EQUATION

PRACTICE SHEET

If the equations $x^2 + k^2 = 2$ (k + 1) x has equal roots, then 1. If a, b and c are real numbers, then roots of the equation (x-a) 12. (x-b) + (x-b) (x-c) + (x-c) (x-a) = 0 are always: what is the value of k? (a) Real (b) Imaginary (b) $-\frac{1}{2}$ (a) – (c) Positive (d) Negative (d) 1 (c) 0 If $x = 2 + 2^{1/3} + 2^{2/3}$, then what is the value of $x^3 - 6x^2 + 6x^2$? 2. (b) 2 (a) 1 13. If α , β are the roots of the equations $x^2 - 2x - 1 = 0$, then (d) -2 (c) 3 what is the value of $\alpha^2 \beta^{-2} + \hat{\alpha}^{-2} \beta^2$ (a) –2 (b) 0 For the two equations $x^2 + mx + 1 = 0$ and $x^2 + x + m = 0$, 3. (c) 30 (d) 34 what is/are the value/values of m for which these equations have at least one common root? 14. Which one of the following values of x, y satisfies the (a) Only -2(b) Only 1 equation $2x + 3y \le 6$; $x \ge 0$, $y \ge 0$? (c) -2 and 1 (d) -2 and -1(a) x = 0, y = 3(b) x = 1, y = 2(c) x = 1, y = 1(d) x = 4, y = 0If (x+a) is a factor of both the quadratic polynomials $x^2 + px$ 4. + q and $x^2 + lx + m$, where p,q, l and m are constants, then What is the value of x at the intersection of $y = \frac{8}{(x^2 + 4)} =$ 15. which one of the following is correct? (a) $a = \frac{(m-q)}{(1-p)}, (1 \neq p)$ (b) $a = \frac{(m+q)}{(1+p)}, (1 \neq p)$ (c) $1 = \frac{(m-q)}{(a-p)}, (a \neq p)$ (d) $p = \frac{(m-q)}{(a-1)}, (a \neq 1)$ and x + y = 2?(a) 0 (b) 1 (c) 2 (d) - 116. If α and β are the roots of the equation $x^2 + 6x + 1 = 0$, then If the roots of the equation $4\beta^2 + \lambda\beta - 2 = 0$ are of the from what is $|\alpha - \beta|$ equal to? 5. (a) 6 (b) 3√2 $\frac{k}{k+1}$ and $\frac{k+1}{k+2}$ then what is the value of λ ? (c) 4√2 (d) 12 (a) 2k If $r^{1/3} + \frac{1}{r^{1/3}} = 3$ for a real number $r \neq 0$, then what $r + \frac{1}{r}$ 17. (d) k + 1(c) 2 If the sum of the squares of the roots of $x^2 - (p - 2) x - (p$ 6. equal to? $(+1) = 0 (p \in R)$ is 5, then p is equal to: (a) 27 (b) 36 (c) 9 (d) 18 (a) 0 (b) -1 (d) 3/2(c) 1 18. The number of rows in a lecture hall equals the number of seas in a row. If the number of rows is doubled and the If the roots of $x^2 - 2mx + m^2 - 1 = 0$ lie between -2 and 4, 7. number of seats in every row is reduced by 10, the number then which one of the following is correct? of seats is increased by 300. If x denotes the number of rows (a) $-1 \le m \le 3$ (b) $-3 \le m \le 3$ in the lecture hall, then what is the value of x? (c) $3 \le m \le 5$ $(d) -1 \le m \le 5$ (a) 10 (b) 15 (c) 20 (d) 30 For what values of a does the equation $\cos 2x + a \sin x = 2a$ 8. -7 posses a real solution? 19. For what value of k, are the rots of the quadratic equation (k (a) a< 2 (b) a ≥ 8 + 1) $x^2 - 2(k-1)x + 1 = 0$ real and equal? (c) a > 8(d) a is integer < -2(a) k = 0 only (b) k = -3 only (c) k = 0 or k = 3(d) k = 0 or k = -3If sin θ and cos θ are the roots of $ax^2 + bx + c = 0$, then 9. constants a, b, c will satisfy which one of the following 20. If α and β are the roots of the equation $ax^2 + bx + c = 0$, then conditions? what are the roots of the equation $cx^2 + bx + a = 0$? (a) $a^2 + b^2 + 2ac = 0$ (b) $a^2 + b^2 - 2ac = 0$ (a) $\beta, \frac{1}{\alpha}$ (b) $\alpha, \frac{1}{\beta}$ (d) $\frac{1}{\alpha}, \frac{1}{\beta}$ (c) $a^2 - b^2 + 2ac = 0$ $(d) -a^2 + b^2 + 2ac = 0$ (c) –α, –β Let a, $b \in \{1, 2, 3\}$. What is the number of equations of the 10. form $ax^2 + bx + 1 = 0$ having real roots? 21. If the roots of the equation: $(a^2 + b^2) x^2 - 2b (a + c) x + (b^2) x^2 - b (a + c) x^2 - b (a + c) x^2 - b (a + c) x + (b^2) x^2 - b (a + c) x^2$ (a) 1 (b) 2 $(+ c^2) = 0$ are equal, then which one of the following is (c) 5 (d) 3 correct? (b) $b^2 = ac$ If $px^2 + qx + r = p(x - \alpha)(x - \beta)$, and $p^3 + pq + r = 0$; p, q (a) 2b = a + c11. (c) b + c = 2a(d) b = acand r being real numbers, then which of the following is possible: 22. Which of the following are the two roots of the equation (x^2) (a) $\alpha = \beta = p$ (b) $\alpha \neq \beta = p$ $(+2)^{2} + 8x^{2} = 6x (x^{2} + 2)?$ (c) $\alpha = \beta \neq p$ (d) $\beta \neq \alpha = p$ (a) 1± i (b) $2 \pm i$ (c) $1 \pm \sqrt{2}$ (d) $2 \pm I \sqrt{2}$

23.	If α and β are the roots of the α what is the value of $\alpha^3 + \beta^3$?	Equation $x^2 - 2x + 4 = 0$, then	28.	If p and q are positive integers, then which one of the following equations has $p-\sqrt{q}$ as one of its roots?			
	(a) 16 (c) 8	(b) -16 (d) -8		(a) $x^2 - 2px - (p^2 - q) = 0$ (b) $x^2 - 2px + (p^2 - q) = 0$			
24.	If α and β are the roots of the which of the following are the $1 = 0$?	equation $x^2 + x + 1 = 0$, then roots of the equation $x^2 - x +$		(b) $x^2 + 2px + (p^2 - q) = 0$ (c) $x^2 + 2px - (p^2 - q) = 0$ (d) $x^2 + 2px + (p^2 - q) = 0$			
	(a) α^7 and β^{13} (c) α^{20} and β^{20}	(b) α^{13} and β^{7} (d) None of these	29.	If the equation $x^2 - bx + 1 = 0$ then which one of the following $(a) -3 < b < 3$) does not possess real roots, g is correct? (b) $-2 \le b \le 2$		
25.	If the equations $x^2 + kx + 64 =$ real roots, then what is the value	$= 0 \text{ and } x^2 - 8x + k = 0 \text{ have}$ le of k?		(c) $b < 2$	(d) $b < -2$		
	(a) 4 (c) 12	(b) 8 (d) 16	30.	If p and q are the roots of the e what are the values of p and q t	equation $x^2 - px + q = 0$, then respectively?		
26.	If the product of the roots of th -3 , then what is the value of k	e equation $x^2 - 5x + k = 15$ is		(a) 1, 0 (c) -2 , 0	(b) 0, 1 (d) -2 , 1		
27.	(a) 12 (c) 16 If $\frac{1}{2\sqrt{2}}$ is one of the roots	(b) 15 (d) 18 of $ax^2 + bx + c = 0$, where a,	31.	If α , β are the roots of the quad- then which one of the following (a) $(\alpha^4 - \beta^4)$ is real (c) $(\alpha^6 - \beta^6) = 0$	tratic equation $x^2 - x + 1 = 0$, g is correct? (b) $2(\alpha^5 + \beta^5) = (\alpha\beta)^5$ (d) $(\alpha^8 + \beta^8) = (\alpha\beta)^8$		
	b and c are real, then what respectively? (a) $6, -4, 1$ (c) $3, -2, 1$	are the values of a, b, c (b) 4, 6, -1 (d) 6, 4, 1	32.	Consider the equation (x-p) (x coefficients. If the equation h values can p have? (a) 4 or 8 (c) 6 or 12	 (b) 5 or 10 (d) 3 or 6 		

	ANSWER KEY																		
1.	а	2.	b	3.	с	4.	а	5.	b	6.	с	7.	b	8.	b	9.	с	10.	d
11.	а	12.	b	13.	d	14.	с	15.	а	16.	с	17.	d	18.	d	19.	с	20.	d
21.	b	22.	b	23.	b	24.	d	25.	d	26.	а	27.	а	28.	b	29.	b	30.	а
31.	с	32.	а																

	Solutions	
Sol.1. (a) Given, (x-a) (x-b) + (x-b) (x-c) + (x-c) (x-a) = 0 $\Rightarrow 3x^2 - 2 (b+a+c) x + ab + bx + ca = 0$ Now, D = $\sqrt{4(a+b+c)^2 - 12(ab+bc+ca)}$ $= 2\sqrt{a^2 + b^2 + c^2 - ab - bc - ca}$ $= 2\sqrt{\frac{1}{2}(a-b)^2 + (b-c)^2 + (c-a)^2} \ge 0$ = 2 Sol.2. (b) $x = 2 + 2^{1/3} + 2^{2/3}$ $(x - 2) = 2^{1/3} + 2^{2/3}$ $(x - 2)^3 = (2^{1/3} + 2^{2/3})^3$ $x^3 - 8 - 6x^2 + 12x = 2 + 4 + 6(x - 2)$ $x^3 - 6x^2 + 6x = 2$ Sol.3. (c) Suppose the given equations have a common root α . Then, $\alpha^2 + m\alpha + 1 = 0$ and $\alpha^2 + \alpha + m = 0$	$\Rightarrow \frac{\alpha}{1-m} = \frac{1}{1-m} = \frac{1}{1-m}$ $\Rightarrow \frac{\alpha}{1-m} = \frac{1}{1-m} \Rightarrow \alpha = 1$ Also, $\frac{\alpha}{m2-1} = \frac{1}{1-m}$ $\Rightarrow 1-m = m^2 - 1$ $\Rightarrow m^2 + m - 2 - 1 (\because \alpha = 1)$ M ² + m - 2 = 0 $\Rightarrow (m+2) (m-1)=0$ $\therefore m=1, -2$ Sol.4. (a) Since, (x+a) is a factor of $x^2 + px + q$ and x^2 + lx + m. $\therefore a^2 - ap + q = 0 \dots (i)$ and $a^2 - la + m = 0 \dots (ii)$ From Eqs. (i) and (ii), we get $-ap + q + la - m = 0 \Rightarrow (l-p) a = m - q$ $\therefore a = \frac{m-q}{l-p} (l \neq p)$ Sol.5. (b)	Let $\frac{k}{k+1}$ and $\frac{k+1}{k+2}$ are the roots of the equation $4\beta^2 + \lambda\beta - 2 = 0$, then Sum of the roots $= \frac{k}{k+1} + \frac{k+1}{k+2} = -\frac{\lambda}{4}$ and product of the roots, $\frac{k}{k+1} \times \frac{k+1}{k+2} = -\frac{2}{4}$ $\Rightarrow \frac{k}{k+2} = -\frac{1}{2} \Rightarrow 2k = -k - 2 \Rightarrow k = -\frac{2}{3}$ Putting the value of k in (i), we get $\frac{-\frac{2}{3}}{-\frac{2}{3}+1} + \frac{-\frac{2}{3}+1}{-\frac{2}{3}+2} = \frac{\lambda}{4}$ $\Rightarrow \frac{-\frac{2}{3}}{\frac{1}{3}+\frac{3}{4}} = -\frac{\lambda}{4} \Rightarrow -2 + \frac{1}{4} = -\frac{\lambda}{4}$ $\Rightarrow \lambda = 7$ Sol.6. (c) Let α and β be the roots of

 $x^2 - (p - 2) x - (p + 1) = 0,$ Then $\alpha + \beta = (p - 2)$ and $\alpha\beta = -(p + 1)$ $\therefore \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ $\Rightarrow (\alpha + \beta)^2 - 2\alpha\beta = 5$ $\Rightarrow (p-2)^2 + 2(p+1) = 5$ $\Rightarrow p^2 - 4p + 4 + 2p + 2 = 5$ $\Rightarrow p^2 - 2p + 1 = 0$ $\Rightarrow (p - 1)^2 = 0 \Rightarrow p = 1$ Sol.7. (b) Since, the roots of $x^2 - 2mx + m^2 - 1 = 0$ lie between -2 and 4 i.e., b2 - 4 ac ≥ 0 and $-2 < \frac{-ba}{2a} < 4$:. $(2m)^2 - 4 (m^2 - 1) \ge 0$ and $-2 < \frac{2m}{2} < 4$ $\Rightarrow -2 < m < 4$ From (i) $4m^2 - \! 4m^2 + 4 \geq 0$ \Rightarrow m \in R and f(-2) > 0, also f(4) > 0 $4 + 4m + m^2 - 1 > 0$, $16 - 8m + m^2 - 1 > 0$ $\Rightarrow m^2 + 4m + 3 > 0, m^2 - 8m + 15 > 0$ \Rightarrow (m + 1) (m+3) > 0, (m-3) (m-5) > 0 $\Rightarrow -3 < m < -1$ and 3 < m < 5Sol.8. (b) Given equations $\cos 2x + a \sin x = 2a - 7$ can be written as $\cos^2 x - \sin^2 x + a \sin x = 2a - 7$ $\Rightarrow 1 - \sin^2 x - \sin^2 x + a \sin x = 2a - 7$ $\Rightarrow 2 \sin^2 x - a \sin x + (2a - 7 - 1) = 0$ $\Rightarrow 2 \sin^2 x - a \sin x + 2a - 8 = 0$ This is a quadratic equation in sin x and its discriminate ≥ 0 Here, a = 2, b = -a, c = 2a - 8 \Rightarrow a² - 4.2. (2a - 8) \geq 0 $\Rightarrow a^2 - 16a + 64 \ge 0$ $\Rightarrow (a - 8)^2 \ge 0 \Rightarrow a \ge 8$ Sol.9. (c) As given sin θ and cos θ are the roots of the equation $ax^2 + bx + c = 0$ So, sum of roots $=\sin\theta + \cos\theta = -\frac{b}{a}$...(1) and product of roots $=\sin\theta\cos\theta=\frac{c}{a}$ (2) On squaring both sides in Eq. (1), we get $(\sin\theta + \cos\theta)^2 = \frac{b^2}{a^2}$ $\Rightarrow \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta = \frac{b^2}{a^2}$ $\Rightarrow 1 + \frac{2c}{a} = \frac{b^2}{a^2}$ \Rightarrow a² + 2ca = b² (using Equations 02) $\Rightarrow a^2 - b^2 + 2ac = 0$ Sol.10. (d) The given equations is $ax^2 + bx + 1 = 0$ This equation has real roots When discriminate ≥ 0

 $\therefore b^2 - 4a \ge 0$ $\Rightarrow b^2 \ge 4a$ a, b has to be selected from, three numbers, so total 3 selections are possible when (a, b) are (1, 2), (1, 3) and (2, 3). Thus, the number of equations of the form $ax^2 + bx + 1 = 0$ having real root is 3. Sol.11. (a) Given equations is $px^{2} + qx + r = p(x - \alpha)(x - \beta)$ $\Rightarrow px^2 + qx + r = px^2 - p(\alpha + \beta)x + \alpha \beta p$ $\Rightarrow \alpha \beta p = r \text{ and } q = -(\alpha + \beta) p$ Also given that $p^3 + pq + r = 0$ Putting value of q and r from (1) $\Rightarrow p^3 - p^2 (\alpha + \beta) + \alpha \beta p = 0$ $\Rightarrow p^2 - p(\alpha + \beta) + \alpha\beta = 0$ $\Rightarrow (p - \alpha) (p - \beta) = 0 \Rightarrow \alpha = \beta = p$ Sol.12. (b) $x^2 + k^2 = 2 (k + 1) x$ \Rightarrow x² - 2 (k+1) x + k² = 0 For roots to be equal discriminate = 0So, $\{-2 (k + 1)\}^2 - 4k^2 = 0$ or, $4(k+1)^2 - 4k^2 = 0$ or, $(k + 1)^2 - k^2 = 0$ $\Rightarrow k = -\frac{1}{2}$ or. 2k + 1 = 0Sol.13. (d) Since, α and β are the roots of the equation $x^2 - 2x - 1 = 0$, then Sum of roots, $\alpha + \beta = 2$ and Product of the roots $\alpha\beta = -1$ Since, $(\alpha + \beta) = \alpha^2 + \beta^2 + 2\alpha\beta$ $\Rightarrow 4 = \alpha^2 + \beta^2 - 2$ $\Rightarrow \alpha^2 + \beta^2 = 6$ Now, $\alpha^2 \beta^{-2} + \alpha^{-2}\beta^2 = \frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2} = \frac{\alpha^4 + \beta^4}{(\alpha\beta)^2}$ $\Rightarrow (\alpha^2 + \beta^2)^2 = 6^2$ $\Rightarrow \alpha^4 + \beta^4 + 2\alpha^2\beta^2 = 36$ $\Rightarrow \alpha^4 + \beta^4 + 2 = 36 \quad (\because \alpha\beta = -1)$ $\Rightarrow \alpha^4 + \beta^4 = 34$ (i) $\Rightarrow \frac{\alpha^4 + \beta^4}{(\alpha\beta)^2} = \frac{34}{(-1)^2} = 34$ Putting value of $\alpha^4 + \beta^4 = 34$ from Equation (i)] Sol.14. (c) There can be many values of x and y for this in equation. In the given options only x =1, y = 1 satisfy the given equation. Sol.15. (a) Given equations are $y = \frac{8}{x^2 + 4}$ and x + y = 2Putting value of y from 1st equation into second equations $x + \frac{8}{x^2 + 4} = 2$ $\Rightarrow x^3 + 4x + 8 = 2x^2 + 8$ $\Rightarrow x^3 - 2x^2 + 4x = 0$ $\Rightarrow x (x^2 - 2x + 4) = 0$

