \therefore Wt of MCl in 1 g of mixture = 1.000 0.4997 = 0.5003g
- \therefore 1.341 g of AgCl is obtained from MCl=0.5003g
- : 143.5g of AgCl is obtained from MCl

$$= \frac{0.5003}{1.341} \times 143.5 = 53.53 \,\mathrm{g}$$

- \therefore Molecular weight of MCl = 53.53
- **14.** The complete oxidation under acidic conditions can be represented as follows:

$$5H_2O_2 + 2MnO_4^- + 6H^+ \rightarrow 5O_2 + 2Mn^{2+} + 8H_2O$$

Since 34 g of $H_2O_2 = 2000$ ml of 1N . H_2O_2

$$\left(\because \text{Eq. wt or } H_2 O_2 = \frac{34}{2} \right)$$

:. 34 g of $H_2O_2 = 2000 \text{ ml}$ of 1N KMn $O_4 [:: N_1V_1 = N_2V_2]$

or
$$\frac{X}{100}$$
 g of H₂O₂ = $\frac{2000 \times X}{100 \times 34}$ ml of 1N KMnO₄

Therefore the unknown normality = $\frac{2000 \times X}{34 \times 100 \times X}$

$$=\frac{10}{17}$$
 or **0.588 N**

- **15.** Balance the reactions by ion electron method.
 - (i) $Cu_2O + 2H^+ \rightarrow 2Cu^{2+} + H_2O + 2e^-] \times 3$ (i)

$$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O] \times 2$$
(ii)

$$3Cu_2O + 14H^+ + 2NO_3^- \rightarrow 6Cu^{2+} + 2NO + 7H_2O$$

(ii) $K_4[Fe(CN)_6] + 6H_2SO_4 + 6H_2O$

$$\rightarrow 2K_2SO_4 + FeSO_4 + 3(NH_4)_2SO_4 + 6CO$$

(iii) $C_2H_5OH + 4I_2 + 8OH^2$

$$\rightarrow$$
CHI₃ + HCO₃ + 5I⁻ + 6H₂O

16. Given $2NH_2OH + 4Fe^{3+} \rightarrow N_2O + H_2O + 4Fe^{2+} + 4H^+$

and
$$MnO_4^- + 5Fe^{2+} + 8H^+ \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$$
..(ii)

 $\therefore 10NH_2OH + 4MnO_4^- + 12H^+ \rightarrow 5N_2O + 21H_2O + 4Mn^{2+}$

[On multiplying (i) by 5 and (ii) by 4 and then adding the resulting equations]

Molecular weight of $NH_2OH = 33$

Thus 4000 ml of 1M MnO_4^- would react with $NH_2OH = 330g$

∴ 12 ml of 0.02 M KMnO₄ would react with NH₂OH

$$=\frac{330\times12\times0.02}{400}$$
g

.. Amount of NH₂OH present in 1000 ml of diluted solution $= \frac{330 \times 12 \times 0.02 \times 1000}{4000 \times 50} g$

.. Amount of hydroxyl amine in one litre of original solution

$$= \frac{330 \times 0.02 \times 12 \times 1000}{4000 \times 50} \times \frac{1000}{10} g = 39.6 g$$

- 17. TIPS/Formulae:
 - (i) Mole fraction = $\frac{\text{Moles of substance}}{\text{Total moles}}$
 - (ii) 1 mole of $Na_2S_2O_3$ gives 2 moles of Na^+ and 1 mole of $S_2O_3^{2-}$

Molecular wt. of sodium thiosulphate solution $(Na_2S_2O_3)$ = $23 \times 2 + 32 \times 2 + 16 \times 3 = 158$

(i) The percentage by weight of Na₂S₂O₃

$$= \frac{\text{wt of Na}_2 \text{S}_2 \text{O}_3}{\text{wt of solution}} \times 100 = \frac{3 \times 158 \times 100}{1000 \times 1.25} = 37.92$$

[Wt. of $Na_2S_2O_3 = Molarity \times Mol wt$]

(ii) Mass of 1 litre solution = $1.25 \times 1000 \text{ g} = 1250 \text{ g}$

[: density =
$$1.25g/l$$
]

Mole fraction of Na₂S₂O₃

$$= \frac{\text{Number of moles of Na}_2\text{S}_2\text{O}_3}{\text{Total number of moles}}$$

Moles of water
$$=\frac{1250-158\times3}{18}=43.1$$

Mole fraction of
$$Na_2S_2O_3 = \frac{3}{3+43.1} = 0.065$$

(iii) 1 mole of sodium thiosulphate (Na₂S₂O₃) yields 2 moles of Na⁺ and 1 mole of S₂O₃²⁻

Molality of Na₂S₂O₃ =
$$\frac{3 \times 1000}{776}$$
 = 3.87

Molality of Na⁺ =
$$3.87 \times 2 = 7.74$$
m

Molality of
$$S_2O_3^{2-} = 3.87m$$

18. Weight of MCO₃ and BaO = $4.08 \,\mathrm{g}$ (given)

Weight of residue = $3.64 \, g$ (given)

:. Weight of CO₂ evolved on heating = (4.08 - 3.64) g

$$= 0.44 \text{ g}$$

$$= \frac{0.44}{44} = 0.01 \text{ mole}$$

Number of moles of $MCO_3 \equiv 0.01$ mole

$$\left[:: MCO_3 \xrightarrow{\text{heat}} MO + CO_2 \right]$$

Volume of 1N HCl in which residue is dissolved = 100 mlVolume of 1N HCl used for dissolution = $(100 - 2.5 \times 16) \text{ ml}$

$$=60 \,\mathrm{ml}$$

$$= \frac{60}{1000} = 0.06 \text{ equivalents}$$

The chemical equation for dissolution can be written as

$$\underbrace{\text{BaO} + \text{MO}}_{\text{Re sidue}} + 4\text{HCl} \longrightarrow \text{BaCl}_2 + \text{MCl}_2 + 2\text{H}_2\text{O}$$

[Number of moles of BaO and MO = 1 + 1 = 2]

Number of moles of BaO + Number of moles of MO =
$$\frac{0.06}{2}$$

= 0.03

Number of moles of BaO = (0.03 - 0.01) = 0.02 moles

Molecular weight of BaO =
$$138 + 16 = 154$$

:. Weight of BaO =
$$(0.02 \times 154)$$
 g = 3.08 g

Weight of MCO₃ = (4.08 - 3.08) = 1.0 g

Since weight of 0.01 mole of $MCO_3 = 1.0$ g

:. Mol. wt. of MCO₃ =
$$\frac{1}{0.01}$$
 = 100

Hence atomic weight of unknown M = (100 - 60) = 40

The atomic weight of metal is 40 so the metal M is Ca.

