# BOARD OF SCHOOL EDUCATION HARYANA Sample Paper (2024-25) CLASS: 11<sup>th</sup> (Code: 835) गणित

### MATHEMATICS

[Time allowed: 3 hours] निर्धारित समय : 3 घंटे [Maximum Marks: 80] अधिकतम अंक: 80

#### सामान्य निर्देश :

- इस प्रश्न- पत्र में कुल 38 प्रश्न हैं, जो कि पांच खंडों: अ, ब, स, द ल में बांटे गए हैं : खंड अ : इस खंड में 1 से 20 तक कुल 20 प्रश्न हैं, प्रत्येक प्रश्न 1 अंक का है।
  खंड ब : इस खंड में 21 से 25 तक कुल 05 प्रश्न हैं, प्रत्येक प्रश्न 2 अंक का है।
  खंड स : इस खंड में 26 से 31 तक कुल 06 प्रश्न हैं, प्रत्येक प्रश्न 3 अंक का है।
  खंड द : इस खंड में 32 से 35 तक कुल 04 प्रश्न हैं. प्रत्येक प्रश्न 5 अंक का है।
  खंड ल : इस खंड में 36 से 38 तक कुल 03 केस आधारित प्रश्न हैं, प्रत्येक प्रश्न 8, प्रत्येक प्रश्न 4 अंक का है।
- सभी प्रश्न अनिवार्य हैं।
- कुछ प्रश्नों में आंतरिक चयन का विकल्प दिया गया है, उनमें से एक ही प्रश्न को चुनना है।
- कैलकुलेटर के प्रयोग की अनुमति नहीं है।

#### General Instructions:

• This question paper consists of 38 questions in total which are divided into five sections: A, B, C, D, E :

Section A: This section consists of twenty questions from 1 to 20. Each question carries 1 mark.

Section B: This section consists of five questions from 21 to 25. Each question carries 2 marks.

Section C: This section consists of six questions from 26 to 31. Each question carries 3 marks.

Section D: This section consists of four questions from 32 to 35. Each question carries 5 marks.

Section E: This section consists of three case based questions from 36 to 38. Each question carries 4 marks.

- All questions are compulsory.
- There are some questions where **internal choice** has been provided. Choose only one of them.
- Use of calculator is **not** permitted.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | SEC         | TION –             | A                 |                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------|--------------------|-------------------|--------------------------|
| इस खंड में प्रत्येक प्रश्न                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |             |                    |                   |                          |
| This section comprise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es questions of         | 1 mark e    | each <b>.</b>      |                   |                          |
| 1. यदि X= {a, b, c, d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e} और Y= {d             | l, e, f, g} | तब (X-             | $Y) \cap (X{+}Y)$ | नेर                      |
| (A) $\emptyset$ (B) {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a, b, c}                | (C) {f, g   | g}                 | (D) {a, b,        | c, f, g}                 |
| If $X = \{a, b, c, d, e\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and $Y = \{d, e, d\}$   | , f, g} the | en (X-Y)           | $\cap$ (X+Y) is   |                          |
| (A) Ø (B) {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a, b, c}                | (C) {f, g   | }                  | (D) {a, b, c      | , f, g}                  |
| 2. यदि A = {a, d}, B =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $= \{b, c, e\}, C =$    | = {b, c, f  | }, तब A :          | × (B –C)          |                          |
| $(A) \{(a, e), (d, e)\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (B) {(e, a),            | (e, d)}     | (C) {(e,           | a), (d, e)}       | (D) $\{(a, e), (e, d)\}$ |
| If $A = \{a, d\}, B = \{a, d\}, B$ | $\{b, c, e\}, C = \{$   | b, c, f},   | then A $\times$    | < (B – C) is      |                          |
| $(A) \{(a, e), (d, e)\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (B) {(e, a),            | (e, d)}     | (C) {(e            | , a), (d, e)}     | (D) $\{(a, e), (e, d)\}$ |
| 3. 75° का रेडियन माप                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | होता है                 |             |                    |                   |                          |
| (A) 75π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (B) 5π/12               |             | (C) 7π/2           | 12                | (D) इनमें से कोई नहीं    |
| 75° in radian meas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ure is                  |             |                    |                   |                          |
| (A) 75π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (B) 5π/12               |             | (C) 7π/2           | 12                | (D) none of these        |
| 4. i <sup>-35</sup> का a + ib रूप                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | है:                     |             |                    |                   |                          |
| (A) i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (B) 1/i                 |             | (C) i <sup>5</sup> |                   | (D) इनमें से कोई नहीं    |
| a + ib form of i <sup>-35</sup> i<br>(A) i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s:<br>(B) 1/i           |             | (C) i <sup>5</sup> |                   | (D) none of these        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~ /                     |             | (0)1               |                   | (D) none of these        |
| 5. यदि $\frac{1}{8!} + \frac{1}{9!} = \frac{X}{10!}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |             | $(\mathbf{C})$ 0   |                   | (D) 10                   |
| (A) 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (B) 90                  |             | (C) 9              |                   | (D) 10                   |
| If $\frac{1}{8!} + \frac{1}{9!} = \frac{X}{10!}$ the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | s:          |                    |                   |                          |
| (A) 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (B) 90                  |             | (C) 9              |                   | (D) 10                   |
| 6. 1 और 64 के बीच गुण                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                       |             |                    |                   |                          |
| (A) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (B) 64                  |             | (C) 8              |                   | (D) 16                   |
| The G.M. between (A) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 and 64 is :<br>(B) 64 |             | (C) 8              |                   | (D) 16                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |             |                    |                   |                          |

खंड – अ

| 7.  | 7. x का वह मान जिसके लिए संख्याएँ <i>-</i> 3/11, x, -11/3 गुणोत्तर श्रेणी में है |                                                                      |                                      |                       |  |  |  |  |
|-----|----------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------|-----------------------|--|--|--|--|
|     | (A) 1                                                                            | (B) ±1                                                               | (C) -1                               | (D) ±33               |  |  |  |  |
|     | The value of x for w                                                             | which the numbers -3/1                                               | 1, x, -11/3 are in G.P.              |                       |  |  |  |  |
|     | (A) 1                                                                            | (B) ±1                                                               | (C) -1                               | (D) ±33               |  |  |  |  |
| 8.  | . sin (x +a) का अवकर<br>(A) cos (x + a)                                          | लज है:<br>(B) -cos (x + a)                                           | (C) –sec (x + a)                     | (D) इनमें से कोई नहीं |  |  |  |  |
|     | The derivative of si                                                             | n (x + a) is:                                                        |                                      |                       |  |  |  |  |
|     | (A) $\cos(x + a)$                                                                | (B) $-\cos(x + a)$                                                   | (C) $-$ sec (x + a)                  | (D) None of them      |  |  |  |  |
| 9.  | . यदि कुछ प्रेक्षणों का प्र                                                      | सरण 25 है, तो उसका म                                                 | ानक विचलन है                         |                       |  |  |  |  |
|     | (A) 2.5                                                                          | (B) 5                                                                | (C) √5                               | (D) इनमें से कोई नहीं |  |  |  |  |
|     | If the variance of a (A) 2.5                                                     | data is 25, then its stan<br>(B) 5                                   | dard deviation is:<br>(C) $\sqrt{5}$ | (D) None of these     |  |  |  |  |
| 10. | . किन्हीं दो घटनाओं  A                                                           | तथा B के लिए, यदि P(                                                 | (A∪ B) = P(A ∩ B), त                 | Ì                     |  |  |  |  |
|     | (A) P(A) < P(B)                                                                  | (B) $P(A) > P(B)$                                                    | (C) P(A) = P(B)                      | (D) इनमें से कोई नहीं |  |  |  |  |
|     | If $P(A \cup B) = P(A \cap B)$<br>(A) $P(A) < P(B)$                              | <ul><li>B) for any two events A</li><li>(B) P(A) &gt; P(B)</li></ul> | A and B, then<br>(C) $P(A) = P(B)$   | (D) None of these     |  |  |  |  |
| 11. | . (3x + 9) <sup>9</sup> के प्रसार में                                            | कुल पदों की संख्या ज्ञात                                             | कीजिये।                              |                       |  |  |  |  |

Find the number of terms in the expansion of  $(3x + 9)^9$ .

12. वृत्त  $x^2 + y^2 + 8x + 10y - 8 = 0$  का केंद्र तथा त्रिज्या ज्ञात कीजिए।

Find the centre and radius of the circle  $x^2 + y^2 + 8x + 10y - 8 = 0$ .

- 13.  $\lim_{x \to a} \frac{x^n a^n}{x a}$  का मान लिखिए Write the value of  $\lim_{x \to a} \frac{x^n - a^n}{x - a}$ .
- 14. निम्नलिखित आँकड़ों के लिए माध्यिका के सापेक्ष माध्य विचलन ज्ञात कीजिए: 3, 9, 5, 3, 12, 10, 18, 4, 7, 19, 21.

Find the mean deviation about the mean for the following data: 3, 9, 5, 3, 12, 10, 18, 4, 7, 19, 21.

15. मान लीजिए कि U = {1, 2, 3, 4, 5, 6}, A = {2, 3} और B = {3, 4, 5}, तो (AUB)' = .....

Let U =  $\{1, 2, 3, 4, 5, 6\}$ , A =  $\{2, 3\}$  and B =  $\{3, 4, 5\}$ , then (A U B)' = ....

16. cos (A - B), ..... के समान हैं।

cos (A - B) is equal to ......