 $\Rightarrow x = 0$ [The other value of x is not real] Sol.16. (c) α and β are the roots of the equation $x^2 + 6x$ +1 = 0 $\Rightarrow \alpha + \beta = -6 \text{ and } \alpha\beta = 1$ Now, $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$ $=(-6)^2 - 4 = 36 - 4 = 32$ $\Rightarrow |\alpha - \beta| = \sqrt{32} = 4\sqrt{2}$ Sol.17. (d) Given equation is: $r^{1/3} + \frac{1}{r^{1/3}} = 3$ Cubing both sides, we get $\left(r^{1/3} + \frac{1}{r^{1/3}}\right)^3 = 3^3$ $[(a+b)^3 = a^3+b^3+3ab(a+b)]$ $\Rightarrow r + \frac{1}{r} + 3\left(r^{1/3} + \frac{1}{r^{1/3}}\right)^3 = 27$ \Rightarrow r + $\frac{1}{r}$ + 3.3 = 27 r + $\frac{1}{r}$ + 27 - 9 = 18 Sol.18. (d) As given \Rightarrow Number of rows = x \Rightarrow Number of seats in each row = x Total number of seats in the hall = x^2 Revised number of rows = 2xRevised number of rows = 2xRevised number in each row = x - 10Thus Revised number of seats = 2x (x-10) = $2x^2 - 20x$ According to questions $2x^2 - 20x = 300 + x^2$ $\Rightarrow x^2 - 20x - 300 = 0$ $\Rightarrow x^2 - 30 x + 10x - 300 = 0$ \Rightarrow (x - 30) (x + 10) = 0 \Rightarrow x = 30 (\because x \neq 0) Sol.19. (c) As given: Roots of the quadratic equation $(k + 1) x^2 - 2 (k - 1) x + 1 = 0$ are real and equal, Its discriminate $\{-2 (k-1)^2 - 4 (k+1) = 0$ \Rightarrow 4 (k² - 2k + 1) -4 (k + 1) = 0 $\Longrightarrow k^2 - 2k + 1 - k - 1 = 0$ $\Rightarrow k^2 - 3k = 0$ \Rightarrow k = 0, k = 3 Sol.20. (d) As given, α , and β are the roots of $ax^2 + bx$ + c = 0, then the roots of $cx^2 + bx + a = 0$ will be reciprocal of α and β , i.e., $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ Sol.21. (b) Since, roots of the given equation are equal. $\therefore D = 0$ On solving, we get $b^2 = ac$ Sol.22. (b) $(x^{2}+2)^{2}+8x^{2}=6x(x^{2}+2)$

 $\Rightarrow \left(\frac{x^2+2}{x}\right)^2 - 6\left(\frac{x^2+2}{x}\right) + 8 = 0$ $\Rightarrow \left(\frac{x^2+2}{x}-2\right) \left(\frac{x^2+2}{x}-4\right) = 0$ $\Rightarrow \frac{x^2 + 2}{x} = 2 \Rightarrow x^2 + 2 = 2x$ $\Rightarrow x^2 - 2x + 2 = 0 \Rightarrow D \le 0$ $\Rightarrow \frac{x^2 + 2}{x} = 4 \Rightarrow x^2 + 2 = 4x$ $\Longrightarrow \! x^2 \! - 4x + 2 = 0 \Longrightarrow D \ge 0$ $\Rightarrow x^2 - 2x + 2 = 0$ $\Rightarrow 2 \pm i$ Sol.23. (b) Use $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta (\alpha + \beta)$ Sol.24. (d) Since, α and β be the roots of the equation $x^2 + x + 1 = 0$ $\therefore \alpha + \beta = 1$ and $\alpha \beta = 1$ $\Rightarrow \alpha = \omega$ and $\beta = \omega^2$ Since none of the options (a), (b), (c) satisfy the given equation, hence option (d) is correct. Sol.25. (d) Since, equations $x^2 + kx + 64 = 0$ and $x^2 -$ 8x + k = 0 have real roots $\therefore k^2 \ge 4 \times 64$ \Rightarrow k \geq 16 ...(i) ⇒k ≤ 16 ...(ii) and $64 \ge 4k$ From eqs. (i) and (ii), $\therefore k = 16$ Sol.26. (a)

 $k - 15 = -3 \Longrightarrow k = 12$ Sol.27. (a) he given root is $=\frac{1}{2-\sqrt{-2}}=\frac{2+\sqrt{2i}}{6}$ $\therefore \text{Another root} = \frac{2 - \sqrt{2i}}{6}$: equation is $-x^2 - \frac{2}{3}x + \frac{1}{6} = 0$ or $6x^2 - 4x$ +1 = 0Thus, a = 6, b = -4 and c = 1Sol.28. (b) sum of roots = 2pproduct of roots $= p^2 - q$ Sol.29. (b) Since, given equation does not possess real root. $\therefore D < 0 \Longrightarrow b^2 - 4 < 0$ $\Rightarrow b^2 < 4 \Rightarrow -2 < b < 2$ Sol.30. (a) $x^2 - px + q = 0$ p is root of this equation $p^2 - p^2 + q = 0 \Longrightarrow q = 0$ and $pq = q \Longrightarrow p = 1$ Sol.31. (c) Since, α and β be the roots of the equation $x^2 - x + 1 = 0$ $\therefore \alpha + \beta = 1$ and $\alpha\beta = 1$ Now, $\alpha - \beta = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta} = \sqrt{3i}$ $\Rightarrow \alpha = \frac{1 + i\sqrt{3}}{2}$ and $\beta = \frac{1 - i\sqrt{3}}{2}$

$$\Rightarrow \alpha = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} - \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$$

(a) $\alpha^4 - \beta^4 = \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$

$$= 2i \sin \frac{4\pi}{3} - \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$$

$$= 2i \sin \frac{4\pi}{3}$$

$$\Rightarrow \alpha^4 - \beta^4 \text{ is not real}$$

(b) $2(\alpha^5 + \beta^5)$

$$= 2\left(\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3} + \cos \frac{5\pi}{3} - i \sin \frac{5\pi}{3}\right)$$

$$= 2.2\cos \frac{5\pi}{3} = 4, \frac{1}{2} = 2$$

Now, $(\alpha\beta)^5 = 1$

$$\Rightarrow 2(\alpha^5 + \beta^5) \neq (\alpha\beta)^5$$

(c) $\alpha^6 - \beta^6 = \cos \frac{6\pi}{3} + i \sin \frac{6\pi}{3} - \cos \frac{6\pi}{3} + i \sin \frac{6\pi}{3}$

$$= 2 \text{ is in } 2\pi = 0$$

Hence, option (c) is correct.
Sol.32. (a)
The given equation can be rewritten as
 $x^2 - (p+6) x + (6p+1) = 0$
Now, $b^2 - 4ac = 0$ (:: equation has integral
roots)

$$\Rightarrow (p+6)^2 - 4(6p+1) = 0$$

Now $p^2 - 12p + 32 = 0$

$$\Rightarrow (p-4) (p-8) = 0$$

$$\therefore p = 4, 8$$

		NDA	P ?	rQ	
1.	One of the root of the a	uadratic equations $ax^2 + bx + c = 0$.	<u> </u>	(a) a.c	(b) h.c
	$a\neq 0$ is positive and the this to happen is:	other is negative. The condition for		(c) a, b	(d) $a+b$, $a+c$ [NDA (II) 2011]
	(a) $a > 0, b > 0, c > 0$ (c) $a < 0, b > 0, c < 0$	(b) $a > 0, b < 0, c > 0$ (d) $a < 0, c > 0$	13.	The equation $x^2 - 4x + 2$ the other root? (i= $\sqrt{-1}$)	29 = 0 has one root $2 + 5i$. What is
		[NDA (I) 2011]		(a) 2	(b) 5
2.	What is the sum of the r	oots of the equation $(2-\sqrt{3})x^2 - (7 - \sqrt{3})x^2 - (7 - \sqrt{3}$		(c) 2 + 5i	(d) 2 – 5i
	$4\sqrt{3}$ x + (2+ $\sqrt{3}$) = 0?	$(\mathbf{h}) 2 \cdot d2$	14		[NDA (II) 2011]
	(a) $2 - \sqrt{3}$ (c) $7 - 4\sqrt{3}$	(b) $2+\sqrt{3}$ (d) 4	14.	One of the roots of the $(a, b) = 0$ is 1, then what	equation $a(b-c) x^2 + b (c-a) x + c$ is the second root?
	(c) / + 13	(d) 4 [NDA (I) 2011]		(a=0) = 0 is 1, then what	is the second root?
3.	If one root of the equation of the other root, then w	on $ax^2 + bx + c = 0$, $a \neq 0$ is reciprocal hich one of the following is correct?		$(a) \frac{b(c-a)}{a(b-c)}$	(b) $\frac{b(c-a)}{a(b-c)}$
	(a) $a = c$	(b) b = c $(d) b = 0$		(c) $c(a-b)$	(d) $c(a-b)$
	(c) $a = -c$	(d) $b = 0$ [NDA (I) 2011]		$\frac{(c)}{a(b-c)}$	$(\mathbf{u}) = \frac{1}{\mathbf{a}(\mathbf{b} - \mathbf{c})}$
4.	If sum of squares of the	roots of the equation $x^2 + kx - b = 0$			[NDA (II) 2011]
	is 2b, then what is k equ	al to?	15.	What are the roots of the 2^{2}	equation:
	(a) 1	(b) b		$2(y+2)^2 - 5(y+2) = 12$ (a) $-7/2$ 2	(b) $-3/24$
	(c) - b	(d) 0		(a) $-\frac{7}{2}$,2 (c) $-\frac{5}{3}$ 3	(d) $\frac{3}{2}$ 4
5	If 3 is the root of the eq	[INDA (1) 2011] uation $x^2 - 8x + k = 0$ then what is		(0) 0,0,0	[NDA (II) 2011]
5.	the value of k?	x = 0x + k = 0, then what is	16.	If the roots of the equation	on $3x^2 - 5x + q = 0$ are equal, then
	(a) –15	(b) 9		what is the value of q?	
	(c) 15	(d) 24		(a) $\frac{2}{12/25}$	(b) 5/12 (d) 25/12
6	What is the condition th	[NDA (I) 2011] a_{2}		(c) 12/25	(u) 25/12 [NDA (II) 2011]
0.	$+ c = 0$ a $\neq 0$ should be	double the other?	17.	If the equations $x^2 - px$	$+ q = 0$ and $x^2 - ax + b = 0$ have a
	(a) $2a^2 = 9bc$	(b) $2b^2 = 9ac$		common root and the roo	ts of the second equation are equal,
	(c) $2c^2 = 9ab$	(d) None of these		then which one of the fol	llowing is correct?
_		[NDA (I) 2011]		(a) $aq = 2 (b+p)$ (c) $ap = 2 (b+q)$	(b) $aq = b+p$ (d) $ap = b+q$
7.	What is the solution set	for the equation $x^4 - 26x^2 + 25 = 0$?		(c) $ap = 2(0+q)$	(u) ap = b+q [NDA (II) 2011]
	(a) $\{-5, -1, 1, 5\}$	(b) $\{-5, -1\}$	18.	If the roots of equation	$x^2 - 4x - \log_3 N = 0$, are real, then
	(a) $\{0.5, 1.1, 1.5\}$ (c) $\{1.5\}$	(d) $\{-5, 0, 1, 5\}$		what is the minimum val	ue of N?
		[NDA (I) 2011]		(a) 1/256	(b) 1/27
8.	If p, q, r are rational nur	nbers, then the roots of the equation		(c) 1/64	(d) 1/81
	$x^2 - 2px + p^2 - q^2 + 2qr$	$-r^{2} = 0$ are:	10	The equation $\tan^4 x = 2\pi$	[NDA (II) 2011]
	(a) Complex (c) Irrational	(d) Rational	19.	real solution if $(a) a \leq 4$	(b) $ a \leq 4$
9.	If $x + y < 4$ then the h	low many non-zero positive integer		$(a) a \ge 4$ (c) a < $\sqrt{3}$	(d) none of above
	ordered pair (x,y) ?			$(\mathbf{c}) \mathbf{u} = \mathbf{v}_{\mathbf{c}}$	[NDA (II) 2011]
	(a) 4	(b) 5	20	If $\sin \theta - x + a$ for all	$x \in \mathbb{R} - \{0\}$ then which one of the
	(c) 6	(d) 8	20.	$\begin{array}{c} \Pi S \Pi \ \Theta = X + - 101 \text{an} \\ X \end{array}$	XCR {0}; then which one of the
10	10 10 11 1	[NDA (I) 2011]		following is correct ?	
10.	what is the value of α^{-2}	of equation $4x^2 + 3x + 7 = 0$, then $+\beta^{-2}$?		(a) $a \ge 4$	(b) $a \ge \frac{1}{2}$
	(a) 47/49	(b) 49/47		1	2
	(c) - 47/49	(d) -49/47		(c) $a \le \frac{1}{4}$	(d) $a \le \frac{1}{2}$
		[NDA (1) 2011]		·	[NDA (II) 2011]
11.	What is the value of $y =$	$\sqrt{8+2\sqrt{8+2\sqrt{8+2\sqrt{8+\infty}}}}$	21.	What is the sum of the s $x^2 + 2x - 143 = 0$?	quares of the roots of the equation
	(a) 10 (c) 6	(b) δ (d) 4		(a) 170	(b) 180 (b) 222
		(u) + [NDA (II) 2011]		(c) 190	(d) 290
12.	If α and β be the roots o	f the equation $(x-a)(x-b) = c, c \neq 0$.	22	If one of the roots of the	equation $x^2 + ax - b = 0$ is 1 then
	Then, the roots of the	equation $(x-\alpha)(x-\beta) + c = 0$ are:		what is the value of (a-b)?
				(a) -1	(b) 1