19. TIPS/Formulae:

Balance the atoms as well as charges by ion electron/ oxidation number method.

While balancing the equations, both the charges and atoms must balance.

(i)
$$4Zn + NO_3^- + 10H^+ \longrightarrow 4Zn^{2+} + NH_4^+ + 3H_2O$$

(ii)
$$Cr_2O_7^{2-} + 3C_2H_4O + 8H^+$$

$$\longrightarrow$$
 3C₂H₄O₂ + 2Cr³⁺ + 4H₂O

(iii)
$$2HNO_3 + 6HCl \longrightarrow 2NO + 3Cl_2 + 4H_2O$$

(iv)
$$2Ce^{3+} + S_2O_8^{2-} \longrightarrow 2SO_4^{2-} + 2Ce^{4+}$$

(v)
$$Cl_2 + 2OH^- \longrightarrow Cl^- + ClO^- + H_2O$$

(vi)
$$2Mn^{2+} + 5PbO_2 + 4H^+ \rightarrow 2MnO_4^- + 2H_2O + 5Pb^{2+}$$

(vii)
$$4S + 6OH^- \rightarrow 2S^{2-} + S_2O_3^{2-} + 3H_2O$$

(viii)
$$ClO_3^- + 6I^- + 6H_2SO_4 \rightarrow Cl^- + 6HSO_4^- + 3I_2 + 3H_2O$$

(ix)
$$6Ag^{+} + AsH_3 + 3H_2O \rightarrow 6Ag + H_3AsO_3 + 6H^{+}$$

TIPS/Formulae: 20.

Equivalents of A oxidised = Equivalents of A reduced. Since in acidic medium, A^{n+} is oxidised to AO_3^- , the change in oxidation state from

$$(+5)$$
 to $(+n) = 5 - n$ [: O.S. of A in AO₃ = +5]

Total number of electrons that have been given out during oxidation of 2.68×10^{-3} moles of A^{n+}

$$= 2.68 \times 10^{-3} \times (5-n)$$

Thus the number of electrons added to reduce 1.61×10^{-3}

moles of MnO₄ to Mn²⁺, i.e.

$$(+7)$$
 to $(+2) = 1.61 \times 10^{-3} \times 5$

[Number of electrons involved = +7 - (+2) = 5]

$$\therefore$$
 1.61 × 10⁻³ × 5 = 2.68 × 10⁻³ × (5 – n)

$$5-n = \frac{1.61 \times 5}{2.68}$$
 or $n = 5 - \frac{8.05}{2.68} \approx 2$

21. TIPS/Formulae:

Find normality of acid mixture and Na₂CO₂ . 10H₂O. (i) Equate them to find volume of H₂SO₄

(ii) Meq. of
$$H_2SO_4 = V \times N = \frac{V \times N}{1000}$$
 eq

(iii) Equivalent of SO_4^{2-} = equivalents of $H_2SO_4 \times Eq.$ wt. of SO₄--

$$N \times V(ml.) = meq.$$

Acid mixture contains 5 ml of 8N, HNO₃, 4.8 ml of 5N, HCl and say, 'V' ml of 17 M = 34 N, H_2SO_4 .

$$[1MH2SO4 = 2N.H2SO4]$$

N of the acid mixture =
$$\frac{\text{meq. (total) of acid}}{\text{ml. of solution}}$$

$$= \frac{5 \times 8 + 4.8 \times 5 + V \times 34}{2000}$$
 [Total volume = 2 L=2000 ml]

or,
$$N_{\text{mixture}} = \frac{64 + 34 V}{2000}$$

$$\therefore$$
 Eq. of wt. of Na₂CO₃.10H₂O = $\frac{\text{Mol. wt.}}{2}$

$$=\frac{106+180}{2}=143$$

$$N \text{ of Na}_2 \text{CO}_3 = \frac{\text{Meq. of Na}_2 \text{CO}_3}{\text{Volume of solution (ml)}}$$

$$=\frac{\frac{1}{143}}{\frac{100}{1000}} = \frac{1}{143} \times \frac{1000}{100} = 0.069N$$

$$\begin{aligned} N_1 V_1 &= N_2 V_2 \\ \text{or } 30 \times N_{\text{mixture}} = 42.9 \times 0.069 \\ \text{(acid)} & \text{(sod. carbonate)} \end{aligned}$$

$$30 \times N_{\text{mixture}} = 42.9 \times 0.069$$
(acid) (sod carbonate)

$$\therefore N_{\text{mixture}} = \frac{42.9 \times 0.069}{30} = 0.0986 \, N$$

Hence
$$\frac{64 + 34V}{2000} = 0.0986$$

$$64 + 34 V = 0.0986 \times 2000, 64 + 34 V = 197.2$$

$$34 V = 197.2 - 64.0 = 133.2$$
 : or $V = \frac{133.2}{34} = 3.9 \text{ ml.}$

Hence meq. of
$$H_2SO_4 = V \times N$$
 of H_2SO_4
= 3.9 × 34 = 132.6 meq.
= 0.1326 eq. of H_2SO_4
= 0.1326 eq. of SO_4^{2-}
= 0.1326 × 48 g of SO_4^{2-}

$$\left(\because \text{Eq. wt. of SO}_4^{2-} = \frac{32+64}{2} = 48 \right)$$

= **6.3648** g of SO_4^{2-} are in 3.9 ml of 17M H₂SO₄

- 22. $HI < I_2 < ICI < HIO_4$; O.N. of I in $I_2 = 0$, HI = -1, ICI = +1, $HIO_4 = +7$.
- 23. (i) From the given half-cell reaction,

Here Eq. wt. of NaBrO₃ =
$$\frac{\text{Mol. wt.}}{6} = \frac{151}{6} = 25.17$$

[: number of electron involved = 6]