17. यदि C(n, a) = C(n, b), तो या तो a = b या n = a + b | (सत्य / असत्य)

If C(n, a) = C(n, b), then either a = b or n = a + b. (True/ False)

18. एक पासा फेंका जाता है. मान लीजिए कि A, 2 का गुणज प्राप्त करने की घटना है और B, 3 का गुणज प्राप्त करने की घटना है। तब A और B परस्पर अपवर्जी घटनाएँ हैं। )सत्य / असत्य(

A die is rolled. Let A be the event of getting a multiple of 2 and B be the event of getting a multiple of 3. Then A and B are mutually exclusive events. (True/ False)

प्रश्न संख्या 19 और 20 अभिकथन और तर्क आधारित प्रश्न हैं, जिनमें से प्रत्येक प्रश्न 1 अंक का है। दो कथन

दिए गए हैं, एक को अभिकथन (A) और दूसरे को तर्क (R) अंकित किया गया है। इन प्रश्नो के सही उत्तर निचे दिए गए कोडो (A), (B), (C) और (D) में से चुनकर दीजिये।

- (A) अभिकथन (A) और तर्क (R) दोनों सही है और तर्क (R), अभिकथन (A) की सही व्याख्या है।
- (B) अभिकथन (A) और तर्क (R) दोनों सही है, परन्तु तर्क (R), अभिकथन (A) की सही व्याख्या *नहीं* करता है।
- (C) अभिकथन (A) सही है तथा तर्क (R) गलत है।
- (D) अभिकथन (A) गलत है तथा तर्क (R) सही है।

Question number 19 and 20 are Assertion and Reason based questions carrying 1 mark each. Two statements are given, one labelled Assertion (A) and the other labeled Reason (R). Select the correct answer from the codes (A), (B), (C) and (D) as given below.

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A)
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A)
- (C) Assertion (A) is true and Reason (R) is false.
- (D) Assertion (A) is false and Reason (R) is true.
- 19. अभिकथन (A): यदि (x+1, y-2) = (3, 1), तो x = 3 और y = 2

तर्क (R): दो क्रमित युग्म समान होते हैं यदि उनके संगत घटक समान हो।

**Assertion** (A): If (x+1, y-2) = (3, 1), then x = 3 and y = 2.

**Reason** (**R**) : Two ordered pairs are equal if their corresponding elements are equal.

20. अभिकथन (A): बिंदु (-5, 2, 0), XY तल पर स्थित है।

तर्क (R): XY तल में एक बिंदु P(x, y, z) के निर्देशांक (0, 0, z) हैं।

Assertion (A): The point (-5, 2, 0) lies on the XY plane.

**Reason** (**R**) : The coordinates of a point P(x, y, z) in XY plane are (0, 0, z).

### खंड– ब SECTION – B

### इस खंड में प्रत्येक प्रशन 2 अंक का है। This section comprises questions of 2 marks each.

21.यदि A = {3,5,7,9, 11 }, B = {7, 9, 11, 13}, C = {11, 13, 15} और D = {15.17}; तो (AUD) ∩ (BUC) ज्ञात कीजिए।

If A = {3,5,7,9, 11 }, B = {7, 9, 11, 13}, C = {11, 13, 15} and D = {15.17}; find (AUD)  $\cap$  (BUC)

22. Find the multiplicative inverse of 4 - 3i.

4 – 3i का गुणात्मक प्रतिलोम ज्ञात कीजिए।

#### अथवा / OR

<u>(3-2i)(2+3i)</u> (1+2i)(2-i) का संयुग्मी ज्ञात कीजिए।

Find the conjugate of  $\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$ 

23.  $\frac{5-2x}{3} \leq \frac{x}{6} - 5$  असमिका का हल ज्ञात कीजिए तथा संख्या रेखा पर आलेखित कीजिए।

Solve the inequality  $\frac{5-2x}{3} \le \frac{x}{6} - 5$  and show the graph of the solution on number line.

24. उस गुणोत्तर श्रेणी का 12वाँ पद ज्ञात कीजिए, जिसका 8वाँ पद 192 तथा सार्व अनुपात 2 है।

Find the 12<sup>th</sup> term of a G.P. whose 8<sup>th</sup> term is 192 and gthe common ratio is 2.

### 25. परवलय y<sup>2</sup> = 12x के नाभि के निर्देशांक, अक्ष, नियता का समीकरण और नाभिलंब जीवा की लंबाई ज्ञात कीजिए।

Find the coordinates of the focus, axis, the equation of directrix and the length of the latus rectum of the parabola  $y^2 = 12x$ .

Find the equation of the ellipse, whose length of the major axis is 20and foci are  $(0, \pm 5)$ .

### खंड– स SECTION – C

इस खंड में प्रत्येक प्रशन 3 अंक का है। This section comprises questions of 3 marks each.

26. (A ∪ B)' and A' ∪ B' में से प्रत्येक के लिए उपर्युक्त वेन आरेख खींचिए।

Draw appropriate Venn Diagram for  $(A \cup B)'$  and  $A' \cup B'$ .

27.  $\sqrt{9-x^2}$  वास्तविक फलन का प्रांत तथा परिसर ज्ञात कीजिए।

Find the domain and Range of the function  $\sqrt{9-x^2}$ .

28. 
$$\left(\frac{2}{x} - \frac{x}{2}\right)^5$$
; x ≠ 0 का प्रसार ज्ञात कीजिए।

Expand:  $\left(\frac{2}{x} - \frac{x}{2}\right)^5$ ;  $x \neq 0$ 

अथवा / OR

(98)⁵ की गणना कीजिए।

Compute  $(98)^5$ .

29. अनुक्रम 7, 77, 777, 7777, ..... के n पदों का योग ज्ञात कीजिय।

Find the sum of the sequence 7, 77, 777, 7777, ..... to n terms.

अथवा / OR

एक गुणोत्तर श्रेणी के तीन पदों का योगफल <sup>39</sup> हैं तथा उनका गुणनफल 1 है। पदों तथा सार्व अनुपात को ज्ञात कीजिए।

The sum of first three terms of a G.P. is  $\frac{39}{10}$  and their product is 1. Find the common ratio and the terms.

30. ऐसे बिंदुओं के समुच्चय का समीकरण ज्ञात कीजिए जो बिंदु (1, 2, 3) और (3,2,-1) से समदूरस्थ हैं।

Find the equation of the set of the points which are equidistant from the points (1, 2, 3) and (3, 2, -1)

31. एक प्रवेश परीक्षा को दो परीक्षणों के आधार पर श्रेणीबद्ध किया जाता है। किसी यादृच्छया चुने गए विद्यार्थी की पहले परीक्षण में उत्तीर्ण होने की प्रायकिता 0.8 है और दूसरे परीक्षण में उत्तीर्ण होने की प्रायिकता 0.7 है। दोनों में से कम से कम एक परीक्षण उत्तीर्ण करने की प्रायिकता 0.95 है। दोनों परीक्षणों को उत्तीर्ण करने की प्रायिकता क्या है?

In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing atleast one of them is 0.95. What is the probability of passing both?

#### खंड– द SECTION – D

इस खंड में प्रत्येक प्रशन 5 अंक का है। This section comprises questions of 5 marks each.

32. (i) सिद्ध कीजिए 
$$\frac{(\cos 7x + \cos 5x)}{(\sin 7x - \sin 5x)} = \cot x$$
 (2)

(ii) सिद्ध कीजिए sin x + sin 3x + sin 5x + sin 7x = 4cos x.cos 2x.sin 4x (3)

Prove that 
$$\frac{(\cos 7x + \cos 5x)}{(\sin 7x - \sin 5x)} = \cot x$$
(2)

Prove that  $\sin x + \sin 3x + \sin 5x + \sin 7x = 4\cos x \cdot \cos 2x \cdot \sin 4x$  (3)

33. बिंदुओं (3, 4) और (-1, 2) को मिलाने वाली रेखाखंड के लंब समद्विभाजक रेखा का समीकरण ज्ञात कीजिए।

Find the equation of the right bisector of the line segment joining the points (3, 4) and (-1, 2).

अथवा /OR

(-3,5) से होकर जाने वाली और बिंदु (2, 5) और (-3, 6) से जाने वाली रेखा पर लंब रेखा का समीकरण ज्ञात कीजिए।

Find the equation of the line passing through (-3, 5) and perpendicular to the line through the points (2, 5) and (-3, 6).

34. प्रथम सिद्धांत से tan x का अवकलज ज्ञात कीजिए।

Find the derivative of tan x from first principle.

#### अथवा /OR

मान लीजिए 
$$f(x) = \begin{cases} a + bx, & x < 1 \\ 4 & x = 1 \\ b - ax, & x > 1 \end{cases}$$
 और यदि  $\lim_{x \to 1} f(x) = f(1)$  तो  $a$  और  $b$  के संभव मान  $x > 1$  कैया हैं?

Suppose  $f(x) = \begin{cases} a + bx, & x < 1 \\ 4 & x = 1 \\ b - ax, & x > 1 \end{cases}$  and if  $\lim_{x \to 1} f(x) = f(1)$  what are possible values of a and b?

35. निम्नलिखित बंटन के लिए माध्य, प्रसरण व मानक विचलन ज्ञात कीजिए:

| वर्ग      | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 |
|-----------|-------|-------|-------|-------|-------|-------|--------|
| बारंबारता | 3     | 7     | 12    | 15    | 8     | 3     | 2      |

Calculate mean, variance and standard deviation for the following distribution.

| Classes   | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 |
|-----------|-------|-------|-------|-------|-------|-------|--------|
| Frequency | 3     | 7     | 12    | 15    | 8     | 3     | 2      |

खंड– इ SECTION – E

इस खंड में प्रत्येक प्रशन 4 अंक का है।

This section comprises questions of 4 marks each.