	(c) 2	(d) -2 [NDA (I) 2012]	34.	If the roots of a quadratic β , then the quadratic equilation of β , then the quadratic equilation of β .	equation $ax^2 + bx + c = 0$ are α and uation having roots α^2 and β^2 is:
23.	If α and β are the roots of	the equation. $x^2 - q(1 + x) - r = 0$			<u> </u>
	then what is the value of ($(1 + \alpha) (1 + \beta)?$		(a) $x^2 - (b^2 - 2ac) x + c =$	0
	(a) 1 − r	(b) q – r		(b) $a^2 x^2 - (b^2 - 2ac) x + c$	c = 0
	(c) $1 + r$	(d) q + r		(c) $ax^2 - (b^2 - 2ac) x + c^2$	= 0
24	T 1 1 (* C(1 * 1([NDA (I) 2012]		(d) $a^2 x^2 - (b^2 - 2ac) x + c$	$c^2 = 0$
24.	I ne solution of the simult and $3y = 8 + 4y$ will also	aneous linear equations $2x + y = 6$	25		[NDA (I) 2013]
	following linear equation:	be satisfied by which one of the	35.	If the sum of the roots of product is 2, then the equi	a quadratic equation is 3 and the
	(a) $x + y = 5$	(b) $2x + y = 5$		(a) $2\mathbf{x}^2 - \mathbf{x} + 3 = 0$	(b) $\mathbf{x}^2 - 3\mathbf{x} + 2 = 0$
	(c) $2x-3y = 10$	(d) $2x + 3y = 6$		(a) $2x^{2} - x + 3 = 0$ (c) $x^{2} + 3x + 2 = 0$	(b) $\mathbf{x}^2 - 3\mathbf{x} + 2 = 0$ (d) $\mathbf{x}^2 + 3\mathbf{x} - 2 = 0$
		[NDA (I) 2012]		$(0) \mathbf{x} + 5\mathbf{x} + \mathbf{z} = 0$	[NDA (I) 2013]
25.	If the difference between	the roots of $ax^2 + bx + c = 0$ is 1,	24		. 1 1 1
	then which one of the foll	owing is correct?	36.	What is the degree of the	equation $\frac{1}{x-3} = \frac{1}{x+2} - \frac{1}{2}?$
	(a) $b^2 = a (a+4c)$ (c) $a^2 = c (a+4c)$	(b) $a^2 = b (b+4c)$ (d) $b^2 = a (b+4c)$		(a) 0	(b) 1
	(c) a = c (a + 4c)	(0,0) = a(0+4c) [NDA (I) 2012]		(c) 2	(d) 3
	Direction (for next ty	wo): The equation formed by			[NDA (I) 2013]
	multiplying each root of a	$x^{2} + bx + c = 0$ by 2 is $x^{2} + 36x + c$	37.	If the roots of the equation $2x^2$, then which are of the	$3ax^2 + 2bx + c = 0$ are in the ratio
	24 = 0.			2. 5, then which one of th	e following is confect?
26.	What is the value of b:c?			(a) $8ac = 25b^2$	(b) $8ac = 9b^2$
	(a) $3:1$	(b) 1:2 (d) 2:2		(c) $8b^2 = 9ac$	(d) $8b^2 = 25ac$
	(c) 1.5	(u) 3.2 [NDA (I) 2012]			[NDA (I) 2013]
27.	Which one of the followir	ig correct?	38.	The area of a rectangle wh	hose length is five more than twice
	(a) $bc = a^2$	(b) $bc = 36a^2$		of its width is /5 square u	init. The length is
	(c) $bc = 72a^2$	(d) $bc = 108a^2$		(a) 5 unit	(b) 10 unit
20	If the marker of the arrest due to	[NDA (1) 2012]		(c) 15 unit	(d) 20 unit
28.	and unequal then which c	c equation $3x^2 - 5x + p = 0$ are real one of the following is correct?			[NDA (I) 2013]
	(a) $p = 25/12$	(b) $P < 25/12$	39.	The quadratic equation x^2	$^{2} + bx + 4 = 0$ will have real roots,
	(c) $p > 25/12$	(d) $p \le 25/12$		$11: \qquad () O 1 1 < 4$	
		[NDA (II) 2012]		(a) Only $b \le -4$	(b) Only $b \ge 4$ (d) $b \le 4$ $b > 4$
29.	If the roots of a quadratic e	equation are $m + n$ and $m - n$, then		(c) = 4 < 0 < 4	$(U) U \leq -4, U \geq 4$ [NDA (II) 2013]
	the quadratic equation wil	l be:	40.	If α and β are the roots of	f the equation $x^2 + x + 2 = 0$, then
	(a) $x^2 + 2mx + m^2 - mn +$	$n^2 = 0$		$\alpha^{10} + \beta^{10}$	
	(b) $x^2 + 2 mx + (m-n)^2 = 0$ (c) $x^2 - 2mx + m^2 - n^2 = 0$			what is $\frac{\alpha^{-10} + \beta^{-10}}{\alpha^{-10} + \beta^{-10}}$ equal t	to?
	(c) $x = 2mx + m^2 - n^2 - 0$ (d) $x^2 + 2mx + m^2 - n^2 - 0$)		(a) 4096	(b) 2048
	$(\mathbf{u}) \times \mathbf{v} = 2\mathbf{n}\mathbf{x} + \mathbf{n}\mathbf{u} + \mathbf{n}\mathbf{v}$	[NDA (II) 2012]		(c) 1024	(d) 512
30.	If α , β are the roots of x^2	+ $px - q = 0$ and γ , δ are the roots			[NDA (II) 2013]
	of $x^2 - px + r = 0$, then	what is the value of $(\beta+\gamma)$ $(\beta+\delta)$?	41.	What is the difference in	the roots of the equation $x^2 - 10x$
				+9=0.	
	(a) $\mathbf{p} + \mathbf{r}$	(b) $\mathbf{p} + \mathbf{q}$		(a) 2	(b) 5 (d) 8
	(c) q + r	(a) $p - q$ [NDA (II) 2012]		(0) 5	[NDA (II) 2013]
31.	If α and β are roots of the	equation $x^2 + bx + c = 0$, then what	42.	If α and β are the roots of	the equation $ax^2 + bx + b = 0$, then
	is the value of $\alpha^{-1} + \beta^{-1}$?			what is the value of $\int \alpha$	β b_{-2}
	, b	a b		while is the value of $\sqrt{\frac{\beta}{\beta}}$	$\sqrt{\alpha} \sqrt{\alpha} \sqrt{\alpha} = 1$
	$(a) - \frac{-}{c}$	(b) $\frac{-}{c}$		(a) –10	(b) 0
	(-) C	c		(c) 1	(d) 2
	(c) $\frac{-}{b}$	$(d) - \frac{1}{b}$	12		[NDA (II) 2013]
		[NDA (I) 2013]	43.	(a) Are imaginary	$X^2 - \delta X + 10 = 0$: (b) Are distinct and real
32.	$(x+1)^2 - 1 = 0$ has			(a) Are magnary	(d) Cannot be determined
	(a) One real root	(b) Two real roots		(-, rice equal and real	[NDA (II) 2013]
	(c) I wo imaginary roots	(u) FOUR REAL FOOTS $[NIDA (I) 2012]$	44.	If a and b are rational and	d b is not perfect square, then the
33	If $4^{x} - 62^{x} + 8 - 0$ then the	e values of x are:		quadratic equation with ra	ational coefficients whose one root
	(a) $1,2$	(b) 1,1		is $3a + \sqrt{b}$ is:	1
	(c) 1,0	(d) 2,2		(a) $x^2 - 6ax + 9a^2 - b = 0$	(b) $3ax^2 + x - \sqrt{b} = 0$
		[NDA (I) 2013]		(c) $x^2 + 3ax + \sqrt{b=0}$	(d) $\sqrt{b} x^2 + x - 3a = 0$
			I		[NDA (II) 2013]

45.	How many real roots does $3 \mathbf{x} + 2 = 0$ have?	s the quadratic equation $f(x) = x^2 +$	56.	If the sum of the roots of equal to the sum of their s	f the equation $ax^2 + bx + c = 0$ is squares, then:
	(a) One	(b) Two		(a) $a^2 + b^2 = c^2$	(b) $a^2 + b^2 = a + b$
	(c) Four	(d) No real root		(c) $ab + b^2 = 2ac$	(d) $ab - b^2 = 2ac$
		[NDA (II) 2013]			[NDA (II) 2015]
46.	If $8x - 9y = 20$, and $7x - to?$	10 y = 9, then what is $2x-y$ equal	57.	If the roots of the equation	$n x^2 - nx + m = 0$ differ by 1, then:
	(a) 10	(b) 11		(a) $n^2 - 4m - 1 = 0$	(b) $n^2 + 4m - 1 = 0$
	(c) 12	(d) 13		(c) $m^2 + 4n + 1 = 0$	(d) $m^2 - 4n - 1 = 0$
47	What is the positive square	[NDA (II) 2013]	-0		[NDA (II) 2015]
4/.	(a) $\sqrt{3}$ 1	(b) $\sqrt{3} \pm 1$	58.	The number of real roots of	of the equation $x^2 - 3 x + 2 = 0$ is:
	(a) $\sqrt{3}$ 1 (c) $\sqrt{3}$ 2	(d) $\sqrt{3+2}$		(a) <i>A</i>	(b) 2
	(c) 13 2	[NDA-2013(2)]		(a) 4	(d) 1
48.	If α and β are the roots the	e equation $ax^2 + bx + c = 0$, where		(0) 2	[NDA (II) 2015]
	$a \neq 0$, then $(a\alpha + b) (a\beta +$	b) is equal to:		Direction (for next two):	:
	(a) ab	(b) bc		Let α and β ($\alpha < \beta$) be th	e roots of the equation $x^2 + bx + c$
	(c) ca	(d) abc		= 0, where $b > 0$ and $c < 0$).
		[NDA (I) 2014]	59.	Consider the following:	
49.	The roots of the equation	$2a^2 x^2 - 2abx + b^2 = 0$, when $a < 0$		$I.\beta < -\alpha$	II. $\beta < \alpha $
	and $b > 0$ are:			Which of the above is/are	correct?
	(a) Sometimes complex	(b) Always irrational		(a) Only I	(b) Only II
	(c) Always complex	(d) Always real		(c) Both I and II	(d) Neither I nor II
50	Every quadratic equation	[NDA (1) 2014]	60	Consider the following	NDA (1) 2016]
50.	Every quadratic equation $\mathbf{R} = \pm 0$ has:	$ax + bx + c = 0$, where $a, b, c \in$	00.	Let $\beta + \alpha\beta > 0$	$\mathbf{H} = \alpha^2 \mathbf{R} + \mathbf{R}^2 \alpha > 0$
	(a) Exactly one real root	(b) At least one real root		$1.\alpha + p + \alpha p > 0$ Which of the above is/are	II. α -p + p- $\alpha > 0$
	(c) At least two real roots	(d) At most two real roots		(a) Only I	(b) Only II
	(•) 110 10430 1110 1041 10043	[NDA (II) 2014]		(c) Both I and II	(d) Neither I nor II
51.	If α , β are roots of $ax^2 + b$	$bx + c = 0$ and $\alpha + h$, $\beta + h$ are the			[NDA (I) 2016]
	roots of $px^2 + qx + r = 0$,	then what is h equal to?	61.	If one root of the equation	n: $(l-m) x^2 + lx + 1 = 0$ is double
	$\begin{pmatrix} a \end{pmatrix}$ 1 $\begin{pmatrix} b & q \end{pmatrix}$	(b) $1(b,q)$		the other and l is real, then	n what is the greatest value of m?
	$\left(\frac{a}{2}\right) = \left(\frac{a}{a} - \frac{b}{p}\right)$	$(0) \frac{1}{2} \left(-\frac{1}{a} + \frac{1}{p} \right)$		(a) –9/8	(b)9/8
	$1(\mathbf{h}, \mathbf{q})$	$1(\mathbf{b}, \mathbf{a})$		(c) -8/9	(d)8/9
	(c) $\frac{1}{2} \left \frac{b}{p} + \frac{q}{a} \right $	(d) $\frac{1}{2} \left[-\frac{3}{a} + \frac{4}{a} \right]$			[NDA (I) 2016]
	2(p u)			Direction (for next two):	O and the master of the acception
52	If $2n + 3a - 18$ and $4n^2 + 3a - 18$	[INDA (II) 2014] - $4na - 3a^2 - 36 = 0$ then what is		Given that tand and tar $\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c} = 0$ with $\mathbf{b} \neq 0$	ip are the roots of the equation
54.	(2p + a) equal to?	-pq $5q$ $50 = 0$, then what is	62	What is $\tan (\alpha \pm \beta)$ equal t	to?
	(a) 6	(b) 7	02.	(a) $\mathbf{h}(\mathbf{c} - 1)$	(b) $c(b - 1)$
	(c) 10	(d) 20		(c) $c(b-1)^{-1}$	(d) $\mathbf{b}(\mathbf{c}-1)^{-1}$
	. /	[NDA (I) 2015]			[NDA (I) 2016]
53.	In solving a problem that	t reduces to a quadratic equation,	63.	What is sin $(\alpha+\beta)$ sec α s	ec β equal to?
	one student makes a mista	ke in the constant term and obtain		(a) b	(b) -b
	8 and 2 for roots. Anothe	r student makes a mistake only in		(c) c	(d) -c
	the coefficient of first deg	gree term and finds -9 and -1 for			[NDA (I) 2016]
	roots. The correct equation $(2)^2 = 10^{-10}$	n 1s: $(1)^{2} \cdot 10 + 0 = 0$	64.	If $x^2 - px + 4 > 0$ for all r	real values of x, then which one of
	(a) $x^2 - 10x + 9 = 0$	(b) $x^2 + 10x + 9 = 0$ (d) $x^2 - 8x - 0 = 0$		the following is correct?	
	(c) $x^2 - 10x + 6 = 0$	(d) $x^2 - 8x - 9 = 0$		(a) $ \mathbf{p} < 4$	(b) $ p \le 4$
54	If m and n are roots of the	[NDA (1) 2015]		(c) $ p > 4$	(d) $ \mathbf{p} \ge 4$
54.	then roots of the equation	(x-m)(x-n) + k = 0 are			[NDA (I) 2016]
	(a) n and a	(b) $1/p$ and $1/q$	65.	If both the roots of the e	quation $x^2 - 2kx + k^2 - 4 = 0$ lie
	(c) $-$ n and $-$ a	(d) $\mathbf{p} + \mathbf{q}$ and $\mathbf{p} - \mathbf{q}$		between -3 and 5, then	which one of the following is
	(-) P Y	[NDA (I) 2015]		correct?	(b) $5 < k < 2$
55.	Consider the following s	tatements in respect of the given		$(a) = \angle \leq K \leq \angle$	$(0) - 3 \le K \le 3$ $(d) - 1 \le k \le 2$
	equation.			(c) - 3 < K < 3	(u) - 1 < K < 3 [NIDA (II) 2016]
	$(x^2 + 2)^2 + 8x^2 = 6x (x^2 + 1)^2$	2)		Direction (for next two)	Consider the following the next
	I. All the roots of the equa	ation are complex.		two items that follow. I	et α and β be the roots of the
	II. The sum of all the root	s of the equation is 6.		equation $x^2 - (1-2a^2)x +$	$-(1-2a^2) = 0$
	Which of the above states $(a) Only I$	(h) Only U	66.	Under what condition do	bes the above equation have real
	(a) UIIIY I (c) Both Land II	(d) Neither I por II		roots?	•
				(a) $a^2 < 1/2$	(b) $a^2 > 1/2$
		[11 D A (1) 2013]	I		

