CHAPTER

Some Basic Concepts of Chemistry

1.3 Properties of Matter and their Measurement

- **1.** The dimensions of pressure are the same as that of
 - (a) force per unit volume
 - (b) energy per unit volume
 - (c) force (d) energy (1995)

1.4 Uncertainty in Measurement

- 2. Given the numbers : 161 cm, 0.161 cm, 0.0161 cm. The number of significant figures for the three numbers is
 - (a) 3, 3 and 4 respectively
 - (b) 3, 4 and 4 respectively
 - (c) 3, 4 and 5 respectively
 - (d) 3, 3 and 3 respectively.

1.5

Laws of Chemical Combinations

(1998)

- Equal masses of H₂, O₂ and methane have been taken in a container of volume V at temperature 27 °C in identical conditions. The ratio of the volumes of gases H₂:(**O**): 1 fmethante would be
 (c) 16:1:2
 (d) 8:1:2
- 4. What volume of oxygen gas (O_2) measured at 0°C and 1 atm, is needed to burn completely 1 L of propane gas (C_3H_8) measured under the same conditions?

(a) 5 L	(b) 10 L	
(c) 7 L	(d) 6 L	(2008)

5. 0.24 g of a volatile gas, upon vaporisation, gives 45 mL vapour at NTP. What will be the vapour density of the substance? (Density of H₂ = 0.089 g/L)
(a) 95.93 (b) 59.93

(c) 95.39 (d) 5.993 (1996)

6. The molecular weight of O_2 and SO_2 are 32 and 64 respectively. At 15°C and 150 mmHg pressure, one litre of O_2 contains 'N' molecules. The number of molecules in two litres of SO_2 under the same conditions of temperature and pressure will be

	(a) $N/2$	(b) <i>N</i>	
	(c) 2 N	(d) 4 N	(1990)
7.	What is the weig complete combu	ght of oxygen required for astion of 2.8 kg of ethylene	the ?
	(a) 2.8 kg	(b) 6.4 kg	
	(c) 9.6 kg	(d) 96 kg	(1989)

1.7 Atomic and Molecular Masses

8.	An element, X has the following isotopic composition					
	200 X:90% 199 X	:8.0% ²⁰² X:2	.0%			
	The weighted aver	rage atomic mass of	of the naturally			
	occurring element	X is closest to				
	(a) 201 amu	(b) 202 am	1			
	(c) 199 amu	(d) 200 am	u (2007)			
9.	Boron has two ¹¹ B(81%). Calcula	stable isotopes, ite average at. wt.	$^{10}B(19\%)$ and of boron in			

the periodic table. (a) 10.8 (b) 10.2 (c) 11.2 (d) 10.0 (1990)

1.8 Mole Concept and Molar Masses

- **10.** Which one of the followings has maximum number of atoms?
 - (a) 1 g of $Ag_{(s)}$ [Atomic mass of Ag = 108]
 - (b) 1 g of $Mg_{(s)}$ [Atomic mass of Mg = 24]
 - (c) 1 g of $O_{2(g)}$ [Atomic mass of O = 16]
 - (d) 1 g of $Li_{(s)}$ [Atomic mass of Li = 7]

(NEET 2020)

- **11.** In which case is number of molecules of water maximum?
 - (a) 18 mL of water
 - (b) 0.18 g of water
 - (c) 0.00224 L of water vapours at 1 atm and 273 K
 - (d) 10^{-3} mol of water (NEET 2018)
- 12. Suppose the elements X and Y combine to form two compounds XY_2 and X_3Y_2 . When 0.1 mole of XY_2 weighs 10 g and 0.05 mole of X_3Y_2 weighs 9 g, the atomic weights of X and Y are