#### Case Study – 1

36. त्रिकोणमिति में संयुक्त कोण सूत्रों को प्रदर्शित करने के लिए, महेश और सिराज ने दो कोण 'A' और 'B' का चयन किया, जैसे कि A, B  $\in (0, \frac{\pi}{2})$  और sin A =  $\frac{3}{5}$ , cos B =  $\frac{9}{41}$ 

उपरोक्त जानकारी के आधार पर निम्नलिखित प्रश्नों के उत्तर दीजिए।

(i) sin B + cos A का मान ज्ञात कीजिए।

(ii) cos (A + B) का मान ज्ञात कीजिए।



(2)

(2)

To demonstrate the compound angle formulae in trigonometry, Mahesh and Siraj selected two angles 'A' and 'B' such that A,  $B \in (0, \frac{\pi}{2})$  and  $\sin A = \frac{3}{5}$ ,  $\cos B = \frac{9}{41}$ .

Based on the above information, answer the following questions.

- (i) Find the value of  $\sin B + \cos A$ . (2)
- (ii) Find the value of  $\cos (A + B)$ . (2)

एक विद्यालय का विद्यालय सभा प्रभारी, सभा के लिए कक्षाएं बुलाने के संकेत उत्पन्न करना चाहता

है। उसके पास 5 रंग के झंडे है अर्थात संकेत बनाने के लिए पीला, लाल, नारंगी, हरा और नीला। *उपरोक्त जानकारी के आधार पर निम्नलिखित प्रश्नों के उत्तर दीजिए:* 

- (i) सभी 5 झंडों का उपयोग करके कितने अलग-अलग संकेत उत्पन्न किए जा सकते हैं? (1)
- (ii) सभा के लिए मध्य भाग को बुलाने के लिए, उसे (केवल 2 झंडों का उपयोग करके अलग-अलग संकेत उत्पन्न करने होंगे। ऐसी कितनी व्यवस्थाएँ संभव हैं?
- (iii)वरिष्ठ वर्ग को सभा में बुलाने के लिए उसे 4 झंडों का प्रयोग कर अलग-अलग संकेत उत्पन्न करने होंगे। ऐसी कितनी व्यवस्थाएँ संभव हैं? (1<sup>1</sup>/<sub>2</sub>)



The assembly incharge of a school wants to generate signals for calling classes for the assembly. He has got 5 coloured flags viz., Yellow, Red, Orange, Green and Blue to make signals.

Based on the above information answer the following questions:

(i) How many different signals can be generated by using all 5 flags? (1) (ii) To call the middle section for the assembly, he has to generate different signals by using 2 flags only. How many such arrangements are possible?  $(1\frac{1}{2})$ (iii)To call the senior section for the assembly, he has to generate different signals by using 4 flags only. How many such arrangements are possible?  $(1\frac{1}{2})$ 

### Case Study – 3

37. तेज़ तूफ़ान के कारण एक बिजली का तार टूट कर ज़मीन पर गिर गया और नीचे दिखाए अनुसार एक गणितीय आकृति का आकार लेते हुए मुड़ गया है।

उपरोक्त जानकारी के आधार पर, निम्नलिखित प्रश्नों के उत्तर दें:

(i) उस आकृति का नाम जिसमें तार मुड़ा हुआ है।

- (a) वृत्त(b) परवलय(c) दीर्घवृत्त(d) अतिपरवलय(1)(ii)इस प्रकार बनी आकृति का समीकरण है:
- $(a)\frac{x^2}{9} + \frac{y^2}{4} = 1 (b)\frac{x^2}{4} + \frac{y^2}{9} = 1 \qquad (c)\frac{x^2}{9} \frac{y^2}{4} = 1 \qquad (d) \ \text{s} t \ \text{h} \ \text{s} t \ \text{h} \ \text{s} \ \text{h} \ \text{s} \ \text{h} \ \text{s} \ \text{s} \ \text{h} \ \text{s} \ \text{h} \ \text{s} \ \text{h} \ \text{s} \ \text{s} \ \text{h} \ \text{s} \$

(iii) इस प्रकार बनी आकृति की उत्केंद्रता है:  
(a) 
$$\frac{2}{3}$$
 (b)  $\frac{\sqrt{x}}{\sqrt{3}}$  (c)  $\frac{\sqrt{5}}{3}$  (d)  $\frac{\sqrt{5}}{4}$  (1)  
(iv) इस प्रकार बनी आकृति के नाभिलम्ब जीवा की लंबाई है:  
(a) 9 (b)  $\frac{8}{3}$  (c) -4 (d) इनमें से कोई नहीं (1)  
 $\sqrt[4]{(-3,0)}$  (c) -4 (d)  $\sqrt[4]{(-1,-2)}$  (0, 3)  $\times$ 

Due to heavy storm, an electric wire got broken and fell on the ground and is bent taking a shape of a mathematical figure as shown below.

Based on the above information, answer the following questions.

(i) Name of the shape in which wire is bent. (a) circle (b) parabola (c) ellipse (d) hyperbola (1) (ii) The equation of the shape so formed is: (a)  $x^2 + y^2 = 1$  (b)  $x^2 + y^2 = 1$  (c)  $x^2 - y^2 = 1$  (d) none of these (1)

(a) 
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
 (b)  $\frac{x^2}{4} + \frac{y^2}{9} = 1$  (c)  $\frac{x^2}{9} - \frac{y^2}{4} = 1$  (d) none of these (1)  
(iii) The eccentricity of the shape so formed is:

(1)

(a)  $\frac{2}{3}$  (b)  $\frac{\sqrt{x}}{\sqrt{3}}$  (c)  $\frac{\sqrt{5}}{3}$  (d)  $\frac{\sqrt{5}}{4}$ 

(iv) The length of the latus rectum of the shape so formed is:

(a) 9 (b)  $\frac{8}{3}$  (c) -4 (d) none of these (1)

# **BOARD OF SCHOOL EDUCATION HARYANA Practice Paper -XI**

(2024-25)

# **Marking Scheme**

## MATHEMATICS

**CODE: 835** 

| ⇒ Impo      | rtant Instructions: • All answers provided in the Marking scheme are SUGGESTIV<br>• Examiners are requested to accept all possible alternative corr |       |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|             | SECTION – A (1Mark × 20Q)                                                                                                                           |       |
| Q. No.      | EXPECTED ANSWERS                                                                                                                                    | Marks |
| Question 1. | If $X = \{a, b, c, d, e\}$ and $Y = \{d, e, f, g\}$ then $(X-Y) \cap (X+Y)$ is                                                                      |       |
| Solution:   | (B) $\{a, b, c\}$                                                                                                                                   | 1     |
| Question 2  | If A = {a, d}, B = {b, c, e}, C = {b, c, f}, then A × (B – C) is                                                                                    |       |
| Solution:   | (A) $\{(a, e), (d, e)\}$                                                                                                                            | 1     |
| Question 3  | 75° in radian measure is                                                                                                                            |       |
| Solution:   | (B) 5π/12                                                                                                                                           | 1     |
| Question 4. | $a + ib$ form of $i^{-35}$ is :                                                                                                                     |       |
| Solution:   | (A) i                                                                                                                                               | 1     |
| Question 5. | If $\frac{1}{8!} + \frac{1}{9!} = \frac{X}{10!}$ then value of x is:                                                                                |       |
| Solution:   | (A) 100                                                                                                                                             | 1     |
| Question 6. | The G.M. between 1 and 64 is :                                                                                                                      |       |
| Solution:   | (C) 8                                                                                                                                               | 1     |
| Question 7. | The value of x for which the numbers $-3/11$ , x, $-11/3$ are in G.P                                                                                |       |
| Solution:   | (B) ±1                                                                                                                                              | 1     |
| Question 8. | The derivative of $sin (x + a)$ is:                                                                                                                 |       |
| Solution:   | (A) $\cos(x+a)$                                                                                                                                     | 1     |

| Question 9. | If the variance of a data is 25, then its standard deviation is:                                                                                                              |   |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Solution:   | (B) 5                                                                                                                                                                         | 1 |
| Question10. | If $P(A \cup B) = P(A \cap B)$ for any two events A and B, then                                                                                                               |   |
| Solution:   | (C) P(A) = P(B)                                                                                                                                                               | 1 |
| Question11. | Find the number of terms in the expansion of $(3x + 9)^9$ .                                                                                                                   |   |
| Solution:   | 9 + 1 = 10                                                                                                                                                                    | 1 |
| Question12. | Find the centre and radius of the circle $x^2 + y^2 + 8x + 10y - 8 = 0$ .                                                                                                     |   |
| Solution:   | Centre (-4,-5) and Radius is 7                                                                                                                                                | 1 |
| Question13. | Write the value of $\lim_{x \to a} \frac{x^n - a^n}{x - a}$ .                                                                                                                 |   |
| Solution:   | $\lim_{x \to a} \frac{x^n - a^n}{x - a} = n \cdot a^{n-1}$                                                                                                                    | 1 |
| Question14. | Find the mean deviation about the mean for the following data: 6, 7, 10, 12, 13, 4, 8, 12                                                                                     |   |
| Solution:   | Mean of the given data is $\overline{x} = \frac{6+7+10+12+13+4+8+12}{8} = 9$                                                                                                  | 1 |
|             | Deviations from mean ( $x_i$ - $\bar{x}$ ) are -3, -2, 1, 3, 4, -5, -1, 3                                                                                                     |   |
|             | Absolute deviations i.e. $ x_i - \bar{x} $ are 3, 2, 1, 3, 4, 5, 1, 3                                                                                                         |   |
|             | Mean Deviation = $\frac{\sum_{i=1}^{8}  x_i - \bar{x} }{n} = \frac{3+2+1+3+4+5+1+3}{8} = \frac{22}{8} = 2.75$                                                                 |   |
| Question15. | Let U = $\{1, 2, 3, 4, 5, 6\}$ , A = $\{2, 3\}$ and B = $\{3, 4, 5\}$ , then (A U B)' =                                                                                       |   |
| Solution:   | $(A \cup B)' = \{2, 3, 4, 5\}' = \{1\}$                                                                                                                                       | 1 |
| Question16. | cos (A - B) is equal to                                                                                                                                                       |   |
| Solution:   | $\cos (A - B) = \cos A. \cos B + \sin A. \sin B$                                                                                                                              | 1 |
| Question17. | If $C(n, a) = C(n, b)$ , then either $a = b$ or $n = a + b$ . (True/ False)                                                                                                   |   |
| Solution:   | True                                                                                                                                                                          | 1 |
| Question18. | A die is rolled. Let A be the event of getting a multiple of 2 and B be<br>the event of getting a multiple of 3. Then A and B are mutually<br>exclusive events. (True/ False) |   |