67.Under what condition is $\frac{1}{4c} + \frac{1}{b} < 17$ (c) $a^2 > 12$ (d) $a^2 + 12$ (d) $a^2 + 12$ (d) $a^2 + \frac{1}{2} < 12$ (d) $a^2 + \frac{1}{2} < \frac{1}{$		(c) $a^2 \le 1/2$	(d) $a^2 \ge 1/2$ [NDA (II) 2016]	76.	The sum of al real roots of $= 0$ is:	f the equation $ x - 3 ^2 + x - 3 - 2$
67. (a) $a^{-1} < 12$ (b) $a^{-1} > 12$ (c) $a^{-1} > 1$ (d) $a^{-1} > \frac{1}{3}$ (DDA (II) 2017] (c) $a^{-1} > 1$ (d) $a^{-1} > \frac{1}{3}$ (DDA (II) 2017] 17. If $a and J are the costs of the equation 3^{+2} + 2x + 1 = 0, then the equation 3^{+2} + 3x + 16 = 0 (b) 3x^{-1} + 8x + 16 = 0 (c) 3x^{+1} + 8x - 16 = 0 (d) x^{+1} + 8x + 16 = 0 (d) x^{+1} + 8x + 16 = 0 (d) x^{+1} + 8x + 16 = 0 (d) x^{-1} + 16x + 18x + 16 = 0 (d) x^{-1} + 16x + 18x + 16x + 18x + 16 $		Under what condition is -	$\frac{1}{\alpha^2} + \frac{1}{\alpha^2} < 1?$		(a) 2 (c) 4	(b) 3 (d) 6
$ \begin{array}{c} \text{(i)} & a^2 > 1 \\ \text{(i)} & a^2 < 1 \\ \text{(j)} & a^2 & a^2 & b^2 + 1 = 0, \text{ then } \\ \text{the equation whose roots are a + \beta^{-1} \text{ and } \beta + \alpha^{-1} \text{ six} \\ \text{the equation whose roots are a + \beta^{-1} \text{ and } \beta + \alpha^{-1} \text{ six} \\ \text{the equation whose roots are a + \beta^{-1} \text{ and } \beta + \alpha^{-1} \text{ six} \\ \text{(j)} & a^2 + 8x + 16 = 0 \\ \text{(j)} & 3x^2 + 10 \\ \text{(j)} & 3x^2 $	67.	(a) $a^2 < 1/2$	(b) $a^2 > 1/2$		(0) 4	[NDA (II) 2017]
bircetion (for next two): Consider the following for the next two items that follow: $2x^{i} + 3x - a - 0$ has most roots 2 and β while the equation x^{i} $3^{-3}m + 2m^{2} = 0$ has both roots positive, where $a > 0$ and β 3^{-0} . (a) $\frac{1}{2}$ (b) 1 (c) 2^{-1} (d) has both roots positive, where $a > 0$ and β 3^{-0} . (b) $\frac{1}{2}$ (c)		(c) $a^2 > 1$	(d) $a^2 \in \left(\frac{1}{3}, \frac{1}{2}\right)$	77.	If α and β are the roots of the equation whose roots a	the equation $3x^2 + 2x + 1 = 0$, then are $\alpha + \beta^{-1}$ and $\beta + \alpha^{-1}$ is:
$ \frac{d^2 + 3x + a^2 - 0}{(3 - 1)^2 - 0} $ has bools -2 and p while the equation $x^2 + bx + c = 0$, then which one of the following is correct? (a) $\frac{1}{2}$ (b) 1 (c) 2 (d) 4 (c)		Direction (for next two) next two items that follow	Consider the following for the		(a) $3x^2 + 8x + 16 = 0$ (c) $3x^2 + 8x - 16 = 0$	(b) $3x^2 - 8x - 16 = 0$ (d) $x^2 + 8x + 16 = 0$
68. What is the value of α ? (a) $\frac{1}{2}$ (b) 1 (c) 2 (d) 4 (DA (II) 2016 69. If β , 2, 2m are in GP, then what is the value of $\beta \sqrt{n}$? (a) 1 (b) 2 (c) 4 (d) 6 (NDA (II) 2016 70. If $c > 0$ and $4a + c < 2b$, then $ax^2 - bx + c = 0$ has a root in which one of the following increas? (a) 0.2) (b) 2.3) (c) (3.4) (d) (2.3) (c) (3.4) (d) (3.3) (c) (3.4) (d) (3.3) (c) (-3, -2) (2.3) (b) (-3, -3) (c) (-3, -2) (-2.3) (b) (-3, -3) (c) (-3, -4) (-2, -3) (b) (-3, -3) (c) (-3, -4) (-4) (-3) (b) (-2) (-3) 72. If the other of the equation $x^2 + bx + c = 0$ are in th same (a) $\frac{c^2 - 1}{b}$ (b) $\frac{1 - c}{c}$ (NDA (D) 2017] 73. If cot x and cot β are the roots of the equation $x^2 + bx + c = 0$ (a) $\frac{1}{2}$ (b) $\frac{b^2}{q^2}$ (c) $\frac{c}{r^2}$ (d) None of these (a) $\frac{c^2 - 1}{b}$ (b) $\frac{1 - c}{b}$ (NDA (D) 2017] 74. If the graph a quadratic polynomial like scattratice $x^2 + x + x + x + x + x + c = 0$, then what is $\frac{b}{2}$ (c) $\frac{c^2}{q^2}$ (d) $\frac{1}{q}$ (b) $\frac{4}{3}$ (c) $\frac{c}{q^2}$ (d) $\frac{1}{q}$ (d) $\frac{-3}{q^2}$ (DA (II) 2018] 75. The roots of the equation $(q - r), x^2 + (r - p) x + (p - q) = 1$ (a) $\frac{(-4)}{(q - r)^2}, (d)$ (b) $\frac{(-1)}{(q - r$		$-3mx + 2m^2 = 0$ has both	roots positive, where $\alpha > 0$ and β	78.	In $\triangle PQR$, $\angle R = \frac{\pi}{-}$. If tar	$\left[\frac{P}{Q}\right]$ and $\tan\left(\frac{Q}{Q}\right)$ are the roots
(a) $\frac{1}{2}$ (b) 1 (c) 2 (c) 4 (c) 4 (c	68.	What is the value of α ?			2	(2) (2)
(c) 2 (d) 4 (d) 5 (d) $b = c^{-1}$ (d) $b = c^{-1}$ (b) $b^{-1} = c^{-1}$ (c) $a^{-1} + a^{-1} = 0$ (b) $b^{-1} = c^{-1}$ (c) $a^{-1} + a^{-1} = 0$ (c) $a^{-1} + a^{-1} + a^{-1} + a^{-1} = 0$ (c) $a^{-1} + a^{-1} $		(a) $\frac{1}{2}$	(b) 1		following is correct? (a) $a = b + c$	$+ c = 0$, then which one of the (b) $\mathbf{b} = c + a$
$ \begin{array}{ c $		(c) 2	(d) 4		(a) $a = b + c$ (c) $c = a + b$	(b) $b = c + a$ (d) $b = c$
69. If β , 2, 2m are in GP, then what is the value of $\beta \sqrt{m}$? (a) 1 (b) 2 (c) 4 (d) 6 [NDA (II) 2016] 70. If $c > 0$ and $4a + c < 2b$, then $ax^2 - bx + c = 0$ has a root in (a) (0,2) (b) (2,3) (c) (3,4) (d) (-2,0) [NDA (II) 2016] 71. If the difference between the roots of the equation $x^2 + bx + c = 0$ has a root in (a) (0,2) (b) (2,3) (c) (-3, -2] $\cup [2,3)$ (d) None of these (a) $(c^2, -2) \cup (2,3)$ (d) None of these (a) $p^m = l^2 q$ (b) $m^m p = l^2 q$ (c) $m^2 p = q^2 l$ (d) $m^m p = l^2 q$ (e) $m^m p = l^2 q$ (g) $m^m p = l^2 q$ (b) $m^m p = l^2 q$ (g) $m^m p = l^2 q$ (h) $m^m p = l^2 q$ (g) $m^m p = l^2 q$ (h) $m^m p = l^2 q$ (g) $m^m p = l^2 q$ (h) $m^m p = l^2 q$ (g) $m^m p = l^2 q$ (h) $m^m p = l^2 q$ (g) $m^m p = l^2 q$ (h) $m^m p = l^2 q$ (g) $m^m p = l^2 q$ (h) $m^m p = l^2 q$ (g) $m^m p = l^2 q$ (h) $m^m p = l^2 q$ (g) $m^m p = l^2 q$ (h) $m^m p = l^2 q$ (g) $m^m p = l^2 q$ (h) $m^m p = l^2 q$ (g) $m^m p = l^2 q$ (h) $m^m p = l^2 q$ (g) $m^m p = l^2 q$ (h) $m^m p = l^2 q$ (g) $m^m p = l^2 q$ (h) $m^m p = l^2 q$ (g) $m^m p = l^2 q$ (h) $m^m p =$			[NDA (II) 2016]			[NDA (II) 2017]
(a) 1 (b) 2 (c) 4 (d) 6 (NA (II) 2016) (c) (3 (c) (3 (c) (b) (2.3) (c) (3 (c) (3 (c) (2.2) (c) (2.3) (c) (3 (c) (3 (c) (2.2) (c) (NDA (II) 2016) (c) (3 (c) (3 (c) (2.2) (c) (NDA (II) 2016) (c) (3 (c) (3 (c) (2.3) (c) (-3.3) (c) (-32) $\cup (2.3)$ (d) None of these (a) (c) (-3, -2) $\cup (2.3)$ (d) None of these (b) (-3.3) (c) (-3, -2) $\cup (2.3)$ (d) None of these (c) (-3, -2) $\cup (2.3)$ (d) None of the equation x ² + bx + c = 0 and equal.1 F D ₁ and D ₂ are respective (c) (-3, -2) $\cup (2.3)$ (d) (-2) $\sum (DDA (I) 2017]$ 73. If f cot c and cot β are the roots of the equation $x^2 + bx + c = 0$ (a) $\frac{a^2}{2}$ (b) $\frac{b^2}{4}$ (b) Cher notis series (and the other is complex (c) (-3, -1) (-2) (-2) (-2) (-2) (-2) (-2) (-2) (-2	69.	If β , 2, 2m are in GP, the	hen what is the value of $\beta \sqrt{m}$?	79.	It is given that the roots of are real. For this, the mining $(a) 1/27$	f the equation $x^2 - 4x - \log_3 P = 0$ mum value of P is: (b) 1/64
(c) $\sqrt{(p-1)}$ (c) $\sqrt{(p-1)}$ (c) $\sqrt{(p-1)}$, 1 (c) $\sqrt{(p-1)}$, 1 ($\begin{array}{c} \text{(a) 1} \\ \text{(c) } \end{array}$	(b) 2 (d) 6		(a) $1/27$ (c) $1/81$	(d) 1
 70. If c > 0 and 4 a + c > 2b, then ax² − bx + c = 0 has a root in which one of the following intervals? (a) (0.2) (b) (2.3) (c) (3.4) (d) (-2.0) 71. If the difference between the roots of the equation x² + kx + 1 = 0 is strictly less than √5, where k ≥ 2, then k can bary element of the interval: (a) (-3, -2) ∪ (2,3) (b) (-3, 3) (c) (-3, -2) ∪ (2,3) (d) None of these (c) (-3, -2) ∪ (2,3) (d) None of the equation x² + bx + c = 0 are equal. If D and D 2 are respective (c) m²p - q² l (d) m²p - l² q (c) (-3, -1) (d) (-3, -1) (NDA (I) 2017] 74. If the graph a quadratic polynomial lise entirely above x axis, which one of the following is correct? (a) Both the roots are real (b) One root is real and the other is complex (c) Both the roots are real (b) One root is real and the other is complex (c) (2 cannot say (DDA (I) 2017] 75. The roots of the equation (q - r) x² + (r - p) x + (r - q) = 1 (NDA (II) 2018] 84. If α and β (≠0) are the roots of the quadratic equation x² + ax + β where are: ((C) 4	[NDA (II) 2016]			[NDA-2017(2)]
which one of the following intervals? (a) $(0,2)$ (b) $(2,3)$ (c) $(3,4)$ (d) $(-2,0)$ (NDA (II) 2016 7. If the difference between the roots of the equation $x^2 + kx + 1 = 0$ is strictly less than $\sqrt{5}$, where $ k \ge 2$, then k can be any element of the interval: (a) $(-3, -2) \cup (2,3)$ (b) $(-3,3)$ (c) $(-3, -2] \cup [2,3)$ (d) None of these (c) $(-3, -2] \cup [2,3)$ (d) None of these (c) $(-3, -2] \cup [2,3)$ (d) None of these (c) $(-3, -2] \cup [2,3)$ (d) None of these (a) $p^{2n} = l^{2}$ (b) $m^{2}p = l^{2}q$ (c) $m^{2}p = q^{2}l$ (d) $m^{2}p^{2} = l^{2}q$ (c) $\frac{1}{c} = \frac{1}{b}$ (b) $\frac{1-c}{b}$ (n) DA (I) 2017 7. If feet c and $cot \beta$ are the roots of the equation $x^{2} + bx + c = 0$ (a) $\frac{c-1}{b}$ (b) $\frac{1-c}{b}$ (c) $\frac{c}{c-1}$ (d) $\frac{b}{1-c}$ (a) $\frac{c-1}{b}$ (b) $\frac{1-c}{b}$ (c) $\frac{c}{c-1}$ (d) $\frac{b}{1-c}$ (d) Charticly above x_{x} (a) $\frac{a^{2}}{3}$ (b) $\frac{b^{2}}{q^{2}}$ 7. If the graph a quadratic polynomial lies entirely above x_{x} (a) $\frac{a^{2}}{3}$ (b) $\frac{d}{3}$ (c) $\frac{3}{4}$ (d) $\left(-\frac{3}{4}\right\right)$ (c) $\frac{3}{4}$ (d) $\left(-\frac{3}{4}\right)$ (c) $\frac{1}{a}$ (b) $\frac{4}{3}$ (c) $\frac{3}{4}$ (d) $\left(-\frac{3}{4}\right)$ (c) $\frac{1}{a}$ (b) $\frac{4}{4}$ (c) Greatest value $\frac{9}{4}$ (c) Greatest value $\frac{9}{4}$ (c) Greatest value $\frac{1}{4}$ (d) Greatest value $\frac{9}{4}$ (c) Greatest value $\frac{1}{4}$ (d) Greatest value $\frac{9}{4}$ (c) $\frac{1}{a}$ (d) $\frac{1}{a}$ (d) $\frac{2}{a}$ (d) $\frac{1}{a}$ (d) $\frac{2}{a}$ (e) $\frac{1}{a}$ (d) $\frac{1}{a}$ (d) $\frac{2}{a}$ (f) $\frac{1}{a}$ (d)	70.	If $c > 0$ and $4a + c < 2b$, t	hen $ax^2 - bx + c = 0$ has a root in	80.	The equation $ 1 - x + x^2 =$	= 5 has:
(a) $(0, 2)$ (b) $(2, 3)$ (c) $(3, 4)$ (d) $(-2, 0)$ (DDA (II) 2016 71. If the difference between the roots of the equation $x^2 + kx + 1 = 0$ is strictly less than $\sqrt{5}$, where $ k \ge 2$, then k can be any element of the interval: (a) $(-3, -2) \cup (2, 3)$ (d) None of these (DDA (I) 2017 72. If the roots of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + kx + m = 0$, then which one of the following is correct? (a) $p^2m = l^2 q$ (b) $m^2 p = l^2 q$ (c) $m^2 p = q^2 l$ (d) $m^2 p = l^2 q$ (c) $m^2 p = q^2 l$ (d) $m^2 p = l^2 q$ (c) $m^2 p = q^2 l$ (d) $m^2 p = l^2 q$ (c) $m^2 p = q^2 l$ (d) $m^2 p = l^2 q$ (c) $m^2 p = q^2 l$ (d) $\frac{b}{1-b}$ (e) $(\frac{c}{c-1})$ (f) $(\frac{b}{1-c})$ (f) Cox α and $\cos\beta (0 < a < \beta < \pi)$ are the roots of the quadratic expression $-x^2 + \alpha x + \beta$ where $x < q > a$. (a) Both the roots are real (b) One root is real and the other is complex (c) Cannot say (d) Cannot say (d) Cannot say (d) $(\frac{-1}{q-1}) \frac{1}{2}$ (b) $\frac{(p-q)}{(p-q), 1}$. (a) $(\frac{(q-r)}{(p-q), 1} \frac{(d)}{(p-q), 1} \frac{(p-q)}{(p-q), 1} \frac{(d)}{(p-q), 1} $		which one of the following (a) $(0, 2)$	g intervals? $(b) (2, 3)$		(a) A rational root and an i	irrational root
(d) No real roots(NDA (II) 2016] 71. If the difference between the roots of the equation $x^2 + kx + 1 = 0$ is strictly less than $\sqrt{5}$, where $ k \ge 2$, then k can be any element of the interval: (a) $(-3, -2) \cup (2, 3)$ (b) $(-3, 3)$ (c) $(-3, -2) \cup (2, 3)$ (c) $(b) (-3, 3)$ (c) $(-3, -2) \cup (2, 3)$ (d) None of these Tation as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are induced by $\frac{1}{p^2}$.(d) None of the security and $\frac{1}{p^2}$ (c) $\frac{p^2}{q^2}$ (d) $\frac{p^2}{q^2}$ (DDA (II) 2017] 73. If cot α and cot β are the roots of the equation $x^2 + bx + c = 0$ divide $\frac{1}{p^2}$ (b) $\frac{1}{p^2}$ (c) $\frac{c}{c-1}$ (d) $\frac{b}{1-c}$ (d) $(-\frac{1}{b})$ (a) $\frac{c-1}{b}$ (b) $\frac{1-c}{b}$ (DDA (I) 2017](a) $\frac{a^2}{2}$ (b) $\frac{b^2}{2}$ (c) $\frac{c}{r^2}$ (d) None of these(a) $\frac{c-1}{b}$ (b) $\frac{1-c}{b}$ (DDA (I) 2017](a) $\frac{-4}{3}$ (b) $\frac{4}{3}$ (b) Dhe root is real and the other is complex (c) Both the roots are real (d) Cannot say(DDA (I) 2017] 75. The roots of the equation $(q - r) x^2 + (r - p) x + (p - q) = 0$ are: (a) $\frac{(r - p)}{(q - r)^2} \frac{1}{1}$ (b) $\frac{(p - q)}{(p - q)^2} \frac{1}{1}$ (d) $\frac{(r - p)}{(p - q)^2} \frac{1}{1}$ (e) $\frac{(q - p)}{(p - q)^2} \frac{1}{1}$ (b) $\frac{(p - q)}{(p - q)^2} \frac{1}{1}$ (f) A (II) 2018] 		(a) $(0,2)$ (c) $(3,4)$	(b)(2,3) (d)(-2,0)		(c) Two irrational roots	
71. If the difference between the roots of the equation $x^2 + kx + 1 = 0$ is strictly less than $\sqrt{5}$, where $ k \ge 2$, then k can be any element of the interval: (a) $(-3, -2) \cup (2, 3)$ (b) $(-3, 3)$ (c) $(-3, -2) \cup (2, 3)$ (c) $(-3, -2) \cup (2, 3)$ (d) None of these (a) $(-3, -2) \cup (2, 3)$ (d) None of these (c) $(-3, -2) \cup (2, 3)$ (d) None of these (a) $(-3, -2) \cup (2, 3)$ (d) None of these (a) $(-3, -2) \cup (2, 3)$ (d) None of these (a) $(-3, -2) \cup (2, 3)$ (d) None of these (a) $(-3, -2) \cup (2, 3)$ (d) None of these (a) $(-3, -2) \cup (2, 3)$ (d) None of these (a) $(-3, -2) \cup (2, 3)$ (d) None of these (b) for all real x. (a) $(2, -3) \cup (2, 3)$ (c) $(-3, -3) \cup (2, -3)$ (NDA-2018(2)] 77. If the roots of the equation $x^2 + bx + c = 0$ and $x^2 + bx + c = 0$ and $px^2 + qx + r = 0$ are equal. If D_1 and D_2 are respective discriminates, then what is $\frac{D}{D_2}$ equal to? (c) $\frac{c^2}{c-1}$ (d) $\frac{b}{1-c}$ (NDA (I) 2017] 78. If the graph a quadratic polynomial lies entirely above x- axis, which one of the following is correct? (a) Both the roots are real (b) One root is real and the other is complex (c) Both the roots are complex (d) Cannot say (NDA (I) 2017] 75. The roots of the equation $(q - r) x^2 + (r - p) x + (p - q) = 0$ are: (a) $(\frac{t-p}{q-1}) \frac{1}{1}$ (b) $(\frac{p-q}{q-r})^1$. (c) $(\frac{q-r}{q-1}) \frac{1}{2}$ (b) $(\frac{p-q}{(q-r)}) \frac{1}{2}$ (c) $\frac{Gratest value}{4} \frac{1}{4}$ (d) Greatest value $\frac{9}{4}$ (c) Greatest value $-\frac{1}{4}$ (b) Least value $\frac{9}{4}$ (c) Greatest value $-\frac{1}{4}$ (d) Greatest value $\frac{9}{4}$ (c) Greatest value $\frac{1}{4}$ (d) Greatest value $\frac{9}{4}$ (c)			[NDA (II) 2016]		(d) No real roots	[NIDA (T) 2019]
for all real x. for a	71.	If the difference between t	the roots of the equation $x^2 + kx + \frac{1}{2}$	81.	Suppose $f(x)$ is such a qua	dratic expression that it is positive
The factor of the following is correct? (a) $(-3, -2) \cup [2, 3)$ (b) $(-3, 3)$ (c) $(-3, -2) \cup [2, 3)$ (d) None of these (c) $(-3, -2) \cup [2, 3)$ (d) None of these (d) Start (1, 2, 3) (f) for events of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are the roots of the equation $x^2 + px + q = 0$ are equal. If D_1 and D_2 are respective discriminates, then what is $\frac{D_1}{D_1}$ equal to? (a) $\frac{a^2}{2}$ (b) $\frac{b^3}{q^2}$ (c) $\frac{c^2}{r^2}$ (d) None of these (a) $\frac{(-1)}{c}$ (b) $\frac{(-1)}{b}$ (b) One root is real and the other is complex (c) Both the roots are complex (d) Cannot say (NDA (II) 2017] 75. The roots of the equation $(q - r) x^2 + (r - p) x + (p - q) = 0$ are: (a) $\frac{(r-p)}{(q-r)}, \frac{1}{2}$ (b) $\frac{(p-q)}{(q-r)}, \frac{1}{2}$ (b) $\frac{(p-q)}{(p-q)}, \frac{1}{2}$ (c) $\frac{(p-q)}{(p-q)}, \frac{1}{2}$ (NDA (II) 2017] (NDA (II) 2018] 85. Consider the following expression: (a) Least value $\frac{1}{4}$ (b) Least value $\frac{9}{4}$ (c) Greatest value $\frac{1}{4}$ (d) Greatest value $\frac{9}{4}$ (c) Consider the following expression: (b) Data (II) 2018]		I = 0 is strictly less than any element of the interva	$\sqrt{5}$, where $ \mathbf{k} \ge 2$, then k can be 1.		for all real x.	
(c) $(-3, -2 \cup [2,3)$ (d) None of these (NDA (I) 2017] 72. If the roots of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + px + q = 0$ are in the same ratio of roots of the equation $x^2 + px + q = 0$ are in the same ratio of roots of the equation $x^2 + px + q = 0$ are in the same ratio of roots of the equation $x^2 + px + r = 0$ are equal. If D ₁ and D ₂ are respective discriminates, then what is $\frac{D_1}{D_2}$ equal to? (c) $m^2p=q^2 l$ (d) $m^2p^2 = l^2 q$ (c) $m^2p=q^2 l$ (d) $\frac{b}{1-c}$ (NDA (I) 2017] 73. If for α and cot β are the roots of the equation $x^2 + px + c = 0$ (with b=0, then the value of cot ($\alpha+\beta$) is: (a) $\frac{c^2}{c-1}$ (b) $\frac{b}{1-c}$ (NDA (I) 2017] 74. If the graph a quadratic polynomial lies entirely above x- axis, which one of the following is correct? (a) Both the roots are real (b) One root is real and the other is complex (c) Buth the roots are complex (d) Cannot say (d) Cannot say (mode (I) $\frac{c-1}{(p-q)}, \frac{1}{2}$ (b) $\frac{(p-q)}{(q-r)}, \frac{1}{2}$ (a) $\frac{(q-r)}{(p-q)}, \frac{1}{2}$ (b) $\frac{(p-q)}{(q-r)}, \frac{1}{2}$ (b) $\frac{(p-q)}{(p-q)}, \frac{1}{2}$ (c) $\frac{(p-q)}{(p-q)}, \frac{1}{2}$ (c) $\frac{(q-r)}{(p-q)}, \frac{1}{2}$ (d) $\frac{(p-q)}{(p-q)}, \frac{1}{2}$ (a) $\frac{(p-r)}{(p-q)}, \frac{1}{2}$ (b) $\frac{(p-q)}{(p-q)}, \frac{1}{2}$ (b) $\frac{(p-q)}{(p-q)}, \frac{1}{2}$ (c) $\frac{(p-q)}{(p-q)}, \frac{1}{2}$ (c) $\frac{(q-r)}{(p-q)}, \frac{1}{2}$ (d) $\frac{(p-q)}{(p-q)}, \frac{1}{2}$ (a) $\frac{(p-r)}{(p-q)}, \frac{1}{2}$ (b) $\frac{(p-q)}{(p-q)}, \frac{1}{2}$ (c) $\frac{(q-r)}{(p-q)}, \frac{1}{2}$ (c) $\frac{(p-r)}{(p-q)}, \frac{1}{2}$ (c) $\frac{(q-r)}{(p-q)}, \frac{1}{2}$ (c) $\frac{(q-r)}{(p-q)}, \frac{1}{2}$ (c) $\frac{(q-r)}{(p-q)}, \frac{1}{2}$ (c) $(q-$		(a) $(-3, -2) \cup (2,3)$	(b) (-3, 3)		If $g(x) = f(x) + f'(x) + f''(x)$ (a) $g(x) < 0$	(b) $g(x) > 0$
(NDA (I) 2017) 72. If the roots of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + lx + m = 0$, then which one of the following is correct? (a) $p^2m = l^2 q$ (b) $m^2p = l^2 q$ (c) $m^2p = q^2 l$ (d) $m^2p^2 = l^2 q$ (NDA (I) 2017] 73. If cot α and $\cot \beta$ are the roots of the equation $x^2 + bx + c = 0$ and $px^2 + qx + r = 0$ are equal. If D ₁ and D ₂ are respective discriminates, then what is $\frac{D_1}{D_2}$ equal to? (a) $\frac{c^{-1}}{b}$ (b) $\frac{1-c}{b}$ (c) $\frac{c}{c-1}$ (d) $\frac{b}{1-c}$ 174. If the graph a quadratic polynomial lies entirely above $x_{axis, which one of the following is correct? (a) Both the roots are real (b) One root is real and the other is complex (c) Both the roots are complex (d) Cannot say 175. The roots of the equation (q - r) x^2 + (r - p) x + (p - q) = 0are:(a) \frac{(r-p)}{(q-r)} \frac{1}{2} (b) \frac{(p-q)}{(q-r)}, 1(c) \frac{(q-r)}{(p-q)}, 1(c) \frac{(q-r)}{(p-q)}, 1(d) \frac{(r-p)}{(p-q)}, 1(d) \frac{(r-p)}{(p-q)}, 1(NDA (II) 2017]185. Consider the following expression:$		(c) (−3, −2] ∪ [2,3)	(d) None of these		(a) $g(x) < 0$ (c) $g(x) = 0$	(d) $g(x) \ge 0$
12. If the ratio of the equation $x^2 + lx + m = 0$, then which one of the following is correct? (a) $p^2m = l^2 q$ (b) $m^2p = l^2 q$ (c) $m^2p = q^2 l$ (d) $m^2p^2 = l^2 q$ (mDA (I) 2017] 73. If cot α and cot β are the roots of the equation $x^2 + bx + c = 0$ (a) $\frac{c^{-1}}{b}$ (b) $\frac{1-c}{b}$ (c) $\frac{c^{-1}}{c-1}$ (d) $\frac{b}{1-c}$ (NDA (I) 2017] 74. If the graph a quadratic polynomial lies entirely above x- axis, which one of the following is correct? (a) Both the roots are real (b) One root is real and the other is complex (c) Both the roots are real (d) Cannot say 175. The roots of the equation $(q - r) x^2 + (r - p) x + (p - q) = 0$ are: (a) $\frac{(r-p)}{(q-r)}, \frac{1}{2}$ (b) $\frac{(p-q)}{(p-q)}, \frac{1}{2}$ (NDA (II) 2017] 176. The roots of the equation $(q - r) x^2 + (r - p) x + (p - q) = 0$ are: (a) $\frac{(r-p)}{(p-q)}, \frac{1}{1}$ (d) $\frac{(r-p)}{(p-q)}, \frac{1}{2}$ (NDA (II) 2017] (NDA (II) 2017] 176. The roots of the equation $(q - r) x^2 + (r - p) x + (p - q) = 0$ are: (a) $\frac{(r-p)}{(p-q)}, \frac{1}{2}$ (b) $\frac{(p-q)}{(p-q)}, \frac{1}{2}$ (NDA (II) 2017] 177. 1 (d) $\frac{(r-p)}{(p-q)}, \frac{1}{2}$ (b) $\frac{(p-q)}{(p-q)}, \frac{1}{2}$ (NDA (II) 2017] 1 (C) $\frac{(q-r)}{(p-q)}, 1$ (d) $\frac{(r-p)}{(p-q)}, \frac{1}{2}$ (NDA (II) 2017] (NDA (II) 2017] 1 (DA (II) 2018] 1 (C) Greatest value $\frac{1}{4}$ (D) Least value $\frac{9}{4}$ (C) Greatest value $\frac{1}{4}$ (D) Createst value $\frac{9}{4}$ (C) Greatest value $\frac{1}{4}$ (D) Createst value $\frac{9}{4}$ (C) Greatest value $\frac{1}{4}$ (D) Createst value $\frac{9}{4}$ (DA (II) 2018] 1 (DA (II	72.	If the roots of the equation	[NDA (I) 2017] n $x^2 + px + q = 0$ are in the same			[NDA-2018(2)]
(a) $p^{2m} = l^{2} q$ (b) $m^{2}p = l^{2} q$ (c) $m^{2}p = q^{2} l$ (d) $m^{2}p^{2} = l^{2} q$ [NDA (I) 2017] 73. If $\cot \alpha$ and $\cot \beta$ are the roots of the equation $x^{2} + bx + c = 0$ with $b \neq 0$, then the value of $\cot (\alpha + \beta)$ is: (a) $\frac{c^{-1}}{b}$ (b) $\frac{1-c}{b}$ (c) $\frac{c}{c-1}$ (d) $\frac{b}{1-c}$ 74. If the graph a quadratic polynomial lies entirely above x- axis, which one of the following is correct? (a) Both the roots are real (b) One root is real and the other is complex (c) Both the roots are real (d) Cannot say INDA (I) 2017] 75. The roots of the equation $(q - r) x^{2} + (r - p) x + (p - q) = 0$ are: (a) $\frac{(r-p)}{(q-r)}, \frac{1}{2}$ (b) $\frac{(p-q)}{(q-r)}, 1$ (c) $\frac{(q-r)}{(q-r)}, 1$ (d) $\frac{(r-p)}{(p-q)}, \frac{1}{2}$ INDA (II) 2017] INDA (II) 2017] INDA (II) 2017] INDA (II) 2017] S5. Consider the following expression:		ratio as those of the equation of the following is correct	on $x^2 + lx + m = 0$, then which one ?	82.	The ratio of roots of the equation $r = 0$ are equations of the equation $r = 0$ are equations of the roots	quations $ax^2 + bx + c = 0$ and px^2 d. If D ₁ and D ₂ are respective
(c) If $p=q$, i. (d) If $p=r+q$, (e) and $p=r+q$, (f) NDA (I) 2017 73. If $\cot \alpha$ and $\cot \beta$ are the roots of the equation $x^2 + bx + c = 0$ with $b\neq 0$, then the value of $\cot (\alpha+\beta)$ is: (a) $\frac{c-1}{b}$ (b) $\frac{1-c}{b}$ (c) $\frac{c}{c-1}$ (d) $\frac{b}{1-c}$ INDA (I) 2017 74. If the graph a quadratic polynomial lies entirely above x-axis, which one of the following is correct? (a) Both the roots are real (b) One root is real and the other is complex (c) Both the roots are complex (d) Cannot say INDA (I) 2017 75. The roots of the equation $(q-r)x^2 + (r-p)x + (p-q) = 0$ are: (a) $(\frac{r-p}{(q-r)}, \frac{1}{2}$ (b) $\frac{(p-q)}{(q-r)}, 1$ (c) $\frac{(q-r)}{(q-r)}, \frac{1}{2}$ (b) $\frac{(p-q)}{(p-q)}, \frac{1}{2}$ INDA (II) 2017 INDA (II) 2017 INDA (II) 2017 S5. Consider the following expression: INDA (II) 2018 S5. Consider the following expression:		(a) $p^2m = l^2 q$ (c) $m^2p = q^2 l$	(b) $m^2 p = l^2 q$ (d) $m^2 p^2 - l^2 q$		discriminates, then what is	$\frac{D_1}{D_2}$ equal to:
73. If $\cot \alpha$ and $\cot \beta$ are the roots of the equation $x^2 + bx + c = 0$ with $b \neq 0$, then the value of $\cot (\alpha + \beta)$ is: (a) $\frac{c-1}{b}$ (b) $\frac{1-c}{b}$ (c) $\frac{c}{c-1}$ (d) $\frac{b}{1-c}$ INDA (I) 2017] 74. If the graph a quadratic polynomial lies entirely above x- axis, which one of the following is correct? (a) Both the roots are real (b) One root is real and the other is complex (c) Both the roots are complex (d) Cannot say INDA (I) 2017] 75. The roots of the equation $(q - r) x^2 + (r - p) x + (p - q) = 0$ are: (a) $\frac{(r-p)}{(q-r)} \cdot \frac{1}{2}$ (b) $\frac{(p-q)}{(q-r)} \cdot \frac{1}{2}$ INDA (II) 2017] 175. The roots of the equation $(q - r) x^2 + (r - p) x + (p - q) = 0$ are: (a) $\frac{(r-p)}{(q-r)} \cdot \frac{1}{2}$ (b) $\frac{(p-q)}{(q-r)} \cdot \frac{1}{2}$ INDA (II) 2017] 176. The roots of the equation $(q - r) x^2 + (r - p) x + (p - q) = 0$ are: (a) $\frac{(r-p)}{(q-q)} \cdot \frac{1}{2}$ (b) $\frac{(p-q)}{(p-q)} \cdot \frac{1}{2}$ INDA (II) 2017] 177. 1 (c) $\frac{(q-r)}{(q-r)} \cdot \frac{1}{2}$ (c) $\frac{(q-r)}{(p-q)} \cdot \frac{1}{2}$ 178. 1 (c) Greatest value $-\frac{1}{4}$ (d) Greatest value $\frac{9}{4}$ (c) Greatest value $\frac{1}{4}$ (d) Greatest value $\frac{9}{4}$ (c		(c) in $p-q$	(d) m p = r q [NDA (I) 2017]		(a) $\frac{a^2}{a}$	(b) $\frac{b^2}{2}$
10 with b≠0, then the value of cot $(\alpha + \beta)$ is: (a) $\frac{c-1}{b}$ (b) $\frac{1-c}{b}$ (c) $\frac{c}{c-1}$ (d) $\frac{b}{1-c}$ (DDA (I) 2017] 74. If the graph a quadratic polynomial lies entirely above x- axis, which one of the following is correct? (a) Both the roots are real (b) One root is real and the other is complex (c) Both the roots are complex (d) Cannot say INDA (I) 2017] 75. The roots of the equation $(q - r) x^2 + (r - p) x + (p - q) = 0$ are: (a) $\frac{(r-p)}{(q-r)}, \frac{1}{2}$ (b) $\frac{(p-q)}{(q-r)}, 1$ (c) $\frac{(q-r)}{(p-q)}, 1$ (d) $\frac{(r-p)}{(p-q)}, \frac{1}{2}$ [NDA (II) 2017] 84. If α and β (\neq 0) are the roots of the quadratic equation $x^2 + \alpha x + \beta$ where $x \in \mathbb{R}$ has: (a) Least value $-\frac{1}{4}$ (b) Least value $\frac{9}{4}$ (c) Greatest value $\frac{1}{4}$ (d) Greatest value $\frac{9}{4}$ (c) Greatest value $\frac{1}{4}$ (d) Greatest value $\frac{9}{4}$ [NDA (II) 2018] 85. Consider the following expression:	73.	If $\cot \alpha$ and $\cot \beta$ are the r	roots of the equation $x^2 + bx + c =$		\mathbf{p}^2	q^2
(a) $\frac{c-1}{b}$ (b) $\frac{1-c}{b}$ (c) $\frac{c}{c-1}$ (d) $\frac{b}{1-c}$ [NDA (I) 2017] 74. If the graph a quadratic polynomial lies entirely above x-axis, which one of the following is correct? (a) Both the roots are real (b) One root is real and the other is complex (c) Both the roots are complex (d) Cannot say [NDA (I) 2017] 75. The roots of the equation $(q - r) x^2 + (r - p) x + (p - q) = 0$ are: (a) $\frac{(r-p)}{(q-r)}, \frac{1}{2}$ (b) $\frac{(p-q)}{(q-r)}, 1$ (c) $\frac{(q-r)}{(p-q)}, 1$ (d) $\frac{(r-p)}{(p-q)}, \frac{1}{2}$ [NDA (II) 2017] [NDA (II) 2017] [NDA (II) 2017] 85. Consider the following expression: (a) $\frac{c-1}{b}$ (c) $\frac{(q-r)}{4}$ (d) $\frac{(r-2)}{4}$ (d) $\frac{(r-2)}{4}$ (f) $\frac{(r-2)}{4}$ (f) $\frac{(r-2)}{4}$ (f) $\frac{(r-2)}{(p-q)}, \frac{1}{2}$ (f) $(r-2)$		0 with $b \neq 0$, then the value	of $\cot(\alpha+\beta)$ is:		(c) $\frac{c^2}{2}$	(d) None of these
13. If $\cos \alpha$ and $\cos \beta$ ($0 < a < \beta < \pi$) are the roots of the quadratic (a) Both the roots are real (b) One root is real and the other is complex (c) Both the roots are complex (d) Cannot say 15. The roots of the equation $(q - r) x^2 + (r - p) x + (p - q) = 0$ are: (a) $\frac{(r - p)}{(q - r)}, \frac{1}{2}$ (b) $\frac{(p - q)}{(p - q)}, 1$ (c) $\frac{(q - r)}{(p - q)}, 1$ (d) $\frac{(r - p)}{(p - q)}, 1$ (e) $\frac{(q - r)}{(p - q)}, 1$ (f) $\frac{(q - r)}{(p - q)}, 1$ 16. (f) $\frac{(p - q)}{(q - r)}, \frac{1}{2}$ 17. (f) $\frac{(p - q)}{(q - r)}, \frac{1}{2}$ 17. (h) $\frac{(p - q)}{(p - q)}, \frac{1}{2}$ 17. (h) $\frac{(p - q)}{(p - $		(a) $\frac{c-1}{b}$	$(b)\frac{1-c}{b}$		r	[NDA (II) 2018]
(c) $\frac{(c)}{c-1}$ (d) $\frac{1-c}{1-c}$ [NDA (I) 2017] 74. If the graph a quadratic polynomial lies entirely above x-axis, which one of the following is correct? (a) Both the roots are real (b) One root is real and the other is complex (c) Both the roots are complex (d) Cannot say [NDA (I) 2017] 75. The roots of the equation $(q - r) x^2 + (r - p) x + (p - q) = 0$ are: (a) $\frac{(r-p)}{(q-r)}, \frac{1}{2}$ (b) $\frac{(p-q)}{(q-r)}, 1$ (c) $\frac{(q-r)}{(p-q)}, 1$ (d) $\frac{(r-p)}{(p-q)}, \frac{1}{2}$ [NDA (II) 2017] [NDA (II) 2017] 85. Consider the following expression:		(c) c	(d) b	83.	If $\cos\alpha$ and $\cos\beta$ ($0 < a < \beta$	$\beta < \pi$) are the roots of the quadratic
[NDA (I) 2017]74. If the graph a quadratic polynomial lies entirely above x- axis, which one of the following is correct? (a) Both the roots are real (b) One root is real and the other is complex (c) Both the roots are complex (d) Cannot say(a) $-\frac{4}{3}$ (b) $\frac{4}{3}$ (c) $\frac{3}{4}$ 75. The roots of the equation $(q - r) x^2 + (r - p) x + (p - q) = 0$ are: (a) $\frac{(r - p)}{(q - r)}, \frac{1}{2}$ (c) $\frac{(q - r)}{(p - q)}, \frac{1}{2}$ (c) $\frac{(q - r)}{(p - q)}, \frac{1}{2}$ (c) $\frac{(q - r)}{(p - q)}, 1$ (d) $\frac{(r - p)}{(p - q)}, \frac{1}{2}$ [NDA (II) 2017]84. If α and β (\neq 0) are the roots of the quadratic equation $x^2 + \alpha x - \beta = 0$, then the quadratic expression $-x^2 + \alpha x + \beta$ where $x \in \mathbb{R}$ has: (a) Least value $-\frac{1}{4}$ (b) Least value $\frac{9}{4}$ (c) Greatest value $\frac{1}{4}$ (d) Greatest value $\frac{9}{4}$ (c) Greatest value $\frac{1}{4}$ (d) Greatest value $\frac{9}{4}$ (DA (II) 2018]85.Consider the following expression:		$\frac{(c)}{c-1}$	$\frac{(u)}{1-c}$		equation $4x^2 - 3 = 0$, then	what is the value of $\sec \alpha \times \sec \beta$?
14. If the graph a quadratic polynomial hes entirely above x- axis, which one of the following is correct? (a) Both the roots are real (b) One root is real and the other is complex (c) Both the roots are complex (d) Cannot say INDA (I) 2017] 75. The roots of the equation $(q - r) x^2 + (r - p) x + (p - q) = 0$ are: (a) $\frac{(r-p)}{(q-r)}, \frac{1}{2}$ (b) $\frac{(p-q)}{(q-r)}, 1$ (c) $\frac{(q-r)}{(p-q)}, \frac{1}{2}$ (b) $\frac{(p-q)}{(q-r)}, 1$ (c) $\frac{(q-r)}{(p-q)}, 1$ (d) $\frac{(r-p)}{(p-q)}, \frac{1}{2}$ INDA (II) 2017] 85. Consider the following expression: 16. (a) $\frac{-4}{3}$ (b) $\frac{4}{3}$ (c) $\frac{3}{4}$ (c) $\frac{3}{4}$ (d) $\left(-\frac{3}{4}\right)$ 17. 17. (e) $\frac{(p-q)}{(q-r)}, \frac{1}{2}$ (f) $\frac{(p-q)}{(q-r)}, \frac{1}{2}$ 17. (f) $\frac{(p-q)}{(q-r)}, \frac{1}{2}$ (f) $\frac{(p-q)}{(p-q)}, \frac{1}{2}$ 17. (f) $\frac{(p-q)}{(q-r)}, \frac{1}{2}$ (g) $\frac{(p-q)}{(p-q)}, \frac{1}{2}$ 17. (h) $\frac{(p-q)}{(p-q)}, \frac{1}{2}$ (h) $\frac{(p-q)}{(p-q)}, \frac{1}{2}$ 17. (h) $\frac{(p-q)}{(p-q)}, \frac{1}{2}$ (h) $\frac{(p-q)}{(p-q)}, \frac{1}{2}$ 17. (h) $\frac{(p-q)}{(p-q)}, \frac{1}{2}$ (h) $\frac{(p-q)}$	74	If the graph a guadratic	[NDA (I) 2017]		4	
(a) both the roots are recall (b) One root is real and the other is complex (c) Both the roots are complex (d) Cannot say [NDA (I) 2017] 75. The roots of the equation $(q - r) x^2 + (r - p) x + (p - q) = 0$ are: (a) $\frac{(r-p)}{(q-r)}, \frac{1}{2}$ (b) $\frac{(p-q)}{(q-r)}, 1$ (c) $\frac{(q-r)}{(p-q)}, 1$ (b) $\frac{(p-q)}{(p-q)}, \frac{1}{2}$ [NDA (II) 2017] 84. If α and β (\neq 0) are the roots of the quadratic equation $x^2 + \alpha x - \beta = 0$, then the quadratic expression $-x^2 + \alpha x + \beta$ where $x \in \mathbb{R}$ has: (a) Least value $-\frac{1}{4}$ (b) Least value $\frac{9}{4}$ (c) Greatest value $\frac{1}{4}$ (d) Greatest value $\frac{9}{4}$ [NDA (II) 2017] 85. Consider the following expression:	/4.	axis, which one of the foll	owing is correct?		(a) $-\frac{4}{3}$	(b) $\frac{4}{3}$
(c) Both the roots are complex (d) Cannot say $[NDA (I) 2017]$ 75. The roots of the equation $(q - r) x^2 + (r - p) x + (p - q) = 0$ are: (a) $\frac{(r-p)}{(q-r)}, \frac{1}{2}$ (b) $\frac{(p-q)}{(q-r)}, 1$ (c) $\frac{(q-r)}{(p-q)}, 1$ (d) $\frac{(r-p)}{(p-q)}, \frac{1}{2}$ [NDA (II) 2017] [NDA (II) 2017] [NDA (II) 2018] [NDA (II) 20		(b) One root is real and the	e other is complex		(c) $\frac{3}{4}$	(d) $\left(-\frac{3}{2}\right)$
(d) Cannot say [NDA (I) 2017] 75. The roots of the equation $(q - r) x^2 + (r - p) x + (p - q) = 0$ are: (a) $\frac{(r-p)}{(q-r)}, \frac{1}{2}$ (b) $\frac{(p-q)}{(q-r)}, 1$ (c) $\frac{(q-r)}{(p-q)}, 1$ (d) $\frac{(r-p)}{(p-q)}, \frac{1}{2}$ [NDA (II) 2017] 84. If α and β (\neq 0) are the roots of the quadratic equation $x^2 + \alpha x - \beta = 0$, then the quadratic expression $-x^2 + \alpha x + \beta$ where $x \in \mathbb{R}$ has: (a) Least value $-\frac{1}{4}$ (b) Least value $\frac{9}{4}$ (c) Greatest value $\frac{1}{4}$ (d) Greatest value $\frac{9}{4}$ [NDA (II) 2017] 85. Consider the following expression:		(c) Both the roots are com	plex		4	
75. The roots of the equation $(q - r) x^2 + (r - p) x + (p - q) = 0$ are: (a) $\frac{(r - p)}{(q - r)}, \frac{1}{2}$ (b) $\frac{(p - q)}{(q - r)}, 1$ (c) $\frac{(q - r)}{(p - q)}, 1$ (d) $\frac{(r - p)}{(p - q)}, \frac{1}{2}$ [NDA (II) 2017] 85. Consider the following expression: (a) Least value $\frac{1}{4}$ (b) Least value $\frac{9}{4}$ (c) Greatest value $\frac{1}{4}$ (d) Greatest value $\frac{9}{4}$ [NDA (II) 2018]		(d) Cannot say	[NDA (I) 2017]	84.	If α and β ($\neq 0$) are the root	ots of the quadratic equation x^2 +
$(a) \frac{(r-p)}{(q-r)}, \frac{1}{2}$ $(b) \frac{(p-q)}{(q-r)}, 1$ $(c) \frac{(q-r)}{(p-q)}, 1$ $(d) \frac{(r-p)}{(p-q)}, \frac{1}{2}$ [NDA (II) 2017] (a) Least value $-\frac{1}{4}$ (b) Least value $\frac{9}{4}$ (c) Greatest value $\frac{1}{4}$ (d) Greatest value $\frac{9}{4}$ [NDA (II) 2018] 85. Consider the following expression:	75.	The roots of the equation are:	$(q-r) x^{2} + (r-p) x + (p-q) = 0$		$\alpha x - \beta = 0$, then the quadra $x \in \mathbf{R}$ has:	atic expression $-x^2 + \alpha x + \beta$ where
$(c) \frac{(q-r)}{(p-q)}, 1$ $(d) \frac{(r-p)}{(p-q)}, \frac{1}{2}$ [NDA (II) 2017] (c) Greatest value $\frac{1}{4}$ (d) Greatest value $\frac{9}{4}$ [NDA (II) 2018] 85. Consider the following expression:		(a) $\frac{(r-p)}{(q-r)}, \frac{1}{2}$	(b) $\frac{(p-q)}{(q-r)}, 1$		(a) Least value $-\frac{1}{4}$	(b) Least value $\frac{9}{4}$
[NDA (II) 2017] 85. Consider the following expression:		$(c)\frac{(q-r)}{(p-q)}, 1$	(d) $\frac{(r-p)}{(p-q)}, \frac{1}{2}$		(c) Greatest value $\frac{1}{4}$	(d) Greatest value $\frac{9}{4}$
		<u> </u>	[NDA (II) 2017]	85.	Consider the following exp	[NDA (II) 2018] pression:

	1	3	116.	How many real numbers	satisfy the equation $ x - 4 + x - 7 $			
	$(c) - \frac{1}{5}$	$(d) - \frac{3}{5}$		= 15?	(b) only two			
		[NDA (II) 2021]		(a) only three	(d) infinitely many			
106.	The quadratic equation 3	$x^2 - (k^2 + 5k)x + 3k^2 - 5k = 0$ has		(c) only three	[NDA - 2023 (1)]			
	real roots of equal magnit	ude and opposite sign. Which one	117.	α and β are distinct real reading the second s	oots of the quadratic equation x^2 +			
	of the following is correct $(x) = x^{5}$	(1) 0 (1) (3)		ax + b = 0. Which of	the following statements is/are			
	(a) $0 < K < \frac{1}{3}$	(b) $0 < K < \frac{1}{5}$		sufficient to find α ?				
	3 - 5			1. $\alpha + \beta = 0$, $\alpha^2 + \beta^2 = 2$				
	(c) $\frac{1}{5} < k < \frac{1}{3}$	(d) No such value of k exists		2. $\alpha\beta^2 = -1$, a = 0				
		[NDA (II) 2021]		Select the correct answer	(b) 2 only			
107.	If p and q are the non-zer	b roots of the equation $x^2 + px + q$		(a) 1 Only (c) both 1 and 2	(b) 2 only (d) Neither 1 nor 2			
	= 0, then now many possi (a) Nil	(b) One		(c) bour 1 and 2	[NDA - 2023 (1)]			
	(c) Two	(d) Three	118.	If $2 - i\sqrt{3}$ where $i = \sqrt{-1}$ is	s a root of the equation $x^2 + ax + b$			
	(1)	[NDA (II) 2021]		= 0, then what is the value	e of (a + b)?			
108.	Consider all the real roots	of the equation $x^4 - 10x^2 + 9 = 0$.		(a) –11	(b) –3			
	What is the sum of the ab	solute values of the roots?		(c) 0	(d) 3			
	(a) 4 $(-)$ 8	(b) 6 (d) 10	110	For how many integral va	[NDA - 2023 (I)]			
	(c) 8	(d) 10 [NDA (II) 2021]	117.	= 0, where k is an integer	has real roots and both of them lie			
109.	Consider the in equations	5x - 4y + 12 < 0, x + y < 2, x < 0		in the interval $(0, 5)$?				
	and $y > 0$. Which one o	f the following points lies in the		(a) 3	(b) 4			
	common region?			(c) 5	(d) 6			
	(a) $(0, 0)$	(b) (-2, 4)		Consider the following f	[NDA - 2023 (1)]			
	(c)(-1,4)	(d) $(-1, 2)$		Consider the equation (1–	$(x^{2})^{4} + (5 - x)^{4} = 82$			
110	Let α and β be the roots	of the equation $x^2 + px + q = 0$ If	120.	What is the number of rea	al roots of the equation?			
110.	α^3 and β^3 are the roots of	the equation $x^2 + mx + n = 0$, then		(a) 0	(b) 2			
	what is the value of $m + r$	1?		(c) 4	(d) 8			
	(a) $p^3 + q^3 + pq$	(b) $p^3 + q^3 - pq$	101	W/h = 4 := 4 h = ===== = f = 11 4 h =	[NDA-2023 (2)]			
	(c) $p^3 + q^3 + 3pq$	(d) $p^3 + q^3 - 3pq$	121.	what is the sum of all the (a) 24	(b) 12			
111		[NDA (I) 2022]		(a) 24 (c) 10	(d) 6			
111.	Let α and β be the roots α	of the equation $x^2 - ax - bx + ab - bc$		(1) - 0	[NDA-2023 (2)]			
	b?	the equation whose roots are a and		Consider the following for	or the next (02) items that follow:			
	(a) $x^2 - \alpha x - \beta x + \alpha \beta + c$	= 0		A quadratic equation is gi	iven by $(a + b) x^2 - (a + b + c)x + k$			
	(b) $x^2 - \alpha x - \beta x + \alpha \beta - c$	= 0		= 0, where a,b,c are real.				
	(c) $x^2 + \alpha x + \beta x + \alpha \beta + c$	= 0	122.	If $k = \frac{c}{2}$, (c≠0), then the re	oots of the equation are:			
	(d) $x^2 + \alpha x + \beta x + \alpha \beta - c$	= 0		(a) Real and equal	(b) Real and unequal			
112	If the rests of the equation	[NDA (1) 2022]		(a) Real iff $a > c$	(d) Complex but not real			
114.	are equal then which one	of the following is correct?			[NDA-2023 (2)]			
	(a) $a + b + c = 0$	(b) $a - b + c = 0$	123.	If $k = c$, then the roots of	the equation are:			
	(c) $a + b - c = 0$	(d) - a + b + c = 0		(a) $\frac{a+c}{a+c}$ and $\frac{b}{b}$	(b) $\frac{a+c}{a+c}$ and $-\frac{b}{a+c}$			
		[NDA (I) 2022]		a+b $a+b$	a+b $a+b$			
113.	Let α and β ($\alpha > \beta$) be th	e roots of the equation $x^2 - 8x + q$		(c) 1 and $\frac{c}{c}$	(d) -1 and $-\frac{c}{c}$			
	= 0. If $\alpha^2 - \beta^2 = 16$, then y	what is the value of q ?		a + b	a+b			
	(a) -13 (c) 10	(b) - 10 (d) 15	124	If 5 1 5 are roots	[NDA-2023 (2)] of the equation $a_2 + a_1x_2 + a_2x_2^2 + a_3x_3$			
	(•) ••	[NDA (I) 2022]	124.	If $-\sqrt{2}$ and $\sqrt{3}$ are roots	of the equation $a_0 + a_1x + a_2x + a_3x +$			
114.	For how many quadratic e	equations, the sum of roots is equal		$a_3x^3 + x^4 = 0$ where $a_0, a_1,$	a ₂ , a ₃ are integers, then which one			
	to the product of roots?			(a) $a_2 - a_3 = 0$	(b) $a_2 = 0$ and $a_3 = -5$			
	(a) 0	(b) 1 (d) Infinitale many		(a) $a_2 = a_3 = 0$ (c) $a_0 = 6$, $a_3 = 0$	(d) $a_1 = 0$ and $a_2 = 5$			
	(c) 3	(d) Infinitely many		(,),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[NDA-2024 (1)]			
115.	Let p, q $(p > a)$ be the root	x_{1} (II) x_{2} (II) x_{2} (II) x_{2} (II) x_{3}	125.	Under which one of the	e following conditions does the			
	$+ c = 0$ where $c > 0$. If p^2	$+q^2 - 11$ pq = 0, then what is p -		equation $(\cos \beta - 1)x^2 + ($	$(\cos\beta)x + \sin\beta = 0$ in x have a real			
	q equal to?			root for $\beta \in [0, \pi]$?				
	(a) $3\sqrt{c}$	(b) 3c		(a) $1 - \cos\beta < 0$	(b) $1 - \cos\beta \le 0$			
	(c) $9\sqrt{c}$	(d) 9c		(c) $1 - \cos\beta > 0$	(d) $1 - \cos\beta \ge 0$			
		[NDA 2022 (II)]			[NDA-2024 (1)]			