	(a) 40, 30 (c) 20, 30	(b) 60,40 (d) 30, 20 (<i>NEET-J</i>	II 2016)
13.	If Avogadro number N_{A} , 6.022 × 10 ²³ mol ⁻¹ to 6.0	, is changed from $122 \times 10^{20} \text{ mol}^{-1}$, this	would
	(a) the mass of one mol(b) the ratio of chemical(b) balanced equation	e of carbon l species to each oth	er in a
	(c) the ratio of element compound	ts to each other in a	
	(<i>d</i>) the definition of mas	ss in units of grams.	(2015)
14.	The number of water mo	plecules is maximun	nin
	(a) 1.8 gram of water		
	(b) 18 gram of water		
	(c) 18 moles of water (d) 18 molecules of water	ər	(2015)
15	A mixture of gases cont	ains Ha and Oa gase	(2010)
10.	ratio of $1 : 4$ (w/w). We two gases in the mixture	nat is the molar ratio	o of the
	(a) 16:1	(b) 2 : 1	
	(c) 1:4	(d) 4 : 1 (2015, Ca	ncelled)
16.	Which has the maximum among the following?	n number of molecu	les
	(a) $44 \text{ g} \text{CO}_2$	(b) 48 gO_3	
	(c) $8 g H_2$	(d) 64 gSO_2	o 2 011)
17	The number of stome in	(1/1/1/1)	
17.	$(N_A = 6.02 \times 10^{23} \text{ mol}^{-1})$ (a) 6.026×10^{22}	(b) 1 806 × 10^{23}	ic gas is
	(c) 3.600×10^{23}	(d) 1.800×10^{22}	(2010)
18	The maximum number of	of molecules is prese	entin
10.	(a) $15 \text{ L of } \text{H}_2 \text{ gas at ST}$ (b) $5 \text{ L of } \text{N}_2 \text{ gas at STP}$ (c) $0.5 \text{ g of } \text{H}_2 \text{ gas}$	P	
	(d) 10 g of O_2 gas.		(2004)
19.	Which has maximum me	olecules?	
	(a) $7 g N_2$	(b) 2 gH ₂	(
	(c) 16 g NO_2	(d) $16 g O_2$	(2002)
20.	Specific volume of cyli 6.02×10^{-2} cc/g whose ra- 10 Å respectively. If NA = weight of virus	ndrical virus particl adius and length are = 6.02×10^{23} , find mo	e is 7 Å and olecular
	(a) 15.4 kg/mol	(b) 1.54×10^4 kg/mo	ol
	(c) 3.08×10^4 kg/mol	(d) 3.08×10^3 kg/m	ol
			(2001)
21.	The number of atoms in	4.25 g of NH_3 is	
	approximately $(x) = 4 \times 10^{23}$	(b) 2×10^{23}	
	(a) 4×10^{-5}	$(0) 2 \times 10^{-5}$	

(d) 6×10^{23}

(c) 1×10^{23}

~~	II 11' (' O	2240/ 6: 1 :	1 (771
22.	molecular weight of ba	.334% of from by wel	gnt. The
	67200 The number of ir	on atoms (Atomic w	reight of
	Fe is 56) present in one i	molecule of haemog	lobin is
	(a) 4	(b) 6	
	(c) 3	(d) 2	(1998)
23.	The number of moles o	f oxygen in one lit	e of air
	containing 21% oxygen	by volume, under s	standard
	conditions, is		
	(a) 0.0093 mol	(b) 2.10 mol	
	(c) 0.186 mol	(d) 0.21 mol	(1995)
24.	The total number of vale	ence electrons in 4.2	$gofN_3^-$
	ion is (NA is the Avogad	lro's number)	
	(a) 2.1 NA	(b) 4.2 <i>N</i> _A	
	(c) $1.6 N_A$	(d) 3.2 <i>N</i> _A	(1994)
25.	The number of gram m	nolecules of oxygen	i in
	$6.02 \times 10^{24} \mathrm{CO}$ molecule	es is	
	(a) 10 g molecules	(b) 5 g molecules	
	(c) 1 g molecule	(d) 0.5 g molecules	•
			(1990)
26.	Ratio of C_p and C_v of a	gas 'X' is 1.4. The	number
	of atoms of the gas 'X'	present in 11.2 litres	s of it at
	NTP will be 10^{23}	(1) 1 0 10 ²³	
	(a) 6.02×10^{23}	(b) 1.2×10^{23}	(1000)
	(c) 3.01×10^{23}	(d) 2.01×10^{23}	(1989)
27.	The number of oxygen a	4.4 g of CO	$_2$ is
	(a) 1.2×10^{23}	(b) 6×10^{22}	(1000)
•	(c) 6×10^{25}	(d) 12×10^{23}	(1989)
28.	I cc N_2O at NTP contain	18	
	(a) $\frac{1.8}{22} \times 10^{22}$ atoms		
	224		
	(b) $\frac{6.02}{10} \times 10^{23}$ molecu	iles	
	22400		
	(c) $\frac{1.32}{224} \times 10^{23}$ electrons	5	
	224		
	(d) all of the above.		(1988)
1.	9 Percentage Com	oosition	
20	An organic compound	contains carbon by	udrogan

29. An organic compound contains carbon, hydrogen and oxygen. Its elemental analysis gave C, 38.71% and H, 9.67%. The empirical formula of the compound would be (a) CHO (b) CH₄O (d) CH₂O (c) CH₃O (2008)