| Solution:         | False                                                                                                                                                                                                          | 1 |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Question19.       | Assertion (A): If $(x+1, y-2) = (3, 1)$ , then $x = 3$ and $y = 2$ .<br>Reason (R) : Two ordered pairs are equal if their corresponding elements are equal.                                                    |   |
| Solution:         | (D) Assertion (A) is false and Reason (R) is true.                                                                                                                                                             | 1 |
| Question20.       | Assertion (A): The point (-5, 2, 0) lies on the XY plane.                                                                                                                                                      |   |
|                   | <b>Reason(R):</b> The coordinates of a point $P(x, y, z)$ in XY plane are $(0, 0, z)$ .                                                                                                                        |   |
| Solution:         | (C) Assertion (A) is true and Reason (R) is false.                                                                                                                                                             | 1 |
|                   | SECTION – B (2Marks × 5Q)                                                                                                                                                                                      |   |
| Question21.       | If A = {3,5,7,9, 11 }, B = {7, 9, 11, 13}, C = {11, 13, 15} and D = {15.17}; find (AUD) $\cap$ (BUC)                                                                                                           |   |
| Solution:         | A U D = {3, 5, 7, 9, 11, 13 }                                                                                                                                                                                  |   |
|                   | B U C = {7, 9, 11, 13, 15 }                                                                                                                                                                                    | 1 |
|                   | $\therefore$ (AUD) $\cap$ (BUC) = {7, 9, 11, 13}                                                                                                                                                               | 1 |
| Question22.       | Find the multiplicative inverse of $4 - 3i$ .                                                                                                                                                                  |   |
| Solution:         | Multiplicative Inverse of $4 - 3i = \frac{1}{4 - 3i}$                                                                                                                                                          |   |
|                   | $\Rightarrow M.I. = \frac{1}{4-3i} \times \frac{4+3i}{4+3i}$ $\Rightarrow = \frac{4+3i}{(4)^2 - (3i)^2}$ $\Rightarrow = \frac{4+3i}{16-9i^2}$ $\Rightarrow = \frac{4+3i}{16+9} = \frac{4}{25} + \frac{3i}{25}$ | 1 |
| OR<br>Question22. | Find the conjugate of $\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$                                                                                                                                                       |   |
| Solution:         | Given $\frac{(3-2i)(2+3i)}{(1+2i)(2-i)} = \frac{6+9i-4i-6i^2}{2-i+4i-2i^2}$                                                                                                                                    |   |
|                   | $\Rightarrow = \frac{6+5i+6}{2+3i+2}$ $\Rightarrow = \frac{12+5i}{4+3i}$ $\Rightarrow = \frac{12+5i}{4+3i} \times \frac{4-3i}{4-3i}$                                                                           |   |

| $48 - 36i + 20i - 15i^2 - 48 - 16i + 15 - 63$ 16i                                                                                                                         | $1\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{1}{16} - \frac{12i}{16} + \frac{12i}{9i^2} - \frac{16}{16} + 9 - \frac{25}{25} - \frac{125}{25}$                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| :. Conjugate of $\frac{(3-2i)(2+3i)}{(1+2i)(2-i)} = \frac{63}{25} + \frac{16i}{25}$                                                                                       | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Solve the inequality $\frac{5-2x}{3} \le \frac{x}{6} - 5$ and show the graph of the solution                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| We have $\frac{5-2x}{3} \le \frac{x}{6} - 5$                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\Rightarrow  \frac{5-2x}{3} \le \frac{x-30}{6}$                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Multiply on both side by 6, we have                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\Rightarrow 2(5-2x) \le x-30$                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| —                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\Rightarrow 5x \ge 40$                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\Rightarrow x \ge 8$                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Graph of the solution on number line                                                                                                                                      | $1\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -5-4-3-2-1 0 12345678910                                                                                                                                                  | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Find the 12 <sup>th</sup> term of a G.P. whose 8 <sup>th</sup> term is 192 and the common ratio s 2.                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| We have, $a_8 = 192$ $r = 2$                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\Rightarrow ar^7 = 192$                                                                                                                                                  | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                           | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 128 2                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\therefore a_{12} = a.r^{11} = \frac{3}{2}.(2)^{11}$                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $a_{12} = 3. (2)^{10} = 3. (1024) = 3072$                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Find the coordinates of the focus, axis, the equation of directrix and the ength of the latus rectum of the parabola $y^2 = 12x$ .                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Find the coordinates of the focus, axis, the equation of directrix and the ength of the latus rectum of the parabola $y^2 = 12x$ .<br>Equation of parabola is $y^2 = 12x$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                           | Solve the inequality $\frac{5-2x}{3} \le \frac{x}{6} - 5$ and show the graph of the solution<br>on number line.<br>We have $\frac{5-2x}{3} \le \frac{x}{6} - 5$<br>$\Rightarrow \frac{5-2x}{3} \le \frac{x-30}{6}$<br>Aultiply on both side by 6, we have<br>$\Rightarrow 2(5-2x) \le x - 30$<br>$\Rightarrow 10 - 4x \le x - 30$<br>$\Rightarrow -5x \le -40$<br>$\Rightarrow 5x \ge 40$<br>$\Rightarrow x \ge 8$<br>Graph of the solution on number line<br><b>Contract of the solution on number line</b><br>Find the 12 <sup>th</sup> term of a G.P. whose 8 <sup>th</sup> term is 192 and the common ratio $s 2$ .<br>We have, $as = 192$ $r = 2$<br>$\Rightarrow ar^7 = 192$<br>$\Rightarrow a(2)^7 = 192$<br>$\Rightarrow a = \frac{192}{128} = \frac{3}{2}$<br>$\therefore a_{12} = a.r^{11} = \frac{3}{2}. (2)^{11}$ |

|                   | The coefficient of x is $+$ ve so it is a right handed parabola.                                   |                |               |
|-------------------|----------------------------------------------------------------------------------------------------|----------------|---------------|
|                   | This parabola is symmetrical about x-axis as it involves $y^2$                                     | $\frac{1}{2}$  |               |
|                   | Thus the focus is $(3, 0)$                                                                         | $\frac{1}{2}$  |               |
|                   | Equation of directrix $x = -3$                                                                     | $\frac{1}{2}$  |               |
|                   | Length of latus rectum is $4a = 4 \times 3 = 12$                                                   |                | $\frac{1}{2}$ |
| OR<br>Question25. | Find the equation of the ellipse, whose length of the major axis is 20 and foci are $(0, \pm 5)$ . |                |               |
| Solution:         | Since the foci are on y-axis, the major axis is along the y-axis.                                  |                |               |
|                   | So equation of ellipse is of the form $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$                      |                |               |
|                   | Given that a = semi major axis $=20/2 = 10$                                                        | 1              |               |
|                   | And the relation $c^2 = a^2 - b^2$ , where $c = 5$ from foci $(0, \pm 5)$ gives                    |                |               |
|                   | $5^2 = 10^2 - b^2$ i.e. $b^2 = 75$                                                                 |                |               |
|                   | Therefore, the equation of the ellipse is $\frac{x^2}{75} + \frac{y^2}{100} = 1$                   | 1              |               |
|                   | SECTION – C (3Marks × 6Q)                                                                          |                |               |
| Question26.       | Draw appropriate Venn Diagram for $(A \cup B)$ ' and A' $\cup$ B'.                                 |                |               |
| Solution:         | Venn Diagram of $(A \cup B)$ '                                                                     |                |               |
|                   | U A B                                                                                              | $1\frac{1}{2}$ |               |
|                   | Venn Diagram of A' $\cup$ B'                                                                       |                |               |
|                   | U A B                                                                                              | $1\frac{1}{2}$ |               |