126. If a, b and c (a > 0, c > 0) are in GP, then consider the (c) a^2 , b^2 , c^2 are in HP (d) a^2 , b^2 , c^2 are neither in AP nor in GP nor in HP following in respect of the equation $ax^2 + bx + c = 0$: 1. The equation has imaginary roots [NDA-2024 (2)] **129.** Which one of the following is a root of the equation ? 2. The ratio of the roots of the equation is $1 : \omega$ where ω is a (a) $b^2(c^2-a^2)$ (b) $b^2(c^2 - a^2)$ cube root of unity $\overrightarrow{a^2(c^2-b^2)}$ $a^2(b^2-c^2)$ 3. The product of roots of the equation is $\left(\frac{b^2}{b}\right)$ (c) $\frac{b^2(c^2-a^2)}{2a^2(c^2-b^2)}$ (d) $b^2(c^2 - a^2)$ $2a^2(b^2$ Which of the statements given above are correct? [NDA-2024 (2)] (a) 1 and 2 only (b) 2 and 3 only (c) 1 and 3 only 130. What is the number of real roots of the equation (d) 1, 2 and 3 $(x-1)^2 + \ (x-3)^2 + (x-5)^2 = 0$ [NDA-2024 (1)] **127.** If $x^2 + mx + n$ is an integer for all integral values of x, then (a) none (b) only one which of the following is/are correct? (c) only two (d) Three [NDA-2024 (2)] 1. m must be an integer 131. If n is a root of the equation $x^2 + px + m = 0$ and m is a root 2. n must be an integer Select the correct answer using the code given below: of the equation $x^2 + px + n = 0$, where $m \neq n$, then what is the value of p + m + n? (a) 1 only (b) 2 only (a) – 1 (b) 0 (c) Both 1 and 2 (d) Neither 1 nor 2 (c) 1 (d) 2 [NDA-2024 (1)] Direction: Consider the following for the two items given [NDA-2024 (2)] below **132.** If $f(x) = 9x - 8\sqrt{x}$ such that g(x) = f(x) - 1, then which one The roots of the quadratic equation of the following is correct? $a^{2}(b^{2}-c^{2})x^{2} + b^{2}(c^{2}-a^{2})x + c^{2}(a^{2}-b^{2}) = 0$ are equal. Given (a) g(x) has no real roots that $(a^2 \neq b^2 \neq c^2)$ (b) g(x) = 0 has only one real root which is an integer 128. Which one of the following statement is correct? (c) g(x) = 0 has two real roots which are integers. (a) a^2 , b^2 , c^2 are in AP (d) g(x) = 0 has only one real root which is not an integer. (b) a^2 , b^2 , c^2 are in GP [NDA-2024 (2)]