(1999)

30. Percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (at. wt. = 78.4) then minimum molecular weight of peroxidase anhydrous enzyme is (a) 1.568×10^4 (b) 1.568×10^3

(c) 15.68 ((d) 2.136×10^4	(2001)

Some Basic Concepts of Chemistry

- **31.** Which of the following fertilizers has the highest nitrogen percentage?
 - (a) Ammonium sulphate
 - (b) Calcium cyanamide
 - (c) Urea
 - (d) Ammonium nitrate (1993)

1.10 Stoichiometry and Stoichiometric Calculations

- **32.** The number of moles of hydrogen molecules required to produce 20 moles of ammonia through Haber's process is
 - (a) 40 (b) 10 (c) 20 (d) 30 (*NEET 2019*)
- **33.** The density of 2 M aqueous solution of NaOH is 1.28 g/cm^3 . The molality of the solution is [Given that molecular mass of NaOH = 40 g mol⁻¹]
 - (a) 1.20 m (b) 1.56 m
 - (c) 1.67 m (d) 1.32 m
 - (OdishaNEET2019)
- 34. A mixture of 2.3 g formic acid and 4.5 g oxalic acid is treated with conc. H_2SO_4 . The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be

(a) 1.4 (b) 3.0 (c) 2.8 (d) 4.4 (*NEET 2018*)

35. What is the mass of the precipitate formed when 50 mL of 16.9% solution of AgNO₃ is mixed with 50 mL of 5.8% NaCl solution?

(Ag = 107.8, N =	14, O = 16, Na = 23,	Cl = 35.5)
(a) 3.5 g	(b) 7 g	
(c) 14 g	(d) 28 g	(2015)

- 36. 20.0 g of a magnesium carbonate sample decomposes on heating to give carbon dioxide and 8.0 g magnesium oxide. What will be the percentage purity of magnesium carbonate in the sample? (At. wt. of Mg = 24)
 (a) 96 (b) 60
 - (c) 84 (d) 75 (2015)
- **37.** When 22.4 litres of $H_{2(g)}$ is mixed with 11.2 litres of $Cl_{2(g)}$, each at STP, the moles of $HCl_{(g)}$ formed is equal to

(a) 1 mol of $HCl_{(g)}$ (b) 2 mol of $HCl_{(g)}$

(c) 0.5 mol of $HCl_{(g)}$ (d) 1.5 mol of $HCl_{(g)}$

(2014)

38. 1.0 g of magnesium is burnt with 0.56 g O_2 in a closed vessel. Which reactant is left in excess and how much? (At. wt. Mg = 24, O = 16)

(a) Mg, 0.16 g	(b) O ₂ , 0.16g	
(c) Mg, 0.44 g	(d) O ₂ ,0.28 g	(2014)

39. 6.02×10^{20} molecules of urea are present in 100 mL of its solution. The concentration of solution is (a) 0.001 M (b) 0.1 M

(c) 0.02 M (d) 0.01 M

(NEET 2013)

40. In an experiment it showed that 10 mL of 0.05 M solution of chloride required 10 mL of 0.1 M solution of AgNO₃, which of the following will be the formula of the chloride (X stands for the symbol of the element other than chlorine)?

(a)
$$X_2Cl_2$$
 (b) XCl_2
(c) XCl_4 (d) X_2Cl

(Karnataka NEET 2013)

- 41. 25.3 g of sodium carbonate, Na₂CO₃ is dissolved in enough water to make 250 mL of solution. If sodium carbonate dissociates completely, molar concentration of sodium ion, Na⁺ and carbonate ions, CO₃²⁻ are respectively
 (Molar mass of Na₂CO₃ = 106 g mol⁻¹)
 (a) 0.955 M and 1.910 M
 (b) 1.010 M and 0.955 M
 - (b) 1.910 M and 0.955 M
 - (c) 1.90 M and 1.910 M
 - (d) 0.477 M and 0.477 M (2010)
- **42.** 10 g of hydrogen and 64 g of oxygen were filled in a steel vessel and exploded. Amount of water produced in this reaction will be
 - (a) 3 mol (b) 4 mol (c) 1 mol (d) 2 mol (2009)
- 43. How many moles of lead(II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g HCl?
 (a) 0.011
 (b) 0.029
 (c) 0.044
 (d) 0.333
 (2008)
- 44. The mass of carbon anode consumed (giving only carbon dioxide) in the production of 270 kg of aluminium metal from bauxite by the Hall process is
 (a) 270 kg
 (b) 540 kg
 (c) 90 kg
 (d) 180 kg
 (Atomic mass : Al= 27)
- **45.** Molarity of liquid HCl, if density of solution is 1.17 g/ccis
 - (a) 36.5 (b) 18.25 (c) 32.05 (d) 42.10 (2001)
- 46. Volume of CO₂ obtained by the complete decomposition of 9.85 g of BaCO₃ is