| Question27. | Find the domain and Range of the function $\sqrt{9 - x^2}$ .                                                                                                                                                                                                                    |                |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Solution:   | Here $y = \sqrt{9 - x^2}$                                                                                                                                                                                                                                                       |                |
|             | y will have real values if $9 - x^2 \ge 0$                                                                                                                                                                                                                                      |                |
|             | $\Rightarrow x^2 - 9 \le 0$<br>$\Rightarrow (x-3) (x+3) \le 0$                                                                                                                                                                                                                  |                |
|             | $\Rightarrow (x-3)(x+3) \le 0$<br>$\Rightarrow -3 \le x \le 3  \Rightarrow x \in [-3,3]$                                                                                                                                                                                        | $1\frac{1}{2}$ |
|             | Domain = [-3, 3]                                                                                                                                                                                                                                                                |                |
|             | Also, $y^2 = 9 - x^2$                                                                                                                                                                                                                                                           |                |
|             | $\Rightarrow x^2 = 9 - y^2$                                                                                                                                                                                                                                                     |                |
|             | $\Rightarrow x = \pm \sqrt{9 - y^2}$<br>Clearly x is defined when 9 - y <sup>2</sup> \ge 0 i.e., when y <sup>2</sup> - 9 \le 0                                                                                                                                                  |                |
|             | $\Rightarrow (y-3)(y+3) \le 0$                                                                                                                                                                                                                                                  |                |
|             | $\Rightarrow -3 \le y \le 3 \Rightarrow y \in [-3, 3]$                                                                                                                                                                                                                          |                |
|             | But $y = \sqrt{9 - x^2} \ge 0$ for all $x \in [-3, 3]$ i.e., y attains only non-negative values.                                                                                                                                                                                | 1              |
|             | $\therefore y \in [0, 3] \text{ for all } x \in [-3, 3]$                                                                                                                                                                                                                        | $1\frac{1}{2}$ |
|             | $\therefore$ Range = [0, 3].                                                                                                                                                                                                                                                    |                |
| Question28. | Expand: $\left(\frac{2}{x} - \frac{x}{2}\right)^5$ ; $x \neq 0$                                                                                                                                                                                                                 |                |
| Solution:   | $\left(\frac{2}{x} - \frac{x}{2}\right)^{5} = {}^{5}C_{0}\left(\frac{2}{x}\right)^{5}\left(\frac{-x}{2}\right)^{0} + {}^{5}C_{1}\left(\frac{2}{x}\right)^{4}\left(\frac{-x}{2}\right)^{1} + {}^{5}C_{2}\left(\frac{2}{x}\right)^{3}\left(\frac{-x}{2}\right)^{2} + {}^{5}C_{3}$ |                |
|             | $\left(\frac{2}{x}\right)^2 \left(\frac{-x}{2}\right)^3 + {}^5\mathrm{C}_4 \left(\frac{2}{x}\right)^1 \left(\frac{-x}{2}\right)^4 + {}^5\mathrm{C}_5 \left(\frac{2}{x}\right)^0 \left(\frac{-x}{2}\right)^5$                                                                    | $1\frac{1}{2}$ |
|             | $=\frac{32}{x^5} + 5.\left(\frac{16}{x^4}\right)\left(\frac{-x}{2}\right) + 10\left(\frac{8}{x^3}\right)\left(\frac{x^2}{4}\right) + 10\left(\frac{4}{x^2}\right)\left(\frac{-x^3}{8}\right) + 5\left(\frac{2}{x}\right)\left(\frac{x^4}{16}\right) - \frac{x^5}{32}$           |                |
|             | $=\frac{32}{x^5} - \frac{40}{x^3} + \frac{20}{x} - 5x + \frac{5x^3}{8} - \frac{x^5}{32}$                                                                                                                                                                                        | $1\frac{1}{2}$ |
| OR          | Compute (98) <sup>5</sup> .                                                                                                                                                                                                                                                     |                |
| Question28. |                                                                                                                                                                                                                                                                                 |                |
| Solution:   | $(98)^5 = (100 - 2)^5$                                                                                                                                                                                                                                                          |                |
|             | $= {}^{5}C_{0} (100){}^{5}(2){}^{0}+{}^{5}C_{1} (100){}^{4}(2){}^{1}+{}^{5}C_{2} (100){}^{3}(2){}^{2}+{}^{5}C_{3} (100){}^{2}(2){}^{3}$<br>+ ${}^{5}C_{4} (100){}^{1}(2){}^{4}+{}^{5}C_{5} (100){}^{0}(2){}^{5}$                                                                | 2              |
|             | = 1000000000 + 100000000 + 40000000 + 80000 + 8000 + 32<br>= 11040808032                                                                                                                                                                                                        | 1              |

| Question29.     | Find the sum of the sequence 7, 77, 777, 7777, to n terms.                                                                 |                |
|-----------------|----------------------------------------------------------------------------------------------------------------------------|----------------|
| Solution:       | This is not a GP., however, we can relate it to a GP. by writing the terms as $S_n = 7+77+777 + 7777 +$ to n terms         |                |
|                 | $=\frac{7}{9}[9+99+9999+9999+$ to n term]                                                                                  | 1              |
|                 | $=\frac{7}{9}[(10^{1} - 1) + (10^{2} - 1) + (10^{3} - 1) + (10^{4} - 1) +n \text{ terms}]$                                 | 1              |
|                 | $=\frac{7}{9}\left[(10+10^2+10^3+n \text{ terms}) - (1+1+1+n \text{ terms})\right]$                                        |                |
|                 | It is a G.P. where $a = 10$ and $r = 10 > 1$                                                                               | 1              |
|                 | $\therefore S_n = \frac{a(r^n - 1)}{r - 1}$                                                                                |                |
|                 | $= \frac{7}{9} \left[ \frac{10(10^{n} - 1)}{10 - 1} - n \right] = \frac{7}{9} \left[ \frac{10(10^{n} - 1)}{9} - n \right]$ | 1              |
| OR<br>On the CO | The sum of first three terms of a G.P. is $\frac{39}{10}$ and their product is 1. Find                                     |                |
| Question 29     | the common ratio and the terms.                                                                                            |                |
| Solution:       | Let three terms in G.P. are $\frac{a}{r}$ , a, ar                                                                          |                |
|                 | $\therefore  \frac{a}{r} \times a \times ar = 1 \implies a^3 = 1 \implies a = 1$                                           | 1              |
|                 | $\therefore$ three terms now are $\frac{1}{r}$ , 1, r                                                                      |                |
|                 | A.T.Q. $\frac{1}{r} + 1 + r = \frac{39}{10}$                                                                               | $\frac{1}{2}$  |
|                 | $=> \qquad \frac{1+r+r^2}{r} = \frac{39}{10}$                                                                              |                |
|                 | => 10r + 10r + 10r <sup>2</sup> = 39r                                                                                      |                |
|                 | => 10r <sup>2</sup> - 29r +10 = 0                                                                                          |                |
|                 | $=> 10r^2 - 25r - 4r + 10 = 0$                                                                                             |                |
|                 | => (10r - 2)(r - 5) = 0                                                                                                    |                |
|                 | $=>$ $r = \frac{1}{5} \text{ or } 5$                                                                                       |                |
|                 | : if common ratio $r = \frac{1}{5}$ , term are 5, 1, $\frac{1}{5}$                                                         | $1\frac{1}{2}$ |
|                 | if common ratio $r = 5$ , terms are $\frac{1}{5}$ , 1, 5                                                                   |                |

| Question30. | Find the equation of the set of the points which are equidistant from the points $(1, 2, 3)$ and $(3, 2, -1)$                                                                                                                                                                                                         |               |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Solution:   | Let $P(x, y, z)$ be any point which is equidistant from the points A(1, 2, 3) and B(3, 2, -1).                                                                                                                                                                                                                        |               |
|             | $\therefore$ PA = PB                                                                                                                                                                                                                                                                                                  |               |
|             | $\Rightarrow PA^{2} = PB^{2}$<br>$\Rightarrow (x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} = (x - 3)^{2} + (y - 2)^{2} + (z + 1)^{2}$<br>$\Rightarrow x^{2} + 1 - 2x + y^{2} + 4 - 4y + z^{2} + 9 - 6z = x^{2} + 9 - 6x + y^{2} + 4 - 4y + z^{2} + 1 + 2z$                                                                 | 1             |
|             | $\Rightarrow -2x - 6z = -6x + 2z$<br>$\Rightarrow 4x - 8z = 0$<br>$\Rightarrow x - 2z = 0$                                                                                                                                                                                                                            | 2             |
| Question31. | In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing atleast one of them is 0.95. What is the probability of passing both? |               |
| Solution:   |                                                                                                                                                                                                                                                                                                                       |               |
|             | Let $P(A)$ be the probability of passing the first exam => $P(A) = 0.8$                                                                                                                                                                                                                                               | $\frac{1}{2}$ |
|             | Let P(B) be the probability of passing the first exam $=> P(B) = 0.7$                                                                                                                                                                                                                                                 | $\frac{1}{2}$ |
|             | : Probability of passing atleast one of them = $P(A \cup B) = 0.95$                                                                                                                                                                                                                                                   | $\frac{1}{2}$ |
|             | $\therefore$ Probability of passing both = P(A $\cap$ B)                                                                                                                                                                                                                                                              |               |
|             | We know, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$                                                                                                                                                                                                                                                                    | $\frac{1}{2}$ |
|             | $0.95 = 0.8 + 0.7 - P(A \cap B)$                                                                                                                                                                                                                                                                                      |               |
|             | $P(A \cap B) = 1.5 - 0.95 = 0.55$                                                                                                                                                                                                                                                                                     | 1             |
|             | :. Probability of passing both = $P(A \cap B) = 0.55$                                                                                                                                                                                                                                                                 | *             |
|             |                                                                                                                                                                                                                                                                                                                       |               |
|             |                                                                                                                                                                                                                                                                                                                       |               |

SECTION - D (5Marks × 4Q)Question32.(i) Prove that: 
$$\frac{(\cos 7x + \cos 5x)}{(\sin 7x - \sin 5x)} = \cot x$$
  