Now we know that

Meq. = Normality \times Vol. in ml. = $85.5 \times 0.672 = 57.456$

Also Meq. =
$$\frac{W_{NaBrO_3}}{Eq. wt._{NaBrO_3}} \times 1000$$
$$= \frac{W_{NaBrO_3}}{25.17} \times 1000$$

$$\frac{W_{\text{NaBrO}_3}}{25.17} \times 1000 = 57.456 \,\mathrm{g}$$

$$\therefore W_{\text{NaBrO}_3} = 1.446 g$$

Molarity of NaBrO₃ =
$$\frac{\text{Normality}}{\text{Valence factor}}$$

$$=\frac{0.672}{6}=$$
0.112 M

(ii) From the given half-cell reaction,

Eq. wt. of NaBrO₃ =
$$\frac{\text{Mol. wt.}}{5} = \frac{151}{5} = 30.2$$

[Number of electron involved per BrO₃⁻ = $\frac{10}{2}$ = 5]

Thus, the amount of $NaBrO_3$ required for preparing 1000 ml. of $1 \text{ N NaBrO}_3 = 30.2 \text{ g}$

... The amount of NaBrO₃ required for preparing 85.5 ml of 0.672 N NaBrO_3 .

$$= \frac{30.2 \times 0.672 \times 85.5}{1000} = 1.7532 \,\mathrm{g}$$

Hence, Molarity =
$$\frac{0.672}{5}$$
 = **0.1344 M**

24. (i) Weight of sugar syrup = 214.2 g Weight of sugar in the syrup = 34.2 g \therefore Weight of water in the syrup = 214.2 - 34.2 = 180.0 g Mol. wt. of sugar, $C_{12}H_{22}O_{11} = 342$

$$\therefore \text{ Molal concentration} = \frac{34.2 \times 1000}{342 \times 180} = \textbf{0.56}$$

(ii) Mol. wt. of water, $H_2O = 18$

:. Mole fraction of sugar =
$$\frac{34.2/342}{180/18 + 34.2/342}$$

= $\frac{0.1}{10 + 0.1} = \frac{0.1}{10.1} = 0.0099$

25. TIPS/Formulae:

No. of equivalents of KMnO₄

= No. of equivatents of hydrazine sulphate.

$$N_2H_4 \longrightarrow N_2$$

Change in oxidation state for each $N_2H_4 = 2 \times 2 = 4$

Equivalent weight of
$$N_2H_6SO_4 = \frac{130}{4} = 32.5$$

Normality of KMnO₄ = 5×450 (: valence factor = 5)

Number of equivalents of KMnO₄ =
$$20 \times \frac{5}{50 \times 1000} = \frac{1}{500}$$

and if weight of hydrazin sulphate be x gm then equivalents

of hydrazine sulphate =
$$\frac{x}{32.5}$$

$$\therefore \frac{1}{500} = \frac{x}{32.5}$$
 or $x = \frac{32.5}{500} = 0.065 \text{ g}$

Hence wt. of $N_2H_6SO_4$ in 10 ml solution = 0.065 g

 \therefore Wt. of N₂H₆SO₄ in 1000 ml solution = **6.5** g

26. TIPS/Formulae:

No. of equivalents of KMnO₄ in neutral medium = No. of equivalents of reducing agent.

Assuming that KMnO₄ shows the following changes during its oxidising nature.

Acidic medium $Mn^{7+} + n_1 e^- \rightarrow Mn^{a+} \quad \therefore n_1 = 7 - a$

Neutral medium $Mn^{7+} + n_2e^- \rightarrow Mn^{b+}$ $\therefore n_2 = 7 - b$

Alkaline medium $\text{Mn}^{7+} + n_3 \text{e}^- \rightarrow \text{Mn}^{\text{c}+}$ $\therefore n_3 = 7 - c$ Let V ml. of reducing agent be used for KMnO₄ in different medium.

.. Meq. of reducing agent

= Meq. of $KMnO_4$ in acid medium

Meq. of KMnO₄ in neutral medium

= Meq. of KMnO₄ in alkaline medium
=
$$1 \times n_1 \times 20 = 1 \times n_2 \times 33.4 = 1 \times n_3 \times 100$$

= $n_1 = 1.667 n_2 = 5 n_3$

Since n_1 , n_2 and n_3 are integers and n_1 is not greater than 7 \therefore $n_3 = 1$

Hence
$$n_1 = 5$$
 and $n_2 = 3$

.. Different oxidation states of Mn in

Acidic medium $Mn^{7+} + 5e^- \rightarrow Mn^{a+}$ or a = +2

Neutral medium $Mn^{7+} + 3e^- \rightarrow Mn^{b+}$ or b = +4

Alkaline medium $Mn^{7+} + 1e^- \rightarrow Mn^{c+}$ or c = +6

Further, same volume of reducing agent is treated with $K_2Cr_2O_7$, and therefore

Meq. of reducing agent = Meq. of
$$K_2Cr_2O_7$$

 $1 \times 5 \times 20 = 1 \times 6 \times V \quad [\because Cr^{+6} + 6e^- \rightarrow 2Cr^{+3}]$
 $V = 16.66 \text{ mL} \therefore 1M = 6 \times 1N$

TIPS/Formulae:

No. of equivalents of KMnO₄

= No. of equivatents of reducing agents.

Case I. Reaction of NaOH with H₂C₂O₄ and NaHC₂O₄.

(i)
$$H_2C_2O_4 + 2NaOH \rightarrow Na_2C_2O_4 + 2H_2O$$

(ii)
$$NaHC_2O_4 + NaOH \rightarrow Na_2C_2O_4 + H_2O$$

Number of milliequivalents of NaOH = $N \times V = 3.0 \times 0.1 = 0.3$

Combined normality of the mixture titrated with NaOH

$$=\frac{0.3}{10}=0.03$$

Case II. Reaction of C₂O₄⁻ ion and KMnO₄ (iii) $5C_2O_4^- + MnO_4^- + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$ KMnO₄ will react in same manner with both NaHC₂O₄ and $H_2C_2O_4$ as it can be seen from the above reaction. Number of milliequivalents of $KMnO_4 = 4.0 \times 0.1 = 0.4$

:. Combined normality of the mixture titrated with KMnO₄

$$=\frac{0.4}{10}=0.04$$

The difference (0.04 N - 0.03 N = 0.01 N) is due to NaHC₂O₄ The total normality of NaHC₂O₄ will be = 0.01 + 0.01 = 0.02 N From equation (ii) in case I.

Eq. wt. of NaHC₂O₄ = 112

Amount of NaHC₂O₄ in one litre of solution formed = $0.01 \times 112 = 1.12$ g and amount of $H_2C_2O_4$ = $2.02 - \text{Wt. of NaHC}_2\text{O}_4 = 2.02 - 1.12 = 0.90 \text{ g}$

TIPS/Formulae: 28.