 (a) 2.24 L
 (b) 1.12 L
 (c) 0.84 L
 (d) 0.56 L

47. In the reaction, **48.** The amount of zinc required to produce 224 mL of $4NH_{3(g)} + 5O_{2(g)} \rightarrow 4NO_{(g)} + 6H_2O_{(l)}$ H₂ at STP on treatment with dilute H₂SO₄ will be when 1 mole of ammonia and 1 mole of O_2 are made (a) 65 g (b) 0.065 g to react to completion (c) 0.65 g (d) 6.5 g (1996)(a) all the oxygen will be consumed **49.** At STP the density of CCl_4 vapour in g/L will be (b) 1.0 mole of NO will be produced nearest to (c) 1.0 mole of H_2O is produced (b) 3.42 (a) 6.87 (d) all the ammonia will be consumed. (1998)(d) 4.57 (c) 10.26 (1988)

									AITO										
1.	(b)	2.	(d)	3.	(c)	4.	(a)	5.	(b)	6.	(c)	7.	(c)	8.	(d)	9.	(a)	10.	(d)
11.	(a)	12.	(a)	13.	(a)	14.	(c)	15.	(d)	16.	(c)	17.	(b)	18.	(a)	19.	(b)	20.	(a)
21.	(d)	22.	(a)	23.	(a)	24.	(c)	25.	(b)	26.	(a)	27.	(a)	28.	(d)	29.	(c)	30.	(a)
31.	(c)	32.	(d)	33.	(c)	34.	(c)	35.	(b)	36.	(c)	37.	(a)	38.	(a)	39.	(d)	40.	(b)
41.	(b)	42.	(b)	43.	(b)	44.	(c)	45.	(c)	46.	(b)	47.	(a)	48.	(c)	49.	(a)		

Hints & Explanations

1. (b) : Pressure =
$$\frac{\text{Force}}{\text{Area}}$$

Therefore, dimensions of pressure = $\frac{\text{MLT}^{-2}}{\text{L}^2}$ = ML⁻¹T⁻²
and dimensions of energy per unit volume
= $\frac{\text{Energy}}{\text{Volume}}$ = $\frac{\text{ML}^2\text{T}^{-2}}{\text{L}^3}$ = ML⁻¹T⁻²

2. (d) : Zeros placed left to the number are never significant, therefore the no. of significant figures for the numbers 161 cm, 0.161 cm and 0.0161 cm are same, *i.e.*, 3.

3. (c) : According to Avogadro's hypothesis, ratio of the volumes of gases will be equal to the ratio of their no. of moles. So, no. of moles = \underline{Mass}

Mol. mass $n_{\text{H}} = \frac{w}{2}; n_{\text{O}_2} = \frac{w}{32}; n_{\text{CH}} = \frac{w}{4} = \frac{w}{16}$ So, the ratio is $\frac{w}{2}: \frac{w}{2} = \frac{w}{16}$ or 16:1:2. 2 32 16 4. (a): $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O_1$ 1 vol. 5 vol. 3 vol. 4 vol.

According to the above equation,

4

 $1 \mbox{ vol. or } 1$ litre of propane requires $5 \mbox{ vol. or } 5$ litres of O_2 to burn completely.

5. (b) : Weight of gas = 0.24 g, Volume of gas = 45 mL = 0.045 litre and density of $H_2 = 0.089 \text{ g/L}$ Weight of 45 mL of H_2 = density × volume = $0.089 \times 0.045 = 4.005 \times 10^{-3} \text{ g}$ Therefore, vapour density

$$= \frac{\text{Weight of certain volume of substance}}{\text{Weight of same volume of hydrogen}}$$
$$= \frac{0.24}{4.005 \times 10^{-3}} = 59.93$$

6. (c) : If 1 L of one gas contains N molecules, 2 L of any gas under the same conditions will contain 2N molecules.