(ii) Prove that:  $\sin x + \sin 3x + \sin 5x + \sin 7x = 4\cos x \cdot \cos 2x \cdot \sin 4x$ Solution: (i) $\frac{(\cos 7x + \cos 5x)}{(\sin 7x - \sin 5x)} = \cot x$   
 $\frac{(\sin 7x - \sin 5x)}{(\sin 7x - \sin 5x)} = \cot x$ Using  $\cos C + \cos D = 2\cos \left(\frac{C+D}{2}\right) \cdot \cos \left(\frac{C-D}{2}\right)$   
and  $\sin C - \sin D = 2\cos \left(\frac{C+D}{2}\right) \cdot \sin \left(\frac{C-D}{2}\right)$ , we have $\Rightarrow = \frac{2\cos \left(\frac{7x + 5x}{2}\right) \cos \left(\frac{7x - 5x}{2}\right)}{2\cos \left(\frac{7x + 5x}{2}\right) \sin \left(\frac{7x - 5x}{2}\right)}$  $\Rightarrow = 2\cos 6x \cdot \cos x$   
 $2\cos 6x \cdot \sin x = \frac{\cos x}{\sin x} = \cot x$   
 $\Rightarrow L.H.S. = 8in x + \sin 3x + \sin 5x + \sin 7x$   
 $=> = (\sin 7x + \sin x) + (\sin 5x + \sin 3x)$  [rearranging]  
Using  $\sin C + \sin D = 2\sin \left(\frac{C+D}{2}\right) \cdot \cos \left(\frac{C-D}{2}\right)$ We have, $= \left[2\sin \left(\frac{7x + x}{2}\right) \cos \left(\frac{7x - x}{2}\right)\right] + \left[2\sin \left(\frac{5x + 3x}{2}\right) \cdot \cos \left(\frac{5x - 3x}{2}\right)\right]$   
 $= 2\sin 4x (\cos 3x + \cos x)$   
Using  $\cos C + \cos D = 2\cos \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$ We have, $= 2\sin 4x \left[2\cos 2x \cdot \cos x\right]$   
 $= 2\sin 4x (\cos 2x - \cos x)$   
 $= 4\sin 4x \cdot \cos 2x \cos x$   
 $= 2\sin 4x \left[2\cos 2x \cdot \cos x\right]$ Using  $\cos C + \cos D = 2\cos \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$ We have, $= 2\sin 4x \left[2\cos 2x \cdot \cos x\right]$   
 $= 4\sin 4x \cdot \cos 2x \cos x$   
 $= R.H.S.$ 

| Find the equation of the right bisector of the line segment joining the $(2, 4)$ and $(1, 2)$                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Let the given points be A $(3, 4)$ and B $(-1, 2)$ .                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Let M be the midpoint of AB.                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| :. Coordinates of M = $(\frac{3-1}{2}, \frac{4+2}{2}) = (1, 3)$                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| And, slope of AB = $\frac{2-4}{-1-3} = \frac{1}{2}$                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Let m be the slope of the right bisector of the line joining the points (3, 4) and (-1, 2).                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| $\therefore$ m × Slope of AB = - 1                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| $m \times \frac{1}{2} = -1$                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| $\Rightarrow$ m = -2                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| So, the equation of the line that passes through M $(1, 3)$ and has slope -2 is                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| y - 3 = -2(x - 1)                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| $\Rightarrow 2x + y - 5 = 0$                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Hence, the equation of the right bisector of the line segment joining the points (3, 4) and (-1, 2) is $2x + y - 5 = 0$    | $1\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Find the equation of the line passing through (-3, 5) and perpendicular to the line through the points (2, 5) and (-3, 6). |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Slope of the line passing through the points $A(2, 5)$ and $B(-3, 6)$                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| $m_1 = \frac{y_2 - y_1}{x_2 - x_1}$                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| $m_1 = \frac{6-5}{-3-2} = \frac{1}{-5}$                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| $m_1 = -\frac{1}{5}$                                                                                                       | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                                                                            | points (3, 4) and (-1, 2).<br>Let the given points be A (3, 4) and B (-1, 2).<br>Let M be the midpoint of AB.<br>$\therefore$ Coordinates of M = $(\frac{3-1}{2}, \frac{4+2}{2}) = (1, 3)$<br>And, slope of AB = $\frac{2-4}{-1-3} = \frac{1}{2}$<br>Let m be the slope of the right bisector of the line joining the points (3, 4) and (-1, 2).<br>$\therefore$ m × Slope of AB = -1<br>m × $\frac{1}{2} = -1$<br>$\Rightarrow$ m = -2<br>So, the equation of the line that passes through M (1, 3) and has slope<br>-2 is<br>y - 3 = -2(x - 1)<br>$\Rightarrow$ 2x + y - 5 = 0<br>Hence, the equation of the right bisector of the line segment joining the<br>points (3, 4) and (-1, 2) is 2x + y - 5 = 0<br>Find the equation of the line passing through (-3, 5) and perpendicular<br>to the line through the points (2, 5) and (-3, 6).<br>Slope of the line passing through the points A(2. 5) and B(-3, 6)<br>m <sub>1</sub> = $\frac{y_2 - y_1}{x_2 - x_1}$<br>m <sub>1</sub> = $\frac{6-5}{-3-2} = \frac{1}{-5}$ |  |  |



|                   | $= \lim_{h \to 0} \frac{1}{h} \left[ \frac{\sin(h)}{\cos(x+h)\cos(x)} \right]$                                                                  |                |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|
|                   | $= \lim_{h \to 0} \frac{\sin(h)}{h} \times \lim_{h \to 0} \left[ \frac{1}{\cos(x+h)\cos(x)} \right]$                                            |                |  |  |  |
|                   | $=1 \cdot \left[\frac{1}{\cos^2 x}\right]$                                                                                                      | 2              |  |  |  |
|                   | $= \sec^2 x$                                                                                                                                    | _              |  |  |  |
| OR<br>Question34. | Suppose $f(x) = \begin{cases} a + bx, & x < 1 \\ 4 & x = 1 \\ b - ax, & x > 1 \end{cases}$ and if $\lim_{x \to 1} f(x) = f(1)$ what are $x > 1$ |                |  |  |  |
| Solution:         | Here, limit exist at $x \rightarrow 1$                                                                                                          |                |  |  |  |
|                   | i.e., $LHL = RHL = f(1) = 4$ (1)                                                                                                                |                |  |  |  |
|                   | LHL at $x \rightarrow 1$                                                                                                                        |                |  |  |  |
|                   | $=\lim_{x\to 1^-}f(x)$                                                                                                                          |                |  |  |  |
|                   | $=\lim_{h\to 0}f(1-h)$                                                                                                                          |                |  |  |  |
|                   | $= \lim_{h \to 0} [a + b(1 - h)]$                                                                                                               |                |  |  |  |
|                   | = a + b (1-0)                                                                                                                                   |                |  |  |  |
|                   | = a + b(2)                                                                                                                                      | $1\frac{1}{2}$ |  |  |  |
|                   | RHL at $x \rightarrow 1$                                                                                                                        |                |  |  |  |
|                   | $= \lim_{x \to 1^+} f(x)$                                                                                                                       |                |  |  |  |
|                   |                                                                                                                                                 |                |  |  |  |
|                   | $= \lim_{h \to 0} f(1+h)$                                                                                                                       |                |  |  |  |
|                   | $=\lim_{h\to 0}[b-a(1+h)]$                                                                                                                      |                |  |  |  |
|                   | = b - a (1 + 0)                                                                                                                                 | 1 <sup>1</sup> |  |  |  |
|                   | $= b - a \qquad(3)$                                                                                                                             | $1\frac{1}{2}$ |  |  |  |
|                   |                                                                                                                                                 |                |  |  |  |

|             | From (1) an               | d (2)               |       |              |            |                                            |                                  |                        |    |    |
|-------------|---------------------------|---------------------|-------|--------------|------------|--------------------------------------------|----------------------------------|------------------------|----|----|
|             | a + b = 4                 |                     |       |              |            |                                            |                                  |                        |    |    |
|             | From (1) an               | rom (1) and (3)     |       |              |            |                                            |                                  |                        |    |    |
|             | b - a = 4                 |                     |       |              |            |                                            |                                  |                        |    | 1  |
|             | Adding both               | n a + b +           | b - a | = 4 + 4      |            |                                            |                                  |                        |    | 1  |
|             | 2b = 8                    |                     |       |              |            |                                            |                                  |                        |    |    |
|             | b = 4                     |                     |       |              |            |                                            |                                  |                        |    |    |
|             | Also,                     |                     |       |              |            |                                            |                                  |                        |    |    |
|             | a + b = 4                 |                     |       |              |            |                                            |                                  |                        |    |    |
|             | a + b = 1<br>a + 4 = 4    |                     |       |              |            |                                            |                                  |                        |    |    |
|             |                           |                     |       |              |            |                                            |                                  |                        |    | 1  |
| 0           | a = 0                     |                     |       |              |            |                                            |                                  |                        |    |    |
| Question35. | Calculate m distribution. |                     | ance  | and standa   | rd devi    | ation                                      | for the fol                      | lowing                 |    |    |
|             | Classes                   | 30-40               | 40-5  | 50 50-60     | 60-70      | 70-8                                       | 0 80-90                          | 90-100                 |    |    |
|             | Frequency                 | 3                   | 7     | 12           | 15         | 8                                          | 3                                | 2                      |    |    |
| Solution:   | From the give             | ven data,           | we c  | construct th | e follov   | wing t                                     | able.                            |                        |    |    |
|             | Class                     | Frequency Midpoint  |       | fixi (xi - x |            | $(\mathbf{x}_i - \overline{\mathbf{x}})^2$ | f <sub>i</sub> (x <sub>i</sub> - | $(\bar{\mathbf{x}})^2$ |    |    |
|             |                           | -<br>f <sub>i</sub> | •     | Xi           |            |                                            |                                  |                        |    |    |
|             | 30 - 40                   | 3                   |       | 35           | 105        |                                            | 729                              | 218                    |    |    |
|             | 40 - 50                   | 7                   |       | 45           | 315 289    |                                            | 202                              |                        |    |    |
|             | 50 - 60                   | 12                  |       | 55           | 660        |                                            | 49                               | 588                    |    |    |
|             | 60 - 70                   | 15                  |       | 65           | 975        |                                            | 9                                | 135                    |    |    |
|             | 70 - 80                   | 8                   |       | 75           | 600        |                                            | 169                              | 1352<br>1587           |    |    |
|             | 80 - 90                   | 3                   |       | 85<br>05     | 255<br>190 |                                            | 529<br>1080                      |                        |    |    |
|             | 90 - 100                  | 2                   |       | 95           | 19         | U                                          | 1089                             | 21'                    | /0 | 21 |
|             |                           | 50                  |       | 3100 10050   |            |                                            | 50                               | $3\frac{1}{2}$         |    |    |
|             |                           |                     |       |              |            |                                            |                                  |                        |    |    |
|             |                           |                     |       |              |            |                                            |                                  |                        |    |    |