Let the amount of NaNO₃ in the mixture = x g \therefore The amount of Pb(NO₃)₂ in the mixture = (5-x) g Heating effect of sodium nitrate and lead nitrate

$$\begin{array}{ccc}
2\text{NaNO}_3 & \xrightarrow{\Delta} 2\text{NaNO}_2 & + & O_2 \\
2(23+14+48) = 170 \text{ g} & & 2\times 16 = 32 \text{ g}
\end{array}$$

$$\begin{array}{c}
2\text{Pb(NO}_{3})_{2} & \xrightarrow{\Delta} \\
2(207+28+96) = 662 \text{ g}
\end{array}$$

Now since, $170 \text{ g of NaNO}_3 \text{ gives} = 32 \text{ g of O}_2$

$$\therefore x \text{ g of NaNO}_3 \text{ gives} = \frac{32}{170} \times x \text{ g of O}_2$$

Similarly, 662 g of Pb(NO₃), gives = 216 g of gases

$$(5-x)$$
 g of Pb(NO₃)₂ gives = $\frac{216}{662} \times (5-x)$ g of gases

Actual loss, on heating, is 28% of 5 g of mixture

$$=\frac{5\times28}{100}=1.4\,\mathrm{g}$$

$$\therefore \frac{32x}{170} + \frac{216}{662} \times (5-x) = 1.4$$

$$32 x \times 662 + 216(5-x) \times 170 = 1.4 \times 170 \times 662$$

 $21184 x + 183600 - 36720 x = 157556$
 $-15536 x = -26044, x = 1.676 g$
Wt. of NaNO₃ = **1.676 g**
and Wt. of Pb(NO₃)₂ = 5 - 1.676 g = **3.324 g**

29. TIPS/Formulae:

Molality =
$$\frac{\text{Mass of solute/M. wt. of solute}}{\text{Mass of solvent in kg}}$$

Mass of H_2SO_4 in 100 ml of 93% H_2SO_4 solution = 93 g \therefore Mass of H₂SO₄ in 1000 ml of the H₂SO₄ solution = 930 g Mass of 1000 ml H_2SO_4 solution = 1000 × 1.84 = 1840 g Mass of water in $1000 \,\mathrm{ml}$ of solution = $1840 - 930 \,\mathrm{g}$

Moles of
$$H_2SO_4 = \frac{Wt. \text{ of } H_2SO_4}{\text{Mol. wt. of } H_2SO_4} = \frac{930}{98}$$

∴ Moles of H₂SO₄ in 1 kg of water

$$=\frac{930}{98}\times\frac{1}{0.910}=10.43\,\text{mol}$$

- \therefore Molality of solution = 10.43m
- In the given problem, a solution containing Cu²⁺ and $C_2O_4^{2-}$ is titrated first with KMnO₄ and then with Na₂S₂O₃

in presence of KI. In titration with KMnO₄, it is the $C_2O_4^{2-}$

ions that react with the MnO₄ ions. The concerned balanced equation may be written as given below.

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

Thus according to the above reaction

 $2 \text{ mmol } \text{MnO}_4^- \equiv 5 \text{ mmol } \text{C}_2\text{O}_4^{2-}$ However,

No. of mmol of MnO_4^- used in titration = Vol. in ml × M

$$=22.6 \times 0.02 = 0.452 \,\mathrm{mmol} \,\mathrm{MnO}_4^-$$

Since 2 mmol $MnO_4^- \equiv 5 \text{ mmol } C_2O_4^{2-}$

$$0.452 \text{ mmol MnO}_4^- \equiv \frac{5}{2} \times 0.452 = 1.130 \text{ mmol C}_2 \text{O}_4^{2-}$$

Titration with Na₂S₂O₃ in the presence of KI. Here Cu²⁺ react and the reactions involved during titration are

$$2Cu^{2+} + 2I^{-} \rightarrow 2Cu^{+} + I_{2}, 2S_{2}O_{3}^{2-} + I_{2} \rightarrow 2I^{-} + S_{4}O_{6}^{2-}$$

Thus
$$2Cu^{2+} \equiv I_2 \equiv 2S_2O_3^{2-}$$

No. of m mol of $S_2O_3^{2-}$ used in titration

$$=0.05 \times 11.3 = 0.565 \text{ mmol } S_2 O_3^{2-}$$

Now since 2 mmol $S_2O_3^{2-} \equiv 2 \text{ mmol } Cu^{2+}$ [From above equation]

0.565 mmol
$$S_2O_3^{2-} = \frac{2}{2} \times 0.565$$
 mmol Cu^{2+}
= 0.565 mmol Cu^{2+}

:. Molar ratio of
$$Cu^{2+}$$
 to $C_2O_4^{2-} = \frac{0.565 \text{ mmol}}{1.130 \text{ mmol}} = 1:2$

Balanced equations in two cases

Case I.
$$Mn^{+7} + 5e^- \rightarrow Mn^{+2}$$

 $C_2^{+3} \rightarrow 2C^{+4} + 2e^-$
Case II. $2Cu^{+2} + 2e^- \rightarrow Cu_2^+$
 $2I^- \rightarrow I_2 + 2e^-$
and $I_2 + 2e^- \rightarrow 2I^-$
 $2S_2^{+2} \rightarrow S_4^{+3/2} + 2e^-$

31. Mass of Fe₂O₃ in the sample =
$$\frac{55.2}{100} \times 1 = 0.552 \text{ g}$$

Number of moles of
$$\text{Fe}_2\text{O}_3 = \frac{0.552}{159.8} = 3.454 \times 10^{-3}$$

Number of moles of Fe³⁺ ions =
$$2 \times 3.454 \times 10^{-3}$$

= 6.9×10^{-3} mol = 6.90 mmol

Since its only 1 electron is exchanged in the conversion of Fe^{3+} to Fe^{2+} , the molecular mass is the same as equivalent mass.