7. (c) :
$$C_{2}H_{4} + 3O_{2} \rightarrow 2CO_{2} + 2H_{2}O_{28 g} - 96 g$$

For complete combustion,
2.8 kg of $C_{2}H_{4}$ requires $=\frac{96}{28} \times 2.8 \times 10^{3} \text{ g}$
 $= 9.6 \times 10^{3} \text{ g} = 9.6 \text{ kg of } O_{2}$
8. (d) : Average isotopic mass of X
 $=\frac{200 \times 90 + 199 \times 8 + 202 \times 2}{90 + 8 + 2}$
 $=\frac{18000 + 1592 + 404}{100} = 199.96 \text{ amu} \approx 200 \text{ amu}$
100
9. (a) : Average atomic mass $=\frac{19 \times 10 + 81 \times 11}{100} = 10.81$
10. (d) : 1 mole of substance $= N_{A}$ atoms
108 g of Ag $= N_{A}$ atoms \Rightarrow 1g of Ag $=\frac{N_{A}}{108}$ atoms
24 g of Mg $= N_{A}$ atoms \Rightarrow 1g of Mg $=\frac{N_{A}}{M_{A}}$ atoms

24 g of Mg =
$$N_A$$
 atoms \Rightarrow 1g of Mg = $\frac{N_A}{24}$
32 g of O₂ = N_A molecules = 2 N_A atoms

1g of O =
$$\frac{N_A}{2}$$
 atoms
16

7 g of Li = N_A atoms \Rightarrow 1g of Li = $\frac{N_A}{Z}$ atoms Therefore, 1 g of $Li_{(s)}$, has maximum number of atoms. **11.** (a) : (a) Mass of water = $V \times d = 18 \times 1 = 18$ g Molecules of water = mole $\times N_A = \frac{18}{N_A} = N_A$ (b) Molecules of water = mole $\times N_A = \frac{0.18}{18} N_A$ (c) Moles of water = $\frac{\frac{0.00224}{0.00224}}{=10^{-4}}$ Molecules of water = mole $\times N_A = 10^{-4} N_A$ (d) Molecules of water = mole $\times N_A = 10^{-3} N_A$ **12. (a) :** Let atomic weight of element X is x and that of element Y is \underline{y}_{w} For XY, $n = \frac{y_{w}}{2}$ $0.1 = \frac{\frac{10}{10}}{x+2y} \implies x+2y = \frac{10}{0.1} = 100$...(i) For X_3Y_2 , $n = \frac{\Box w}{\text{Mol. wt.}}$ $0.05 = \frac{\Box 9}{2} \implies 3x + 2y = \frac{9}{0.05} = 180$...(ii) On solving equations (i) and (ii), we get x = 40 $40 + 2y = 100 \Longrightarrow 2y = 60 \Longrightarrow y = 30$ **13.** (a) : Mass of 1 mol $(6.022 \times 10^{23} \text{ atoms})$ of carbon $= 12 \, g$ If Avogadro number is changed to 6.022×10^{20} atoms then mass of 1 mol of carbon $=\frac{12\times6.022\times10^{20}}{6.022\times10^{23}}=12\times10^{-3}\,\mathrm{g}$ **14. (c) :** 1.8 gram of water = $\frac{6.023 \times 10^{23}}{18} \times 1.8$ $= 6.023 \times 10^{22}$ molecules 18 gram of water = 6.023×10^{23} molecules 18 moles of water = $18 \times 6.023 \times 10^{23}$ molecules **15.** (d) : Number of moles of $H_2 = 1/2$ Number of moles of $O_2 = \frac{4}{22}$ Hence, molar ratio $= \frac{1}{2} : \frac{4}{32} = 4 : 1$ 16. (c) : 8 g H_2 has 4 moles while the others has 1 mole each. **17.** (b) : No. of atoms = $N_A \times N_3$ of moles $\times 3$ $= 6.023 \times 10 \times 0.1 \times 3 = 1.806 \times 10$ **18. (a)** : At STP, 22.4 L = 6.023×10^{23} molecules 15 LH = $\frac{6.023 \times 10^{23} \times 15}{2}$ = 4.033×10^{23} molecules