|             | Thus Mean $\bar{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^{i=7} f_i x_i$                                                                                                                                            |               |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|             | $=\frac{3100}{50}=62$                                                                                                                                                                                          | $\frac{1}{2}$ |
|             | Variance $(\sigma^2) = \frac{1}{N} \sum_{i=1}^{i=7} f_i (x_i - \bar{x})^2$<br>= $\frac{10050}{50} = 201$                                                                                                       | $\frac{1}{2}$ |
|             | and Standard deviation( $\sigma$ ) = $\sqrt{201}$ = 14.18                                                                                                                                                      | $\frac{1}{2}$ |
|             | <b>SECTION</b> – <b>E</b> (4Marks $\times$ 3Q)                                                                                                                                                                 |               |
| Question36. | To demonstrate the compound angle formulae in trigonometry,<br>Mahesh and Siraj selected two angles 'A' and 'B' such that A, B $\in$ $(0, \frac{\pi}{2})$ and sin A = $\frac{3}{5}$ , cos B = $\frac{9}{41}$ . |               |
|             | Based on the above information, answer the following questions.                                                                                                                                                |               |
|             | (i) Find the value of sin $B + cos A$ .(2)(ii) Find the value of cos $(A + B)$ .(2)                                                                                                                            |               |
| Solution:   | Given, $\sin A = \frac{3}{5}$ and $\cos B = \frac{9}{41}$                                                                                                                                                      |               |
|             | we know, $\cos A = \sqrt{1 - \sin^2 A}$                                                                                                                                                                        |               |
|             | So, $\cos A = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{\frac{16}{25}} = \frac{4}{5}$                                                                                                                      |               |
|             | Also $\sin B = \sqrt{1 - \cos^2 B}$                                                                                                                                                                            |               |
|             | So, $\sin B = \sqrt{1 - \left(\frac{9}{41}\right)^2} = \sqrt{\frac{1681 - 81}{1681}} = \sqrt{\frac{1600}{1681}} = \frac{40}{41}$                                                                               |               |
|             | So, $\sin B = \frac{40}{41}$                                                                                                                                                                                   |               |
|             | Thus $\sin B + \cos A = \frac{40}{41} + \frac{4}{5}$                                                                                                                                                           | 1             |
|             | $\Rightarrow \sin B + \cos A = \frac{200 + 164}{205}$                                                                                                                                                          |               |
|             |                                                                                                                                                                                                                |               |

| $\Rightarrow \sin B + \cos A = \frac{364}{205}$ 1 ii) $\cos (A + B) = \cos A \times \cos B - \sin A \times \sin B$ $= \left(\frac{3}{5}\right)\left(\frac{4}{91}\right) - \left(\frac{4}{5}\right)\left(\frac{40}{91}\right)$ $= \frac{27}{205} - \frac{160}{205}$ $= -\frac{27 - 133}{205}$ $= -\frac{133}{205}$ iii) The assembly incharge of a school wants to generate signals for calling classes for the assembly. He has got 5 coloured flags viz., Yellow, Red, Orange, Green and Blue to make signals. Based on the above information answer the following questions: (i) How many different signals can be generated by using all 5 flags? (1) (ii) To call the middle section for the assembly, he has to generate different signals by using 2 flags only. How many such arrangements are possible? (1) (iii) To call the senior section for the assembly, he has to generate different signals by using 4 flags only. How many such arrangements are possible? (1) (iii) To tal number of different flags given = 5 Number of ways to generate a signal of 5 flags together = <sup>5</sup> P_5 $= \frac{5!}{(5-5)!}$ $= 5! = 120ways$ 1 |               |                                                                         |               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------|---------------|
| (i) COS (A + B) = COS A × COS B = SIII A × SIII B<br>$= (\frac{3}{5})(\frac{9}{41}) - (\frac{4}{5})(\frac{40}{41})$ $= \frac{27}{205} - \frac{160}{205}$ $= -\frac{27 - 133}{205}$ $= -\frac{133}{205}$ (Question 37. The assembly incharge of a school wants to generate signals for calling classes for the assembly. He has got 5 coloured flags viz., Yellow, Red, Orange, Green and Blue to make signals.<br><i>Based on the above information answer the following questions:</i> (i) How many different signals can be generated by using all 5 flags? (1)<br>(ii) To call the middle section for the assembly, he has to generate different signals by using 2 flags only. How many such arrangements are possible? (1 $\frac{1}{2}$ )<br>(iii) To call the senior section for the assembly, he has to generate different signals by using 4 flags only. How many such arrangements are possible? (1 $\frac{1}{2}$ )<br>Solution: (i) Total number of different flags given = 5<br>Number of ways to generate a signal of 5 flags together = ${}^{5}P_{5}$<br>$= \frac{5!}{(5-5)!}$                                                          |               | $\Rightarrow \sin B + \cos A = \frac{364}{205}$                         | 1             |
| <b>Question 37.</b> The assembly incharge of a school wants to generate signals for calling classes for the assembly. He has got 5 coloured flags viz, Yellow, Red, Orange, Green and Blue to make signals.<br>Based on the above information answer the following questions: <ul><li>(i) How many different signals can be generated by using all 5 flags?</li><li>(ii) To call the middle section for the assembly, he has to generate different signals by using 2 flags only. How many such arrangements are possible?</li><li>(iii) To call the senior section for the assembly, he has to generate different signals by using 4 flags only. How many such arrangements are possible?</li><li>(1) Total number of different flags given = 5</li><li>Number of ways to generate a signal of 5 flags together = <sup>5</sup>P<sub>5</sub></li><li>= <math>\frac{5!}{(5-5)!}</math></li></ul>                                                                                                                                                                                                                                                      |               | ii) $\cos (A + B) = \cos A \times \cos B - \sin A \times \sin B$        |               |
| $= -\frac{27-133}{205}$ $\frac{1}{2}$ Question37.The assembly incharge of a school wants to generate signals for calling classes for the assembly. He has got 5 coloured flags viz., Yellow, Red, Orange, Green and Blue to make signals.<br>Based on the above information answer the following questions:(i) How many different signals can be generated by using all 5 flags?(1)(ii) To call the middle section for the assembly, he has to generate different signals by using 2 flags only. How many such arrangements are possible? $(1\frac{1}{2})$ (iii) To call the senior section for the assembly, he has to generate different signals by using 4 flags only. How many such arrangements are possible? $(1\frac{1}{2})$ Solution: (i)Total number of different flags given = 5<br>Number of ways to generate a signal of 5 flags together = ${}^{5}P_{5}$<br>$= \frac{5!}{(5-5)!}$                                                                                                                                                                                                                                                       |               | $= (\frac{3}{5})(\frac{9}{41}) - (\frac{4}{5})(\frac{40}{41})$          | 1             |
| $= -\frac{133}{205}$ $\frac{1}{2}$ Question 37.The assembly incharge of a school wants to generate signals for calling classes for the assembly. He has got 5 coloured flags viz., Yellow, Red, Orange, Green and Blue to make signals.<br>Based on the above information answer the following questions:(i) How many different signals can be generated by using all 5 flags?(1)(ii) To call the middle section for the assembly, he has to generate different signals by using 2 flags only. How many such arrangements are possible?(1 $\frac{1}{2}$ )(iii) To call the senior section for the assembly, he has to generate different signals by using 4 flags only. How many such arrangements are possible?(1 $\frac{1}{2}$ )Solution: (i)Total number of different flags given = 5Number of ways to generate a signal of 5 flags together = ${}^{5}P_{5}$ $= \frac{51}{(5-5)!}$                                                                                                                                                                                                                                                                |               | $=\frac{27}{205}-\frac{160}{205}$                                       |               |
| Question 37.The assembly incharge of a school wants to generate signals for calling classes for the assembly. He has got 5 coloured flags viz., Yellow, Red, Orange, Green and Blue to make signals.<br><br>Based on the above information answer the following questions:(i) How many different signals can be generated by using all 5<br>flags?(ii) How many different signals can be generated by using all 5<br>flags?(iii) To call the middle section for the assembly, he has to generate<br>different signals by using 2 flags only. How many such<br>arrangements are possible?(iii) To call the senior section for the assembly, he has to generate<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | $=-\frac{27-133}{205}$                                                  | 1             |
| classes for the assembly. He has got 5 coloured flags viz., Yellow, Red,<br>Orange, Green and Blue to make signals.<br>Based on the above information answer the following questions:<br>(i) How many different signals can be generated by using all 5<br>flags? (1)<br>(ii) To call the middle section for the assembly, he has to generate<br>different signals by using 2 flags only. How many such<br>arrangements are possible? ( $1\frac{1}{2}$ )<br>(iii) To call the senior section for the assembly, he has to generate<br>different signals by using 4 flags only. How many such<br>arrangements are possible? ( $1\frac{1}{2}$ )<br>Solution: (i) Total number of different flags given = 5<br>Number of ways to generate a signal of 5 flags together = ${}^{5}P_{5}$<br>$=\frac{5!}{(5-5)!}$                                                                                                                                                                                                                                                                                                                                           |               | $=-\frac{133}{205}$                                                     | $\frac{1}{2}$ |
| classes for the assembly. He has got 5 coloured flags viz., Yellow, Red,<br>Orange, Green and Blue to make signals.<br>Based on the above information answer the following questions:<br>(i) How many different signals can be generated by using all 5<br>flags? (1)<br>(ii) To call the middle section for the assembly, he has to generate<br>different signals by using 2 flags only. How many such<br>arrangements are possible? ( $1\frac{1}{2}$ )<br>(iii) To call the senior section for the assembly, he has to generate<br>different signals by using 4 flags only. How many such<br>arrangements are possible? ( $1\frac{1}{2}$ )<br>Solution: (i) Total number of different flags given = 5<br>Number of ways to generate a signal of 5 flags together = ${}^{5}P_{5}$<br>$=\frac{5!}{(5-5)!}$                                                                                                                                                                                                                                                                                                                                           | Quantian 27   |                                                                         |               |
| Orange, Green and Blue to make signals.<br>Based on the above information answer the following questions:(i) How many different signals can be generated by using all 5<br>flags?(ii) To call the middle section for the assembly, he has to generate<br>different signals by using 2 flags only. How many such<br>arrangements are possible?(iii) To call the senior section for the assembly, he has to generate<br>different signals by using 4 flags only. How many such<br>arrangements are possible?(11/2)(iii) To call the senior section for the assembly, he has to generate<br>different signals by using 4 flags only. How many such<br>arrangements are possible?(11/2)Solution: (i)Total number of different flags given = 5<br>Number of ways to generate a signal of 5 flags together = ${}^{5}P_{5}$<br>$= \frac{5!}{(5-5)!}$                                                                                                                                                                                                                                                                                                        | Questions7.   |                                                                         |               |
| (i) How many different signals can be generated by using all 5<br>flags? (1)<br>(ii) To call the middle section for the assembly, he has to generate<br>different signals by using 2 flags only. How many such<br>arrangements are possible? ( $1\frac{1}{2}$ )<br>(iii)To call the senior section for the assembly, he has to generate<br>different signals by using 4 flags only. How many such<br>arrangements are possible? ( $1\frac{1}{2}$ )<br>Solution: (i) Total number of different flags given = 5<br>Number of ways to generate a signal of 5 flags together = ${}^{5}P_{5}$<br>$= \frac{5!}{(5-5)!}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                                                                         |               |
| flags?(1)(ii) To call the middle section for the assembly, he has to generate<br>different signals by using 2 flags only. How many such<br>arrangements are possible? $(1\frac{1}{2})$ (iii) To call the senior section for the assembly, he has to generate<br>different signals by using 4 flags only. How many such<br>arrangements are possible? $(1\frac{1}{2})$ Solution: (i)Total number of different flags given = 5<br>Number of ways to generate a signal of 5 flags together = ${}^5P_5$<br>$= \frac{5!}{(5-5)!}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | Based on the above information answer the following questions:          |               |
| (ii) To call the middle section for the assembly, he has to generate different signals by using 2 flags only. How many such arrangements are possible? ( $1\frac{1}{2}$ ) (iii)To call the senior section for the assembly, he has to generate different signals by using 4 flags only. How many such arrangements are possible? ( $1\frac{1}{2}$ )<br>Solution: (i) Total number of different flags given = 5<br>Number of ways to generate a signal of 5 flags together = ${}^{5}P_{5}$<br>$=\frac{5!}{(5-5)!}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                                                                         |               |
| (iii)To call the senior section for the assembly, he has to generate<br>different signals by using 4 flags only. How many such<br>arrangements are possible?(1 $\frac{1}{2}$ )Solution: (i)Total number of different flags given = 5<br>Number of ways to generate a signal of 5 flags together = ${}^{5}P_{5}$<br>$= \frac{5!}{(5-5)!}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | (ii) To call the middle section for the assembly, he has to generate    |               |
| (iii)To call the senior section for the assembly, he has to generate<br>different signals by using 4 flags only. How many such<br>arrangements are possible?(1 $\frac{1}{2}$ )Solution: (i)Total number of different flags given = 5<br>Number of ways to generate a signal of 5 flags together = ${}^{5}P_{5}$<br>$= \frac{5!}{(5-5)!}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | arrangements are possible? $(1\frac{1}{2})$                             |               |
| Solution: (i)       Total number of different flags given = 5         Number of ways to generate a signal of 5 flags together = ${}^{5}P_{5}$ $=\frac{5!}{(5-5)!}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | (iii)To call the senior section for the assembly, he has to generate    |               |
| Number of ways to generate a signal of 5 flags together = ${}^{5}P_{5}$<br>= $\frac{5!}{(5-5)!}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | arrangements are possible? $(1\frac{1}{2})$                             |               |
| $=\frac{5!}{(5-5)!}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Solution: (i) | Total number of different flags given = 5                               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | Number of ways to generate a signal of 5 flags together = ${}^{5}P_{5}$ |               |
| = 5! = 120 ways 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | $=\frac{5!}{(5-5)!}$                                                    |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | = 5! = 120 ways                                                         | 1             |