ANSWER KEY

1.	d	2.	а	3.	а	4.	d	5.	с	6.	b	7.	а	8.	d	9.	с	10.	с
11.	d	12.	с	13.	d	14.	с	15.	а	16.	d	17.	с	18.	d	19.	с	20.	с
21.	d	22	a	23.	а	24.	а	25.	а	26.	a	27.	d	28.	b	29.	с	30.	с
31.	а	32.	b	33.	а	34.	d	35.	b	36.	с	37.	d	38.	с	39.	d	40.	с
41.	d	42.	b	43.	с	44.	а	45.	d	46.	a	47.	d	48.	с	49.	с	50.	d
51.	a	52.	с	53.	а	54.	с	55.	b	56.	с	57.	a	58.	а	59.	с	60.	b
61.	b	62.	d	63.	b	64.	d	65.	d	66.	d	67.	a	68.	с	69.	a	70.	а
71.	с	72.	a	73.	b	74.	с	75.	b	76.	d	77.	а	78.	с	79.	с	80.	а
81.	b	82.	b	83.	а	84.	d	85.	b	86.	d	87.	b	88.	a	89.	a	90.	с
91.	а	92.	с	93.	с	94.	с	95.	с	96.	с	97.	b	98.	b	99.	b	100	d
101.	d	102.	а	103.	d	104.	с	105.	с	106.	d	107.	b	108.	с	109.	d	110.	d
111.	а	112.	с	113.	d	114.	d	115.	а	116.	b	117.	с	118.	d	119.	b	120.	b
121.	b	122.	b	123.	с	124.	с	125.	d	126.	d	127.	с	128.	с	129.	с	130.	a
131.	с	132.	b																

Sol. 1. (d) $\alpha\beta < 0$ $\frac{c}{-} < 0$ а The condition that both roots are of opposite sign is, a < 0, c > 0. Sol. 2. (a) $(2-\sqrt{3})x^2 - (7-4\sqrt{3})x + (2+\sqrt{3}) = 0$ $\alpha + \beta = \frac{7 - 4\sqrt{3}}{2 - \sqrt{3}} = (7 - 4\sqrt{3}) (2 + \sqrt{3})$ $=14 - 12 - 8\sqrt{3} + 7\sqrt{3} = 2 - \sqrt{3}$ Sol. 3. (a) If one root of the equation $ax^2 + bx + c = 0$, $a \neq 0$ is reciprocal of the other root Then $\alpha = \frac{1}{\beta}$ We know that $\alpha\beta = \frac{c}{a}$ $\Rightarrow \frac{1}{\beta} \cdot \beta = \frac{c}{a} \Rightarrow c = a$ Sol. 4. (d) Let the root of the quadratic equation is α , β $\therefore \alpha + \beta = -k, \ \alpha \beta = -b$ Now, $\alpha^2 + \beta^2 = 2b$ (given) $(\alpha{+}\beta)^2-2\alpha\beta{=}\,2b\Longrightarrow\!k^2+2b=2b$ $\therefore k = 0$ Sol. 5. (c) 9 - 24 + k = 0k = 15 Sol. 6. (b) Given quadratic equation $ax^2 + bx + c = 0, a \neq 0$ Let the roots of equation be (α,β) , Where $\beta = 2a$ Then, sum of roots = -b/a $\Rightarrow \alpha + 2\alpha = -b/a$ $\Rightarrow \alpha = -b/3a$...(i) Product of roots =c/a $\Rightarrow 2a^2 = c/a$ $\Rightarrow 2\left(-\frac{b}{3a}\right)^2 = \frac{c}{a}$ [from Eq. (i)] $\Rightarrow 2b^2 = 9a^2$. c/a $\therefore 2b^2 = 9ac$ Sol. 7. (a) The given equation is, $x^4 - 26x^2 + 25 = 0$ $\Rightarrow x^2 - 25x^2 - x^2 + 25 = 0$ $\Rightarrow x^2 (x^2 - 25) - 1 (x^2 - 25) = 0$ $\Rightarrow (x^2 - 25) (x^2 - 1) = 0$ \Rightarrow (x - 5) (x + 5) (x - 1) (x + 1)=0 $\therefore x = -5, -1, 1, 5$ So, the solution set is $\{-5, -1, 1, 5\}$ Sol. 8. (d) The given equation $x^2 - 2px + p^2 - q^2 + 2qr - r^2 = 0$ and p,q,r are rational numbers. Now, $D = B^2 - 4AC$ $\begin{array}{l} D=4p^2-4~\{p^2-(q\!-\!r)^2\}\\ D=4p^2-4p^2+4~(q\!-\!r)^2 \end{array}$ $D=4(q-r)^2$ = rational and positive So, the roots of the equation will always be rational. Sol. 9. (c) $x+y \leq 4$

Solutions (x,y) can be $\{(1,1), (1,2), (1,3), (2,1), (2,2), (3,1)\}$ required number of ordered pair = 6Sol. 10. (c) given α and β are the roots of equation $4x^2 + 3x +$ 7 = 0, so $\alpha + \beta = -3/4$ and $\alpha\beta = 7/4$. $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{(\alpha\beta)^2} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{(\alpha\beta)^2}$ $\frac{\frac{9}{16} - \frac{7}{2}}{\frac{49}{2}} = -\frac{47}{49}$ 16 Sol. 11 (d). $y = \sqrt{8 + 2\sqrt{8 + 2\sqrt{8 + 2\sqrt{8 + \dots}}}} \dots (i)$ Squaring both the sides, we get $y^2 = 8 + 2\sqrt{8 + 2\sqrt{8 + 2\sqrt{8 + ...}}}$ or $y^2 = 8 + 2y$ [from (i)] or $y^2 - 2y - 8 = 0$ \Rightarrow y=4 or -2 Since the value of y cannot be -ve, therefore y =4 Sol. 12.(c) Given, quadratic equation is; $(x-a)(x-b) = c, c \neq 0$ $\Rightarrow x^2 - (a+b)x + (ab-c) = 0$ The roots of this equation are (α, β) Then, $\alpha + \beta = -\{-(a+b)\} = a + b \dots (i)$ and $\alpha\beta = ab - c$...(ii) Sol. 13 (d) We know, that, if one root of the quadratic equation is complex, then its other root is its conjugate. Now, $x^2 - 4x + 29 = 0$ has one root $\alpha = 2+5i$ so, 2-5i is the second root of this equation. Sol. 14 (c) Given quadratic equation is: $a(b-c) x^{2} + b (c-a) x+c (a-b) = 0$ one root of above equation is 1 \therefore Product of the roots = $\frac{c(a-b)}{c(a-b)}$ a(b-c)so other root will be $\Rightarrow \alpha = c(a - b)$ a(b-c)Sol. 15(a) The given quadratic equation is $2(y+2)^2 - 5(y+2) = 12$ $\Rightarrow 2(y+2)^2 - 5(y+2) - 12 = 0$ Let z = y + 2...(i) $\Rightarrow 2z^2 - 5x - 12 = 0$ $\Rightarrow 2z^2 - 8z + 3z - 12 = 0$ $\Rightarrow (2z+3) (z-4) = 0$ z = - 💭 \Rightarrow y + 2 = $-\frac{3}{2}$,4 [from Eq. (i)] \Rightarrow y = -2 - $\left(\underbrace{x}_{y} \underbrace{y}_{y} \underbrace{y}_{y} \right)^{s} \Rightarrow$ y = - $\frac{7}{2}$, 2 **Sol. 16(d)** Let the roots of the equation, $3x^2 + 5x$

+ q = 0 is (α, α)

Then, sum of the roots = $-\left(\frac{-5}{3}\right)$ $\Rightarrow \alpha + \alpha = \qquad \Rightarrow \alpha = \emptyset$ The root satisfies the given equation \Rightarrow 36q = 75 \Rightarrow q = 25/12 Sol. 17(c) Let the roots of the equation $x^2 - px + q = 0$ is (α,β) and the roots of the equation $x^2 - ax + b = 0$ is (α, α) Then, $\alpha + \beta = p$ and $\alpha\beta = q \dots (i)$ $\alpha + \alpha = a$ and $\alpha \cdot \alpha = b$ $\Rightarrow \alpha = \frac{a}{2}$ and $\alpha^2 = b$ $\Rightarrow \left(\frac{a}{2}\right)^2 = b \Rightarrow a = a^2 = 4b$ From Eq. (i), $\alpha\beta = q$ $\Rightarrow \frac{a}{2}.\beta = q \Rightarrow \beta = \frac{2q}{a}$ Now, putting the value of α and β in the following equation $\alpha + \beta = p \Longrightarrow \frac{a}{2} + \frac{2q}{a} = p \Longrightarrow a^2 + 4q = 2ap$ \Rightarrow 4b + 4q = 2ap [from Eq. (ii)] $\therefore 2(b+q) = ap$ Sol. 18(d) for real root $b^2 - 4ac \ge 0$ \Rightarrow 16 + 4 log₃ P \ge 0 $\Rightarrow 4 \log_3 P \ge -16$ $\Rightarrow log_3 P \geq -4$ $\Rightarrow P \le 1/81$ Sol. 19(c) Given equation is $\begin{array}{l} \tan^4 x - 2 \sec^2 x + a^2 = 0 \\ (\tan^2 x)^2 - 2(1 + \tan^2 x) + a^2 = 0 \\ (\tan^2 x)^2 - 2 \tan^2 x + a^2 - 2 = 0 \end{array}$ This is the quadratic equation in tanx so roots of this will be real $\stackrel{:}{\cdot} b^2 - 4ac \ge 0 \\ (-2)^2 - 4(a^2 - 2) \ge 0$ $a^2 \le 3 \Rightarrow |a| \le \sqrt{3}$ Sol. 20(c) $x^2 - x\sin\theta + a = 0$ discriminant ≥ 0 $sin^2\theta-4a\geq 0$ $a \le \frac{\sin^2 \theta}{4} \Rightarrow a \le 1/4$ Sol. 21(d) Given, quadratic equation $x^2 + 2x - 143 = 0$ Let (α, β) be the roots of this equation Then, $\alpha + \beta = -2$ and $\alpha \cdot \beta = -143$ We have. $\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta = (-2)^{2} - 2(-143)$ =4+286=290Sol. 22 (b) Since, one root of $x^2 + ax - b = 0$ is 1 $\therefore 1^2 + 1.a - b = 0 \Longrightarrow 1 + a - b = 0$ $\Rightarrow a - b = -1$ Sol. 23 (a)

If α and β are the roots of the equation $x^2 - q(1+x) - r = 0$ then $\alpha + \beta = q$ and $\alpha\beta = -q - r$ $(1+\alpha)(1+\beta) = (1+\alpha+\beta+\alpha\beta)$ = 1 + q - q - r = 1 - rSol. 24(a) The solution of the simultaneous linear equations 2x + y = 6 and 3y = 8 + 4x is (1,4) which satisfy our first option x + y = 5Sol. 25(a) Let the roots of the equation $ax^2 + bx + c = 0$ are α and $(\alpha - 1)$ by given condition. Then, Sum of the roots = $-b/a \Rightarrow \alpha + (\alpha - 1) = -b/a$ $\Rightarrow 2\alpha = 1 - \frac{b}{a} \Rightarrow \alpha = \frac{a - b}{2a}$ And product of roots = c/a $\Rightarrow \alpha(\alpha-1) = \frac{c}{a} \Rightarrow \frac{(a-b)}{2a} \left\{ \frac{2-b}{2a} - 1 \right\} = \frac{c}{a}$ $\Rightarrow \frac{(a-b)}{2a} \cdot \frac{(-b-a)}{2a} = \frac{c}{a}$ $\Rightarrow -(a^2-b^2) = 4ac$ $\Rightarrow b^2 - a^2 = 4ac \Rightarrow b^2 = a (a+4c)$ Solution (for next two) Let α and β be the roots of the equation $ax^2 + bx + c = 0$ Then $\alpha + \beta = -b/a$ $\Rightarrow 2\alpha + 2\beta = -2b/a$...(i) and $\alpha.\beta = c/a$ \Rightarrow (2 α). (2 β) = 4c/a ...(ii) Also given that, the equation $x^2 + 36x + 24 = 0$ is formed by multiplying each root of $ax^2 + bx + c =$ 0 by 2 $\therefore 2\alpha + 2\beta = -36$...(iii) and $(2\alpha) (2\beta) = 24$...(iv) Now, from Eqs. (i) and (iv), we get $-36 = -2b/a \Rightarrow$...(v) From Eqs.(ii) and (iii), we get $24 = \sum_{n=1}^{\infty} \Rightarrow \frac{c}{n} = \frac{6}{1}$...(vi) a 1 Sol. 26(a) Now, dividing Eq. (v) by Eq. (vi), we get $\underline{b} = \underline{3} \Longrightarrow b: c = 3:1$ c^{-1} Sol. 27(d) Now, dividing Eq. (v) by Eq. (vi), we get $\frac{b}{a} \times \frac{3}{1} = 18 \times 6 \implies bc = 108a^2$ Sol. 28(b) Since, the roots of the quadratic equation $3x^2 - 5x$ + p = 0 are real and unequal. \therefore Discriminate > 0 \Rightarrow b² - 4ac > 0 $\Rightarrow (-5)^2 - 4(3) (p) > 0$ (here, b = -5, a = 3, c = p) \Rightarrow 25-12p > 0 \Rightarrow 25 > 12p \Rightarrow 12p < 25 \Rightarrow p <25/12 Sol. 29(c) Sum of roots = (m + n) + (m - n) = 2mProduct of roots = $(m + n) (m - n) = m^2 - n^2$ ∴ Ouadratic equation x^2 – (sum of roots) x + Product of roots = 0 $x^2 - 2mx + (m^2 - n^2) = 0$ Sol. 30(c) Since, α and β are the roots of $x^2 + px - q = 0$ $\therefore \alpha + \beta = - \, p, \, \alpha \beta = - \, q$