 $5 \text{ L N}_2 = \frac{6.023 \times 10^{23} \times 5}{22.4} = 1.344 \times 10^{23} \text{ molecules}$ 2 g H₂ = 6.023×10^{23} molecules $0.5 \text{ g} \text{H}_2 = \frac{6.023 \times 10^{23} \times 0.5}{2} = 1.505 \times 10^{23} \text{ molecules}$ $32~g~O_2 = 6.023 \times 10^{23}\,molecules$ $\begin{array}{c} 6.023 \times 10^{23} \times 10 \\ 10 \text{ g of } O_2 = \underline{\square} \\ 32 \end{array} = 1.882 \times 10 \\ 10 \text{ molecules} \end{array}$ **19. (b) :** Number of molecules = moles $\times N_A$ Molecules of $N_2 = \frac{1}{N_A} N_A = 0.5 N_A$ Molecules of $H_2 = N_A$ Molecules of NO₂ = $\frac{16}{46}$ N_A = 0.35 N_A Molecules of $O_2 = \frac{16}{32} N = 0.5 N_A$ \therefore 2 g H₂ (1 mole H₂)^A contains maximum molecules. 20. (a) : Specific volume (vol. of 1 g) of cylindrical virus particle = $6.02 \times 10^{-2} \text{ cc/g}$ Radius of virus, $r = 7 \text{ Å} = 7 \times 10^{-8} \text{ cm}$ Volume of virus = $\pi r^2 l$ $=\frac{22}{7}\times(7\times10^{-8})^2\times10\times10^{-8}=154\times10^{-23}\,\text{cc}$ wt. of one virus particle = $\frac{\Box Volume(cc)}{\Box Volume(cc)}$ Specific volume (cc/g) $=\frac{154\times10^{-23}}{6.02\times10^{-2}}$ g Molecular wt. of virus = wt. of N particles $=\frac{\frac{-23}{6.02\times10^{-23}}}{6.02\times10^{-22}}\times6.02\times10^{23} \text{ g/mol}$ = 15400 g/mol = 15.4 kg/mol**21.** (d): 17 g of $NH_3 = 4N_A$ atoms $4.25 \text{ g of NH}_{3} = \frac{4N_{A}}{17} \times 4.25 \text{ atoms}$ $= N_A$ atoms $= 6 \times 10^{23}$ atoms 22. (a) : Quantity of iron in one molecule = $\frac{67200}{\times 0.334} = 224.45$ amu 100 No. of iron atoms in one molecule of haemoglobin $=\frac{224.45}{56}=4$ 23. (a) : Volume of oxygen in one litre of air = $\frac{21}{\times 1000} = 210 \text{ mL}$ 100 210 Therefore, no. of moles = 22400 = 0.0093 mol

24. (c) : Each nitrogen atom has 5 valence electrons, therefore total number of valence electrons in N_3^- ion is 16. Since the molecular mass of N_3^- is 42, therefore total number of valence electrons in 4.2 g of N^- ion,

$$=\frac{4.2}{42} \times 16 \times N_{A} = 1.6 N_{A}$$

- **25.** (b) : Avogadro's no., $N_A = 6.02 \times 10^{23}$ molecules = 1 mole
- $\therefore \quad 6.02 \times 10^{24} \text{ CO molecules} = 10 \text{ moles CO} \\ = 10 \text{ g atoms of O} = 5 \text{ g molecules of O}_2$

26. (a) : Here, $C_p/C_v = 1.4$, which shows that the gas is diatomic.

22.4 L at NTP = 6.02×10^{23} molecules

 \therefore 11.2 L at NTP = 3.01 × 10²³ molecules Since gas is diatomic,

 $\therefore \quad 11.2 \text{ L at NTP} = 2 \times 3.01 \times 10^{23} \text{ atoms} \\ = 6.02 \times 10^{23} \text{ atom}$

27. (a) : 1 mol of $CO_2 = 44$ g of CO_2

 $\therefore \quad 4.4 \text{ g } \text{CO}_2 = 0.1 \text{ mol } \text{CO}_2 = 6 \underset{23}{\times} 10^{22} \text{ molecules}$ [Since, 1 mole CO₂ = 6 × 10 molecules] = 2 × 6 × 10²² atoms of O = 1.2 × 10²³ atoms of O

28. (d) : As we know,

22400~cc of N_2O contain 6.02×10^{23} molecules

 \therefore 1 cc of N₂O contain $\frac{6.02 \times 10^{23}}{22400}$ molecules

Since in N₂O molecule there are 3 atoms $\therefore \quad 1 \text{ cc N O} = \frac{3 \times 6.02 \times 10_{23}}{22400} \text{ atoms} = \frac{1.8 \times 10_{22}}{224} \text{ atoms}$ No. of electrons in a molecule of N₂O = 7 + 7 + 8 = 22

Hence, no. of electrons in 1 cc of N₂O $(22 - 1)^{23}$

$$=\frac{6.02 \times 10^{-3}}{22400} \times 22 \text{ electrons} = \frac{1.32}{224} \times 10^{23} \text{ electrons}$$

29. (c) :

Element	%	Atomic mass	Mole	Simple ratio
С	38.71	12	$\frac{38.71}{12} = 3.22$	$\frac{3.22}{3.22} = 1$
Н	9.67	1	$\frac{9.67}{1} = 9.67$	$\frac{9.67}{3.22} = 3$
0	51.62	16	$\frac{51.62}{16} = 3.22$	$\frac{3.22}{3.22} = 1$

Hence, empirical formula of the compound would be CH₃O.