 \therefore Amount of Fe²⁺ ion in 100 ml. of sol. = 6.90 meq Volume of oxidant used for 100 ml of Fe²⁺ sol.

$$= 17 \times 4 = 68 \text{ ml}.$$

Amount of oxidant used = 68×0.0167 mmol = 1.1356 mmol

Let the number of electrons taken by the oxidant = n \therefore No. of meq. of oxidant used = 1.1356 $\times n$

Thus
$$1.1356 \times n = 6.90 \implies n = \frac{6.90}{1.1356} = 6$$

32. 1.5 g of sample require = 150 ml. of
$$\frac{M}{10}$$
 HCl

∴ 2 g of sample require =
$$\frac{150 \times 2}{1.5}$$
 ml. of $\frac{M}{10}$ HCl
= 200 ml. of $\frac{M}{10}$ HCl

On heating, the sample, only NaHCO₃ undergoes decomposition as given below.

$$2\text{NaHCO}_3 \rightarrow \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2 \uparrow$$

2 moles 1 mole 1 mole

Neutralisation of the sample with HCl takes place as given below.

$$NaHCO_3 + HCl \rightarrow NaCl + H_2O + CO_2$$

1 eq. 1 eq.

$$Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2$$

1 mole 2 mole
2 eq. 2 eq.

Hence, 2 g sample $\equiv 200 \text{ ml. of M/10 HCl}$

= 200 ml. of N/10 HCl = 20 meq = 0.020 eq

Number of moles of CO₂ formed, i.e.

$$n = \frac{PV}{RT} = \frac{750}{760} \times \frac{123.9}{1000} \times \frac{1}{0.082 \times 298} = 0.005$$

Moles of NaHCO₃ in the sample $(2 g) = 2 \times 0.005 = 0.01$ Equivalent of NaHCO₃ = 0.01

Wt. of NaHCO₃ =
$$0.01 \times 84 = 0.84$$
 g

% of NaHCO₃ =
$$\frac{0.84 \times 100}{2}$$
 = 42%

Equivalent of $Na_2CO_3 = 0.02 - 0.01 = 0.01$ Wt. of $Na_2CO_3 = 0.01 \times 53 = 0.53$ g

$$\therefore$$
 % of Na₂CO₃ = $\frac{0.53 \times 100}{2}$ = **26.5%**

 \therefore % of Na₂SO₄ in the mixture = 100 - (42 + 26.5) = **31.5%**

33. Reaction involved titration is

$$KIO_3 + 2KI + 6HCl \rightarrow 3ICl + 3KCl + 3H_2O$$
_{1 mole}

20 ml. of stock KI solution = 30 ml. of $\frac{M}{10}$ KIO₃ solution

Molarity of KI solution =
$$\frac{30 \times 1 \times 2}{20 \times 10} = \frac{3}{10}$$

Millimoles in 50 ml. of KI solution = $50 \times \frac{3}{10} = 15$

Millimoles of KI left unreacted with AgNO₃ solution

$$=2\times50\times\frac{1}{10}=10$$

 \therefore Millimoles of KI reacted with AgNO₃ = 15 - 10 = 5 Millimoles of AgNO₃ present in AgNO₃ solution = 5 Molecular weight of AgNO₃ = 170

 \therefore Wt. of AgNO₃ in the solution = $5 \times 10^{-3} \times 170 = 0.850$ g

% AgNO₃ in the sample =
$$\frac{0.850}{1} \times 100 = 85\%$$

34. Calculation of number of moles in 45 ml. of 0.025 M Pb(NO₃)₂

Moles of Pb(NO₃)₂ =
$$0.25 \times \frac{45}{1000} = 0.01125$$

 \therefore Initial moles of Pb²⁺ = 0.01125

Moles of
$$NO_3^- = 0.01125 \times 2 = 0.02250$$

 $[1 \text{ mole Pb(NO}_3)_2 \equiv 2 \text{ moles of NO}_3]$

Calculation of number of moles in 25 ml. of 0.1 M chromic sulphate

$$=0.1 \times \frac{25}{1000} = 0.0025$$
 moles

Moles of $SO_4^{2-} = 0.0025 \times 3 = 0.0075$ [1 Mole of chromic sulphate \equiv 3 moles of SO_4^{2-}]

Moles of PbSO₄ formed = 0.0075 [SO₄²⁻ is totally consumed] Moles of Pb^{2+} left = 0.01125 - 0.0075 = 0.00375

Moles of NO_3^- left = 0.02250 [NO_3^- remain unreacted]

Moles of chromium ions = $0.0025 \times 2 = 0.005$

Total volume of the solution = 45 + 25 = 70 ml.

Molar concentration of the species left

(i)
$$Pb^{2+} = \frac{0.00375}{70} \times 1000 = 0.05357 M$$

(ii)
$$NO_3^- = \frac{0.0225}{70} \times 1000 = 0.3214 \text{ M}$$

(iii)
$$\operatorname{Cr}^{3+} = \frac{0.005}{70} \times 1000 = \mathbf{0.0714} \,\mathrm{M}$$

35. In pure iron oxide (FeO), iron and oxygen are present in the ratio 1:1.

However, here number of Fe^{2+} present = 0.93

or No. of Fe^{2+} ions missing = 0.07

Since each Fe²⁺ ion has 2 positive charge, the total number of charge due to missing (0.07) Fe²⁺ ions = $0.07 \times 2 = 0.14$

To maintain electrical neutrality, 0.14 positive charge is compensated by the presence of Fe³⁺ ions. Now since, replacement of one Fe²⁺ ion by one Fe³⁺ ion increases one positive charge, 0.14 positive charge must be compensated by the presence of 0.14 Fe^{3+} ions.

In short, 0.93 Fe^{2+} ions have 0.14 Fe^{3+} ions

$$100 \text{ Fe}^{2+} \text{ ions have} = \frac{0.14}{0.93} \times 100 = 15.05\%$$

36. The formula of Glauber's salt is Na₂SO₄. 10H₂O

Molecular mass of Na₂SO₄. 10H₂O

 $= [2 \times 23 + 32.1 + 4 \times 16] + 10(1.01 \times 2 + 16) = 322.3 \text{ g mol}^{-1}$

Weight of the Glauber's salt taken = 80.575 gm

Out of 80.575 g of salt, weight of anhydrous Na₂SO₄

$$= \frac{142.1}{322.3} \times 80.575 = 35.525 \,\mathrm{g}$$

Number of moles of Na₂SO₄ per dm³ of the solution

$$=\frac{35.525}{142.1}=0.25$$

Molarity of the solution = 0.25 M

Density of solution = 1077.2 kgm^{-3}

$$= \frac{1077.2 \times 10^3}{10^6} \text{ gm cm}^{-3} = 1.0772 \text{ g cm}^{-3}$$

Total weight of sol =
$$V \times d = 1 \ dm^3 \times d$$

$$= 1000 \text{ cm}^3 \times 1.0772 \text{ gcm}^{-3} = 1077.2 \text{ g}$$

Weight of water =
$$1077.2 - 35.525 = 1041.67 g$$

Molality of sol. =
$$\frac{0.25}{1041.67 \text{ g}} \times 1000 \text{ g} = 0.2399 = 0.24 \text{ m}$$

Number of moles of water in the solution =
$$\frac{1041.67}{18}$$
 = 57.87

Mole fraction of Na₂SO₄

$$= \frac{\text{No. of moles of Na}_2\text{SO}_4}{\text{Total number of moles}} = \frac{0.25}{0.25 + 57.87}$$
$$= 0.0043 = 4.3 \times 10^{-3}$$

37. TIPS/Formulae:

Find the milliequivalents and equate them as per data given in question.