| r             |                                                                                                                                     |                |  |  |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|
|               | To call the middle section for the assembly, a signal of only two flags is                                                          |                |  |  |  |  |  |
|               | to be generated.                                                                                                                    |                |  |  |  |  |  |
|               | Number of ways to generate a signal of 2 flags together = ${}^{5}P_{2}$                                                             |                |  |  |  |  |  |
| ( <b>ii</b> ) | $=\frac{5!}{(5-2)!}$                                                                                                                |                |  |  |  |  |  |
|               | $=\frac{5!}{3!}$                                                                                                                    |                |  |  |  |  |  |
|               | $-\frac{1}{3!}$                                                                                                                     |                |  |  |  |  |  |
|               | $=\frac{5.4.3!}{3!}=5.4=20$ ways                                                                                                    | $1\frac{1}{2}$ |  |  |  |  |  |
|               | To call the senior section for the assembly, a signal of only four flags is                                                         |                |  |  |  |  |  |
|               | to be generated.                                                                                                                    |                |  |  |  |  |  |
| ( iii)        | Number of ways to generate a signal of 4 flags together = ${}^{5}P_{4}$                                                             |                |  |  |  |  |  |
| ()            | 5!                                                                                                                                  |                |  |  |  |  |  |
|               | $=\frac{5!}{(5-4)!}$                                                                                                                |                |  |  |  |  |  |
|               | $=\frac{5!}{1!}$                                                                                                                    |                |  |  |  |  |  |
|               |                                                                                                                                     |                |  |  |  |  |  |
|               | $=\frac{5.4.3!}{1!}=5!=120$ ways                                                                                                    | $1\frac{1}{2}$ |  |  |  |  |  |
| Question      | Due to heavy storm, an electric wire got broken and fell on the ground                                                              |                |  |  |  |  |  |
| 38.           | and is bent taking a shape of a mathematical figure as shown below.                                                                 |                |  |  |  |  |  |
|               | Based on the above information, answer the following questions.                                                                     |                |  |  |  |  |  |
|               | (i) Name of the shape in which wire is bent.                                                                                        |                |  |  |  |  |  |
|               | (a) circle (b) parabola (c) ellipse (d) hyperbola                                                                                   |                |  |  |  |  |  |
|               | (ii)The equation of the shape so formed is:                                                                                         |                |  |  |  |  |  |
|               | (a) $\frac{x^2}{9} + \frac{y^2}{4} = 1$ (b) $\frac{x^2}{4} + \frac{y^2}{9} = 1$ (c) $\frac{x^2}{9} - \frac{y^2}{4} = 1$ (d) none of |                |  |  |  |  |  |
|               | these                                                                                                                               |                |  |  |  |  |  |
|               | (iii) The eccentricity of the shape so formed is:                                                                                   |                |  |  |  |  |  |
|               | (a) $\frac{2}{3}$ (b) $\frac{\sqrt{x}}{\sqrt{3}}$ (c) $\frac{\sqrt{5}}{3}$ (d) $\frac{\sqrt{5}}{4}$                                 |                |  |  |  |  |  |
|               | (iv) The length of the latus rectum of the shape so formed is:                                                                      |                |  |  |  |  |  |
|               | (a) 9 (b) $\frac{8}{3}$ (c) -4 (d) none of                                                                                          |                |  |  |  |  |  |
|               | these.                                                                                                                              |                |  |  |  |  |  |
|               |                                                                                                                                     |                |  |  |  |  |  |
|               |                                                                                                                                     |                |  |  |  |  |  |

| Solution: (i) | (c) ellipse                                                              | 1 |
|---------------|--------------------------------------------------------------------------|---|
| (ii)          | $(a)\frac{x^2}{9} + \frac{y^2}{4} = 1$                                   | 1 |
| (iii)         | (c) Here $a = 3$ and $b = 2$                                             |   |
|               | Eccentricity $e = \frac{\sqrt{a^2 - b^2}}{a}$                            |   |
|               | $\Rightarrow \qquad e = \frac{\sqrt{3^2 - 2^2}}{3} = \frac{\sqrt{5}}{3}$ | 1 |
| (iv)          | (b) The length of the latus rectum $=\frac{2b^2}{a}$                     |   |
|               | $=\frac{2(2)^2}{3}=\frac{8}{3}$                                          | 1 |