30. (a) : In peroxidase anhydrous enzyme, 0.5% Se is present means, 0.5 g Se is present in 100 g of enzyme. In a molecule of enzyme one Se atom must be present. Hence,

78.4 g Se will be present in $\frac{100}{100} \times 78.4 = 1.568 \times 10^4$ 0.5 Minimum molecular weight of enzyme is 1.568×10^4 . **31.** (c) : Urea (NH₂CONH₂), % of N = $\frac{28}{100} \times 100 = 46.66\%$ Similarly, % of N in other compounds are : $(NH_4)_2SO_4 = 21.2\%$; CaCN₂ = 35.0% and NH₄NO₃ = 35.0% 32. (d) : Haber's process, $N_2 + 3H_2 \rightarrow 2NH_3$ 2 moles of NH_3 are formed by 3 moles of H_2 . 20 moles of NH₃ will be formed by 30 moles of H₂. *.*.. **33.** (c) : Density = 1.28 g/cc, Conc. of solution = 2 MMolar mass of NaOH = 40 g mol⁻¹ Volume of solution = 1 L = 1000 mLMass of solution = $d \times V = 1.28 \times 1000 = 1280$ g Mass of solute = $n \times Molar mass = 2 \times 40 = 80 g$ Mass of solvent = (1280 - 80) g = 1200 g Number of moles of solute = $\frac{40}{40} = 2$ Molality = $\frac{2 \times 1000}{1200}$ = 1.67 m 1200 Dehydrating agent **34.** (c) : HCOOH CO + HOconc. H₂SO₄ 0 46 20 1 1 $n_f = 0$ 20 20 conc. H₂SO₄ $CO + CO_2 + H_2O$ $n_i = \frac{4.5}{=}$ 0 0 0 90 20 1 1 1 $n_f = 0$ 20 20 20 H₂O gets absorbed by conc. H₂SO₄. Gaseous mixture (containing CO and CO₂) when passed through KOH pellets, CO₂ gets absorbed. Moles of CO left (unabsorbed) = $\frac{1}{1} + \frac{1}{2} = \frac{1}{1}$

$$20 \quad 20 \quad 10$$

Mass of CO = moles × molar mass = $\frac{1}{2}$ × 28 = 2.8 g
10

35. (b) : 16.9% solution of AgNO₃ means 16.9 g of AgNO₃ in 100 mL of solution.

= 8.45 g of AgNO₃ in 50 mL solution.

Similarly, 5.8 g of NaCl in 100 mL solution

 \equiv 2.9 g of NaCl in 50 mL solution.

The reaction can be represented as :