For
$$Fe_3O_4 \rightarrow 3FeO$$

$$2e + Fe_3^{(8/3)+} \rightarrow 3Fe^{2+}$$

Thus, valence factor for Fe₃O₄ is 2 and for FeO is 2/3.

For,
$$Fe_2O_3 \to 2FeO$$
; $2e + Fe_2^{3+} \to 2Fe^{2+}$...(1)

Thus valence factor for Fe₂O₃ is 2 and for FeO is 1.

Let Meq. of Fe₃O₄ and Fe₂O₃ be
$$a$$
 and b respectively.
 \therefore Meq. of Fe₃O₄ + Meq. Fe₂O₃ = Meq. of I₂ liberated

$$a+b=\frac{11\times0.5\times100}{20}=27.5$$

Now, the Fe²⁺ ions are again oxidised to Fe³⁺ by KMnO₄. Note that in the change

 $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$; valence factor of Fe^{2+} is 1.

Meq. of Fe^{2+} (from Fe_3O_4) + Meq. of Fe^{2+} (from Fe_2O_3) = Meq. of KMnO₄ used

If valence factor for Fe^{2+} is 2/3 from Eq. (1),

then Meq. of Fe²⁺ (from Fe₂O₄) = a

If valence factor for Fe²⁺ is 1

then Meq. of
$$Fe^{2+}$$
 (from Fe_3O_4) = $3a/2$... (3)

Similarly, from Eq. (2), Meq. of Fe²⁺ from (Fe₂O₃) = b.

$$\therefore 3a/2 + b = 0.25 \times 5 \times 12.8 \times 100/50 = 32$$

or
$$3a + 2b = 64$$
(4)

From Eqs. (3) and (4)

Meq. of $Fe_3O_4 = a = 9$ & Meq. of $Fe_2O_3 = b = 18.5$

$$W_{\text{Fe}_3\text{O}_4} = \frac{9 \times 232}{2 \times 1000} = 1.044 \,\text{g}$$

and
$$W_{Fe_2O_3} = \frac{18.5 \times 160}{2 \times 1000} = 1.48 g$$

$$\therefore$$
 % of Fe₃O₄ = $\frac{1.044 \times 100}{3}$ = **34.8**

and % of
$$Fe_2O_3 = \frac{1.48 \times 100}{3} = 49.33$$

38. TIPS/Formulae:

Write the reactions taking place, balance them and equate moles of I₂ and Na₂S₂O₃.

$$KIO_3 + 5KI \rightarrow 3K_2O + 3I_2$$
 i.e., $2I^{5+} + 10e^- \rightarrow I_2^0$
 $2I^- \rightarrow I_2^0 + 2e^-$

Now liberated
$$I_2$$
 reacts with $Na_2S_2O_3$
 $I_2 + 2e^- \rightarrow 2I^-$
 $2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2e^-$

$$\therefore \text{ millimole ratio of } I_2 : S_2O_3 = 1 : 2$$

Thus, m mole of I_2 liberated

=
$$m$$
 mole of Na₂S₄O₆ used $\times \frac{1}{2} = 45 \times M \times \frac{1}{2}$
[M is molarity of thiosulphate]

Also m mole of
$$KIO_3 = \frac{0.1}{214} \times 1000$$

Now m mole ratio of KIO₂: $I_2 = 1:3$

Thus,
$$\frac{(0.1/214) \times 1000}{(45M/2)} = \frac{1}{3}$$

$$\therefore M = \frac{0.1 \times 1000 \times 3 \times 2}{214 \times 45} = 0.062$$

39. TIPS/Formulae:

Use molarity equation to find volume of H₂SO₄ solution.

$$CuCO_3$$
 + $H_2SO_4 \rightarrow CuSO_4 + H_2O + CO_2 \uparrow$
 $63.5 + 12 + 48.98$ 98g
= 123.5 g

:. For 123.5 gms of Cu(II) carbonate 98 g of H₂SO₄ are required. For 0.5 gms of Cu(II) carbonate weight of H₂SO₄ reqd.

$$= \frac{98 \times 0.5}{123.5} g = 0.39676 g H_2 SO_4$$

Weight of required $H_2SO_4 = 0.39676$ g Weight of solute in grams

$$= \frac{\text{Mol.wt.} \times \text{Molarity} \times \text{Volume in mL}}{1000}$$

$$0.39676 = \frac{98 \times 0.5 \times V}{1000} \quad \text{or} \quad V = \frac{0.39676 \times 1000}{90 \times 0.5} \text{ml}$$

Volume of H_2SO_4 solution = 8.097 ml

40. TIPS/Formulae:

- Volume of virus = $\pi r^2 \ell$ (Volume of cylinder)
- Mass of single virus = $\frac{\text{Volume}}{\text{Sp. volume}}$
- Molecular mass of virus = Mass of single virus $\times 6.02 \times 10^{23}$

Volume of virus =
$$\pi r^2 l$$

$$= \frac{22}{7} \times \frac{150}{2} \times \frac{150}{2} \times 10^{-16} \times 5000 \times 10^{-8}$$
$$= 0.884 \times 10^{-16} \text{ cm}^3$$

Weight of one virus =
$$\frac{0.884 \times 10^{-16}}{0.75}$$
 g
= 1.178×10^{-16} g

:. Mol. wt. of virus =
$$1.178 \times 10^{-16} \times 6.02 \times 10^{23}$$

= 7.09×10^7

41. TIPS/Formulae:

Write the balanced chemical reaction for change and apply mole concept.