 $AgNO_3 + NaCl \longrightarrow AgCl ↓ + NaNO_3$ Initial 8.45/170 2.9/58.5 0 0 mole = 0.049 = 0.049 Final moles 0 0 0.049 0.049 ∴ Mass of AgCl precipitated = 0.049 × 143.3 = 7.02 ≈ 7 g **36.** (c) : MgCO_{3(s)} $\xrightarrow{\Delta}$ MgO_(s) + CO_{2(g)} 84 g of MgCO₃ = 40 g of MgO $20 \text{ g of MgCO}_3 = \frac{40}{84} \times 20 = 9.52 \text{ g of MgO}$ Actual yield = 8 g of MgO% purity = $\frac{8}{100} \times 100 = 84\%$ 9.52 **37.** (a) : 1 mole = 22.4 litres at STP. $n_{\rm H_2} = \frac{22.4}{22.4} = 1 \text{ mol}; n_{\rm Cl_2} = \frac{11.2}{22.4} = 0.5 \text{ mol}$ Reaction is as, $H_{2(g)} + Cl_{2(g)} \longrightarrow 2HCl_{(g)}$ 1 mol 0.5 mol Initial 0 (1 - 0.5)(0.5 - 0.5) 2×0.5 Final = 0.5 mol= 0 mol1 mol Here, Cl_2 is limiting reagent. So, 1 mole of $HCl_{(g)}$ is formed. **38.** (a) : $n_{\rm Mg} = -1 = 0.0416$ moles 24 $n_{\rm O_2} = \frac{0.56}{32} = 0.0175$ mole The balanced equation is 2Mg O_2 2MgO Initial 0.0416 mole 0.0175 mole 0 Final $(0.0416 - 2 \times 0.0175)$ 2×0.0175 0 = 0.0066 mole Here, O_2 is limiting reagent. $\therefore \text{ Mass of Mg left in excess} = 0.0066 \times 24 = 0.16 \text{ g}$ 6.02 ×10²⁰ **39. (d) :** Moles of urea = $\frac{6.02 \times 10^{23}}{6.02 \times 10^{23}} = 0.001$ Concentration of solution = $\frac{0.001}{1} \times 1000 = 0.01$ M **40.** (b) : Millimoles of solution of chloride $= 0.05 \times 10 = 0.5$ Millimoles of AgNO₃ solution = $10 \times 0.1 = 1$ So, the millimoles of AgNO₃ are double than the chloride solution. $XCl_2 + 2AgNO_3 \rightarrow 2AgCl + X(NO_3)_2$ *.*... **41.** (b) : Given that molar mass of $Na_2CO_3 = 106$ g <u>25.3 ×</u>1000 Molarity of solution = $106 \times 250 = 0.955 \text{ M}$ $Na_2CO_3 \rightarrow 2Na^+ + CO_3^{2-}$ $[Na^+] = 2[Na_2CO_3] = 2 \times 0.955 = 1.910 \text{ M}$ $[CO^2^-] = [Na^-CO^-] = 0.955 \text{ M}$ 2 3 **42. (b)** : $H_2 + 1/2O_2 \rightarrow H_2O$ 16 g 18 g 2 g 1 mol 0.5 mol 1 mol 10 g of $H_2 = 5$ mol and 64 g of $O_2 = 2$ mol

43. (b) : PbO + 2HCl
$$\rightarrow$$
 PbCl₂ + H₂C

$$\frac{6.5}{224} \mod \frac{3.2}{36.5}$$
= 0.029 mol = 0.087 mol
Formation of moles of lead(II) chlorid

Formation of moles of lead(II) chloride depends upon the no. of moles of PbO which acts as a limiting reagent here. So, no. of moles of PbCl₂ formed will be equal to the no. of moles of PbO *i.e.* 0.029.

44. (c) : $3C + 2Al_2O_3 \rightarrow 4Al + 3CO_2$ (From bauxite) 4 moles of Al is produced by 3 moles of C. 1 mole of Al is produced by $\frac{3}{4}$ mole of C. $\frac{270 \times 1000}{27} = 10^4 \text{ moles of Al is produced by } \frac{3}{4} \times 10^4$ moles of C. Amount of carbon used = $\frac{3}{4} \times 10^4 \times 12$ g $=\frac{3}{4} \times 10 \times 12 \text{ kg} = 90 \text{ kg}$ **45.** (c) : Density = 1.17 g/cc. \Rightarrow 1 cc. solution contains 1.17 g of HCl <u>1.17 ×1000</u> ... Molarity = $36.5 \times 1 = 32.05$ 46. (b): $\operatorname{BaCO}_3 \rightarrow \operatorname{BaO} + \operatorname{CO}_2$ $\frac{22.4}{22.4}$ L at N.T.P. $\frac{22.4}{\times 9.85}$ 197.3 9.85 g = 1.118 L \Rightarrow 9.85 g of BaCO₃ will produce 1.118 L of CO₂ at N.T.P. on the complete decomposition. **47.** (a) : $4NH_{3(g)} + 5O_{2(g)} \rightarrow 4NO_{(g)} + 6H_2O_{(l)}$ 4 moles 5 moles 4 moles 6 moles \Rightarrow 1 mole of NH₃ requires = 5/4 = 1.25 mole of oxygen while 1 mole of O_2 requires =4/5 = 0.8 mole of NH₃. Therefore, all oxygen will be consumed. 48. (c): $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$

⁶⁵ g 22400 mL Since 65 g of zinc reacts to liberate 22400 mL of H₂ at STP, therefore amount of zinc needed to produce 224 mL of H₂ at STP = $\frac{65}{22400}$ × 224 = 0.65 g 22400

49. (a) : Weight of 1 mol of CCl₄ vapour
=
$$12 + 4 \times 35.5 = 154$$
 g
∴ Density of CCl₄ vapour = $\frac{154}{22.4}$ gL⁻¹ = 6.875 g L⁻¹