The given reactions are

$$MnO_2 \downarrow +Na_2C_2O_4 + 2H_2SO_4$$

$$\longrightarrow$$
 MnSO₄ + CO₂ + Na₂SO₄ + 2H₂O

$$\therefore$$
 Meq. of MnO₂ = Meq of Na₂C₂O₄ = $10 \times 0.2 \times 2 = 4$

$$\therefore \text{ mM of MnO}_2 = \frac{4}{2} = 2 \qquad \begin{bmatrix} \text{Mn}^{4+} + 2e \rightarrow \text{Mn}^{2+} \\ \therefore \text{ Valance factor of MnO}_2 = 2 \end{bmatrix}$$

Now
$$2KMnO_4 + 3MnSO_4 + 2H_2O$$

$$\longrightarrow$$
 5MnO₂ \downarrow +K₂SO₄ + 2H₂O

Since eq. wt. of MnO₂ is derived from KMnO₄ and MnSO₄ both, thus it is better to proceed by mole concept

$$mM \text{ of } KMnO_4 \equiv mM \text{ of } MnO_2 \times (2/5) = 4/5$$

Also
$$5H_2O_2 + 2KMnO_4 + 3H_2SO_4$$

$$\longrightarrow$$
 2MnSO₄ + K₂SO₄ + 8H₂O + 5O₂

:. mM of H₂O₂ = mM of KMnO₄ ×
$$\frac{5}{2} = \frac{4}{5} \times \frac{5}{2} = 2$$

$$M_{H_2O_2} \times 20 = 2$$
 or $M_{H_2O_2} = 0.1$

$$2KMnO_4 + 5H_2O_2 + 3H_2SO_4$$

$$\longrightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5O_2$$

$$2KMnO_4 + 3MnSO_4 + 2\ddot{H}_2O$$

$$\xrightarrow{\longrightarrow} 5MnO_2 + 2H_2SO_4 + K_2SO_4$$

$$MnO_2 + Na_2C_2O_4 + 2H_2SO_4$$

$$MnO_2 + Na_2C_2O_4 + 2H_2SO_4$$

$$\longrightarrow$$
 MnSO₄ + 2CO₂ + Na₂SO₄ + 2H₂O

42. 1 litre water = 1 kg i.e.
$$1000 \text{ g}$$
 water ($\therefore d = 1000 \text{ kg/m}^3$)

$$\equiv \frac{1000}{18} = 55.55 \text{ moles of water}$$

So, molarity of water = 55.55M

H. Assertion & Reason Type Questions

TIPS/Formulae: 1.

Write reaction for titration between Na₂CO₃ and HCl. Method:

$$\begin{array}{c} Na_{2}CO_{3\;(aq)} + HCl_{(aq)} \longrightarrow & NaHCO_{3} + NaCl_{(aq)} \\ (\text{yellow colour} & \text{(no colour} \\ \text{with HPh i.e.} & \text{with HPh i.e.} \\ \text{phenolphthalein)} & \text{phenolphthalein)} \end{array}$$

(Half neutralisation)

$$Na_2CO_3(aq) + 2HCl(aq) \rightarrow 2NaCl + H_2O + CO_2$$
 (Complete neutralisation)

$$\begin{array}{c} \text{NaHCO}_3 + \text{HCl} \longrightarrow & \text{NaCl} + \text{H}_2\text{O} + \text{CO}_2 \\ \text{(yellow colour} \\ \text{with methyl} \\ \text{orange)} \\ \end{array}$$

From these reaction it is clear that

- (i) 2 moles of HCl are required for complete neutralization of Na₂CO₃.
- (ii) Titre value using phenolphthalein corresponds only to neutralisation of Na₂CO₃ to NaHCO₃, i.e. half of value required by Na₂CO₃ solution.
- (iii) Titre value using methyl orange corresponds to complete neutralisation of Na₂CO₂
- .. Both S and E are correct but S is not correct explanation of E.

I. Integer Value Correct Type

1. The least significant figure in titre values is 3.

Average titre value =
$$\frac{25.2 + 25.25 + 25}{3} = \frac{75.4}{3} = 25.1$$

The number of significant figures in average titre value will also be 3.

2.
$$d = \frac{\text{mass}}{\text{V}} \Rightarrow 10.5 \text{ g/cc means in 1 cc}$$

 \Rightarrow 10.5 g of Ag is present.

Number of atoms of Ag in 1 cc
$$\Rightarrow \frac{10.5}{108} \times N_A$$

In 1 cm, number of atoms of Ag =
$$\sqrt[3]{\frac{10.5}{108}N_A}$$

In 1 cm², number of atoms of Ag =
$$\left(\frac{10.5}{108}N_A\right)^{2/3}$$

In 10^{-12} m² or 10^{-8} cm², number of atoms of Ag

$$= \left(\frac{10.5}{108}N_A\right)^{2/3} \times 10^{-8} = \left(\frac{10.5 \times 6.022 \times 10^{23}}{108}\right)^{2/3} \times 10^{-8} = 1.5 \times 10^7$$

Hence
$$x = 7$$

3. 5

Difference in oxidation number = 5 - 0 = 5

4. 4
$$R = N_A \times k$$

= $6.023 \times 10^{23} \times 1.380 \times 10^{-23}$
= 8.312 which has 4 significant figures

Section-B JEE Main/ AIEEE

1.	(c)	Percentage	R.N.A	Simplest ratio
	С	9	$\frac{9}{12} = \frac{3}{4}$	3
	Н	1	$\frac{1}{1} = 1$	4
	N	3.5	$\frac{3.5}{14} = \frac{1}{4}$	1

Empirical formula =
$$C_3H_4N$$

 $(C_3H_4N)_n = 108, (12 \times 3 + 4 \times 1 + 14)_n = 108$

$$(54)_n = 108 \Rightarrow n = \frac{108}{54} = 2$$

 \therefore molecular formula = $C_6H_8N_2$

2. (c) Among all the given options molarity is correct because the term molarity involve volume which increases on increasing temperature.

3. (a) Fe (no. of moles) =
$$\frac{558.5}{55.85}$$
 = 10 moles

C (no. of moles) in 60 g of C = 60/12 = 5 moles.

(a)
$$2BCl_3 + 3H_2 \rightarrow 2B + 6HCl$$

or
$$BCl_3 + \frac{3}{2}H_2 \rightarrow B + 3HCl$$

Now, since 10.8 gm boron requires hydrogen

$$= \frac{3}{2} \times 22.4 L \text{ at N.T.P}$$

hence 21.6 gm boron requires hydrogen

$$\frac{3}{2} \times \frac{22.4}{10.8} \times 21.6 = 67.2$$
L at N.T. P.

5. **(d)**
$$25 \times N = 0.1 \times 35$$
; $N = 0.14$

Ba(OH)₂ is diacid base

hence
$$N = M \times 2$$
 or $M = \frac{N}{2} \implies M = 0.07 M$

6. (b) Moles of urea present in 100 ml of sol. = $\frac{6.02 \times 10^{20}}{6.02 \times 10^{23}}$

$$\therefore M = \frac{6.02 \times 10^{20} \times 1000}{6.02 \times 10^{23} \times 100} = 0.01M$$

 $[\cdot \cdot \cdot M = Moles of solute present in 1L of solution]$

- 7. (a) $N_1V_1 = N_2V_2$ (Note: H_3PO_3 is dibasic: M = 2N) $20 \times 0.2 = 0.1 \times V$ (Thus. 0.1 M = 0.2 N) \therefore V=40 ml
- 8. H₂SO₄ is dibasic.

$$0.1 \,\mathrm{M}\,\mathrm{H_2SO_4} = 0.2 \,\mathrm{N}\,\mathrm{H_2SO_4}$$
 [$:: \mathrm{M} = 2 \times \mathrm{N}$]
 $\mathrm{M_{eq}}$ of $\mathrm{H_2SO_4}$ taken = $= 100 \times 0.2 = 20$
 $\mathrm{M_{eq}}$ of $\mathrm{H_2SO_4}$ neutralised by NaOH = $20 \times 0.5 = 10$

$$M_{eq}$$
 of H_2SO_4 neutralised by $NH_3 = 20 - 10 = 10$

% of
$$N_2 = \frac{1.4 \times M_{eq} \text{ of acid neutrialised by NH}_3}{\text{wt. of organic compound}}$$

$$=\frac{1.4\times10}{0.3}=46.6$$

% of nitrogen in urea =
$$\frac{14 \times 2 \times 100}{60} = 46.6$$

[Mol. wt of urea =60]

Similarly % of Nitrogen in Benzamide

$$= \frac{14 \times 100}{121} = 11.5\% \quad [C_6 H_5 CON H_2 = 121]$$

Acetamide =
$$\frac{14 \times 1 \times 100}{59}$$
 = 23.4% [CH₃CONH₂=59]

Thiourea =
$$\frac{14 \times 2 \times 100}{76}$$
 = 36.8% [NH₂CSNH₂ = 76]

Hence the compound must be urea.

- 9. TIPS/Formulae:
 - From the molarity equation.

 $M_1V_1 + M_2V_2 = MV$

Let M be the molarity of final mixture,

$$M = \frac{M_1 V_1 + M_2 V_2}{V}$$
 where $V = V_1 + V_2$

$$M = \frac{480 \times 1.5 + 520 \times 1.2}{480 + 520} = 1.344 \text{ M}$$

- Relative atomic mass 10. (d)
 - Mass of one atom of the element $= \frac{1}{1/12^{\text{th}} \text{ part of the mass of one atom of Carbon} - 12}$

Mass of one atom of the element $\times 12$ mass of one atom of the C-12

Now if we use $\frac{1}{6}$ in place of $\frac{1}{12}$ the formula becomes

Relative atomic mass = $\frac{\text{Mass of one atom of element}}{2} \times 6$ Mass of one atom of carbon

- : Relative atomic mass decrease twice
- 11. 1 Mole of Mg₃(PO₄)₂ contains 8 mole of oxygen atoms \therefore 8 mole of oxygen atoms = 1 mole of Mg₃(PO₄)₂ mole of $Mg_3(PO_4)_2$

0.25 mole of oxygen atom $\equiv \frac{1}{9} \times 0.25$ mole of $Mg_3(PO_4)_2$

 $= 3.125 \times 10^{-2}$ mole of Mg₃(PO₄)₂

12. (a) TIPS/Formulae:

Apply the formula $d = M \left(\frac{1}{m} + \frac{M_2}{1000} \right)$

$$1.02 = 2.05 \left(\frac{1}{m} + \frac{60}{1000} \right)$$

On solving we get, m = 2.288 mol/kg

13. (d) Since molarity of solution is 3.60 M. It means 3.6 moles of H_2SO_4 is present in its 1 litre solution.

Mass of 3.6 moles of H_2SO_4

= Moles \times Molecular mass = 3.6 \times 98 g = 352.8 g

∴ 1000 ml solution has 352.8 g of H₂SO₂

Given that 29 g of H_2SO_4 is present in = 100 g of solution

 \therefore 352.8 g of H₂SO₄ is present in

$$= \frac{100}{29} \times 352.8 \text{ g of solution} = 1216 \text{ g of solution}$$

Density =
$$\frac{\text{Mass}}{\text{Volume}} = \frac{1216}{1000} = 1.216 \text{ g/ml} = 1.22 \text{ g/ml}$$

- $2Al(s) + 6HCl(aq) \rightarrow 2Al^{3+}(aq) + 6Cl^{-}(aq) + 3H_{2}(g)$ 14. (a) \therefore 6 moles of HCl produces = 3 moles of H₂ $= 3 \times 22.4 \text{ L of H}_2 \text{ at S.T.P}$
 - \therefore 1 mole of HCl produces = $\frac{3 \times 22.4}{6}$ L of H₂ at S.T.P = 11.2 L of H₂ at STP
- 15. (c) On balancing the given equations we get

$$2MnO_4^- + 5C_2O_4^- + 16H^+ \longrightarrow 2Mn^{++} + 10CO_2 + 8H_2O_3$$

So,
$$x = 2$$
, $y = 5 \& z = 16$

16. (d) : 18 g, H_2O contains = 2 gm H

:.
$$0.72 \text{ gm H}_2\text{O contains} = \frac{2}{18} \times 0.72 \text{ gm} = 0.08 \text{ gm H}$$

 \therefore 44 gm CO₂ contains = 12 gm C

:. 3.08 gm
$$CO_2$$
 contains = $\frac{12}{44} \times 3.08 = 0.84$ gm C

$$\therefore$$
 C: H= $\frac{0.84}{12}$: $\frac{0.08}{1}$ = 0.07: 0.08 = 7: 8

 \therefore Empirical formula = C_7H_8

For a one mole of the oxide 17. **(b)** Moles of M = 0.98, Moles of $O^{2-} = 1$

Let moles of $M^{3+} = x$

Moles of $M^{2+} = 0.98 - x$

on balancing charge

$$(0.98-x) \times 2 + 3x - 2 = 0 \implies x = 0.04$$

% of
$$M^{3+} \frac{0.04}{0.98} \times 100 = 4.08\%$$