Again, since γ , δ are the roots of $x^2 - px + r = 0$ $\therefore \gamma + \delta = p, \ \gamma \delta = r$ $(\beta+\gamma) (\beta+\delta) = \beta^2 + \beta\delta + \gamma\beta + \gamma\delta$ $=\beta^2 + \beta (\gamma + \delta) + \gamma \delta$ $=\beta^2 + \beta(p) + \gamma \delta$ $(:: \gamma + \delta = p \text{ and } \gamma \delta = r)$ $=\beta^2 + \beta(-\alpha - \beta) + r$ $[: p = -(\alpha + \beta)]$ $=\beta^2 + (-\beta)(\alpha + \beta) + r$ $=\beta^2 - \alpha\beta - \beta^2 + r = -\alpha\beta + r$ = -(-q) + r = q + rHence, $(\beta + \gamma) (\beta + \delta) = q + r$ Sol. 31(a) Given that, α and β are the roots of the equation $\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c} = \mathbf{0}.$ Then, sum of the roots = $\alpha + \beta = \frac{-b}{1} = -b$ and product of roots $= \alpha . \beta = \frac{c}{1} = c$...(ii) $\therefore \alpha^{-1} + \beta^{-1} = \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha \times \beta}{\alpha \beta} = \frac{-b}{c}$ **Sol. 32(b)** Given, that, $(x+1)^2 - 1 = 0$ $\Rightarrow (x+1)^2 - (1)^2 = 0$ \Rightarrow (x+1+1)(x+1-1) = 0 $[::a^2 - b^2 = (a-b)(a+b)]$ $\Rightarrow (x+2) (x) = 0 \therefore x = 0, -2$ Hence, $(x+1)^2 - 1 = 0$ has two real roots. Sol. 33(a) $4^{x}-6.2^{x}+8=0$ $2^{2x} - 6.2^x + 8 = 0$ $(2^{x}-2)(2^{x}-4)=0$ $2^x = 2 \Longrightarrow x = 1$ $2^x = 4 \implies x = 2$ Sol. 34(d) Given quadratic equation is $ax^2 + bx + c = 0$ Since, its root are α and β $\therefore Sum \ of \ the \ roots = \alpha + \beta = -b/a$ and product of the root = α . β = c/a We have, $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \left(-\frac{b}{a}\right)^2 - 2$. $=\frac{b^2}{a^2}-\frac{2c}{a}=\frac{b^2-2ac}{a^2}$ and $\alpha^2 \cdot \beta^2 = (\alpha \beta)^2 = \left(\frac{c}{a}\right)^2 = \frac{c^2}{a^2}$ \therefore Required quadratic equation whose roots are α^2 and β^2 is $x^{2} - (\alpha^{2} + \beta^{2}) x + \alpha^{2} \beta^{2} = 0$ $\Rightarrow x^2 - \frac{\left(b^2 - 2a\right)}{a^2}x + \frac{c^2}{a^2} = 0$ $\therefore a^2 x^2 - (b^2 - 2ac) a + c^2 = 0$ Sol. 35(b) Let the required quadratic equation is $ax^2 + bx + c = 0$...(i) Now, sum of the roots $=\frac{-b}{a}=3=\frac{-(-3)}{1}$ (given) and product of the roots = c/a = 2 = 2/1 (given) \therefore a = 1, b = -3 and c = 2 Hence, required quadratic equation is $x^2 - 3x + 2$ = 0Sol. 36(c) $\frac{1}{x-3} = \frac{1}{x+2} - \frac{1}{2}$

By solving this we will get a quadratic equation so degree is 2 Sol. 37(d) Given quadratic equation $3ax^2 + 2bx + c = 0$ Let its root are 2α and 3α . (Since, roots are in the ratio 2:3) Now, sum of the roots = $2\alpha + 3\alpha = \frac{-2b}{3a}$ $\Rightarrow 5\alpha = \frac{-2b}{3a} \Rightarrow \alpha = \frac{-2b}{15a}$...(i) and product of the roots $= 2\alpha.3\alpha = \frac{c}{3a} \Longrightarrow 6\alpha^2 = \frac{c}{3a} \Longrightarrow \left(\frac{-2b}{15a}\right)^2 = \frac{c}{18a}$ $\Rightarrow \frac{4b^2}{225a^2} = \frac{c}{18a} \Rightarrow \frac{4b^2}{25a^2} = \frac{c}{2a}$ $\therefore 8b^2 = 25ac$ Sol. 38(c) The area of a rectangle whose length is five more than twice of its width is 75 square unit. L x B = 75 (2B + 5) x (B) = 75By solving above quadratic equation B = 5 and L = 15Sol. 39(d) Given that, the equation $x^2 + bx + 4 = 0$ have real roots, if discriminant (D) = $B^2 - 4AC \ge 0$ $\Rightarrow b^2 - 4(1)(4) \ge 0 \Rightarrow b^2 - 16 \ge 0$ \Rightarrow (b-4) (b+4) \geq 0 $\therefore b \leq -4$, or $b \leq 4$ Sol. 40(c) Given that, (α, β) are the roots of the equation x^2 + x + 2 = 0, then $\alpha + \beta = -1$...(i) and $\alpha.\beta = 2$...(ii) Now, we have $\frac{\alpha^{10} + \beta^{10}}{\alpha^{-10} + \beta^{-10}} (\alpha\beta)^{10} = (2)^{10}$ [from Eq. (ii)] =1024 Sol. 41(d) Given, equation, $x^2 - 10x + 9 = 0$ Let (α, β) be the root of the given equation Then, $\alpha + \beta = 10$...(i) and α . $\beta = 9$...(ii) Now, we use the identity $(\alpha, \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta = (10)^2 - 4(9)$ $=(10)^2 - 4(9)$ $\Rightarrow \alpha - \beta = \pm \Rightarrow |\alpha - \beta| = 8$ Sol. 42(b) Given quadratic equation is $ax^2 + bx + b = 0$ Let $(\alpha,\beta) = -b/a$ and $\alpha\beta = b/a$ Now, we have $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{b}{a}} = \frac{\alpha + \beta}{\sqrt{\alpha\beta}} + \sqrt{\frac{b}{a}} = \frac{-b}{a} \times \sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}}$ $=-\sqrt{\frac{b}{a}}+\sqrt{\frac{b}{a}}=0$ Sol. 43(c) Given equation is $x^2 - 8x + 16 = 0$ $\Rightarrow (x-4)^2 = 0 \Rightarrow x = 4, 4$ Also, discriminant = $b^2 - 4ac = 0$ So, the roots of the equation are equal and real. Sol. 44(a) If one root of any quadratic equation is in the form $3a + \sqrt{b}$, then other root of this equation should be $3a - \sqrt{b}$. .: Required equation is

 x^{2} – (sum of roots) x + (product of roots) = 0 $\Rightarrow x^2 - \{(3a + \sqrt{b}) + (3a - \sqrt{b})\}.x$ $+ \{(3a + \sqrt{b})(3a - \sqrt{b})\} = 0$ $\therefore x^2 - 6ax + 9a^2 - b = 0$ Sol. 45(d) Given quadratic equation, $f(x) \equiv x^2 + 3 |x| + 2 = 0$ **Case I.** $f(x) \equiv x^2 + 3x + 2 = 0$ (when, x > 0) $\Rightarrow x^2 + 2x + x + 2 = 0$ $\Rightarrow x(x+2) + 1 (x+2) = 0$ \Rightarrow (x+2)(x+1) = 0 $\therefore x = -2, -1$ (but x > 0) So, here no real roots exist. **Case II.** $f(x) \equiv x^2 - 3x + 2 = 0$ (when, x < 0) $\Rightarrow x = \frac{3 \pm \sqrt{9-8}}{2} = \frac{3+1}{2}$ \Rightarrow x = 2,1 (but x < 0) So, here also no real root exists Hence, given quadratic equation has no real root. Shortcut Method: In equation $x^2 + 3 |x| + 2 = 0$. taking any value of x the LHS will always give +ve answer which can never be equal to zero. Thus, there are no real roots of the equation. Sol. 46(a) by solving both equations x = 7 and y = 4 then 2x - y = 2(7) - 4 = 10. Sol. 47(d) $\sqrt{7+4\sqrt{3}} = \sqrt{7+2\sqrt{12}} = \sqrt{(2+\sqrt{3})^2} = 2+\sqrt{3}$ **Sol. 48(c)** Given that, α and β are the roots of the equation $ax^2 + bx + c = 0$, where $a \neq 0$. Then, sum of roots = $\alpha + \beta = -b/a$ and product of roots = α . β = c/a Now, we have $(a\alpha + b) (a\beta + b) = a^2 (\alpha\beta) + ab (\alpha + \beta) + b^2$ $=a^{2}\left(\frac{c}{a}\right)+ab\left(-\frac{b}{a}\right)+b^{2}$ $=ac-b^2+b^2=ac.$ Sol. 49(c) Given equation, $2a^2 x^2 - 2abx + b = 0$ When, a < 0 and b > 0 $\therefore x = \frac{-(-2ab) \pm \sqrt{(-2ab)^2 - 4.2a^2.b^2}}{2.2a^2}$ (By Quadratic formula) $=\frac{2ab \pm \sqrt{-4a^{2}b^{2} - 8a^{2}b^{2}}}{4ab^{2}}$ $=\frac{2ab \pm \sqrt{-ba^{2}b^{2}}}{4a^{2}} = \frac{2ab \pm i\,2ab}{4a^{2}}$ $=\frac{2ab(1\pm i)}{4a^2}=\frac{b}{2a}(1\pm i)$ Which shows that the roots of the given equation is always complex. Sol. 50(d) Every quadratic equation $ax^2 + bx + c = 0$, where a, b, $c \in R$, $a \neq 0$ has at most two real roots. Sol. 51(a) $\alpha + \beta = -b/a$ and $\alpha\beta = c/a$ Also, $\alpha + h + \beta + h = -q/p$ $\Rightarrow \alpha + \beta + 2h = -q/p$ $\Rightarrow 2h = -\frac{q}{p} + \frac{b}{a} \left(\because \alpha + \beta = -\frac{b}{a} \right)$ $\Rightarrow h = \frac{1}{2} \left| \frac{b}{a} - \frac{q}{p} \right|$

 $rac{1}{2}a$ Sol. 52(c)

Given, 2p + 3q = 18 ...(i) and $4p^2 + 4pq - 3q^2 - 36 = 0$ $\Rightarrow (2p+3q)^2 - 8pq - 12q^2 = 36$ $\Rightarrow 18^2 - 4q (2p + 3q) = 36$ [from (i)] $\Rightarrow 18^2 - 4q.18 = 36$ \Rightarrow q = 4 than p = 3 2q + p = 10.Sol. 53(a) Given, roots are 8 and 2, then the equation is x^2 – (sum of roots) x + product of roots = 0 $\Rightarrow x^2 - (8+2) x + 16 = 0$ $\Rightarrow x^2 - 10x + 16 =$...(i) (mistake in the constant term) For roots -9 and -1, we have $x^{2} - (-9 x - 1) x + (-9) \times (-1) = 0$ $\Rightarrow x^2 - 9x + 9 = 0$...(ii) (mistake in the coefficient of first degree term) So as per given information, we have the right equation as $x^2-10x+9=0$. Sol. 54(c) $(\mathbf{x} + \mathbf{p}) (\mathbf{x} + \mathbf{q}) - \mathbf{k} = \mathbf{0}$ $\Rightarrow x^2 + qx + px + pq - k = 0$ $\Rightarrow x^2 + (p+q)x + pq - k = 0...(i)$ For m and n to be roots the equation should be $x^2 - (m+n)x + m \cdot n = 0$...(ii) On comparing Eqs. (i) and (ii), we get $\mathbf{p} + \mathbf{q} = -(\mathbf{m} + \mathbf{n})$...(iii) and pq - k = m.n...(iv) Also, (x - m)(x - n) + k = 0 $\Rightarrow x^2 - nx - mx + mn + k = 0$ $\Rightarrow x^2 - (m+n) x + mn + k = 0$ $\Rightarrow x^2 + (p+q)x + pq - k + k = 0$ (using Eqs. (iii) (iv) $\Rightarrow x^2 + (p+q)x + pq = 0$ $\Rightarrow x^{2} - [(-p) - (-q)] + [(-p) (-q)] = 0$ [using Eqs. (iii) and (iv)] $\Rightarrow x^2 + (p+q)x + pq = 0$ $\Rightarrow x^{2} - [(-p) - (-q)] + [(-p) (-q)] = 0$ Hence, -p and -q are the required roots. Sol. 55(b) We have, $(x^2 + 2)^2 + 8x^2 = 6x (x^2 + 2)$ $(x^2 + 2)^2 + 8x^2 = 6x (x^2 + 2)$ $\Rightarrow \left(\frac{x^2+2}{x}\right)^2 - 6\left(\frac{x^2+2}{x}\right) + 8 = 0$ $\Rightarrow \left(\frac{x^2+2}{x}-2\right) \left(\frac{x^2+2}{x}-4\right) = 0$ $\Rightarrow \frac{x^2 + 2}{x} = 2 \Rightarrow x^2 + 2 = 2x$ $\Rightarrow x^2 - 2x + 2 = 0 \Rightarrow D \le 0$ $\Rightarrow \frac{x^2+2}{x} = 4 \Rightarrow x^2+2 = 4x$ $\Rightarrow x^2 - 4x + 2 = 0 \Rightarrow D \ge 0$ sum of roots of first equation is 2 and second is 4, sum off all roots = 6. Sol. 56(c) Equation: $ax^2 + bx + c = 0$ $\alpha + \beta = a^2 + \beta^2$ (given) Sum of roots, $(\alpha + \beta) = -b/a$ Product of roots, $(\alpha\beta) = c/a$ $(\alpha+\beta)=(\alpha+\beta)^2-2\alpha\beta$ $\{:: \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta\}$ $\operatorname{or} -\frac{\mathbf{b}}{\mathbf{a}} = \frac{\mathbf{b}^2}{\mathbf{a}^2} - \frac{2\mathbf{c}}{\mathbf{a}}$ or $-ab = b^2 - 2ac$ or $b^2 + ab = 2ac$

Sol. 57(a)

 $x^2 - nx + m = 0$ $\alpha - \beta = 1 \dots (i)$ Sum of roots $(\alpha + \beta) = n$ Product of roots $(\alpha\beta) = m$ Squaring of both sides in Eq. (i) $(\alpha - \beta)^2 = (1)^2$ or $\alpha^2 + \beta^2 - 2 \alpha \beta = 1$ or $(\alpha + \beta)^2 - 2\alpha\beta - 2\alpha\beta = 1$ $\{:: (\alpha+\beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta\}$ or $n^2 - 4m - 1 = 0$. Sol. 58(a) Equation: $x^2 - 3|x| + 2 = 0$ $x > 0 \Longrightarrow +$ (Taking positive value) $x^2 - 3x + 2 = 0$ $x^2 - 2x - x + 2 = 0$ x = 1,2 $x < 0 \Longrightarrow$ Taking negative value $x^2 + 3x + 2 = 0$ $x^2 + 2x + x + 2 = 0$ x = -1, -2Hence, number of real roots are 4. Sol. 59(c) $\begin{array}{ll} \alpha+\beta=-b=-ve & \{\because b{>}0\} & \ldots(i) \\ \text{and} & \alpha\beta=c=-ve & \{\because x{>}0\} & \ldots(ii) \end{array}$ From (ii), **Case I.** $\alpha > 0$ and $\beta < 0 \Rightarrow \alpha.\beta = -ve$ Now, in (i), if $\alpha > 0$, then $\beta < 0$ $\Rightarrow \alpha > \beta$ but it is given that $\alpha < \beta$ $\therefore \alpha \ge 0$ **Case II.** If $\alpha <$, then $\beta > 0 \Longrightarrow \alpha.\beta = -ve$ Now, in (i), if $\alpha < 0$, $\beta > 0$ and $\alpha < \beta$ Which satisfies the given condition Thus, $\alpha < 0 \Longrightarrow -\alpha > 0$ If $\alpha < \beta$ then $-\alpha > \beta$ (Use number line) ∴ Statement 1 is correct. From above, $\alpha < \beta$ and $-\alpha > \beta$ $\Rightarrow +\alpha < \beta < -\alpha$ $\Rightarrow \beta < |\alpha|$ ∴ statement 2 is correct. Sol. 60(b) $\alpha + \beta = -(b)$ Since b > 0, then $\alpha + \beta = -(+ve)$ $\alpha + \beta = -ve$ and $\alpha . \beta = c$ Since b > 0, then $\alpha . \beta = -ve$ **Case I.** α + β + $\alpha\beta$ = (-ve) + (-ve) = -ve $\Rightarrow \alpha + \beta + \alpha \beta < 0$ ∴ Statement I is not correct. **Case II.** $\alpha^2 \beta + \beta^2 \alpha = \alpha \beta (\alpha + \beta)$ =(-ve)(-ve) = +ve $\alpha^2 \beta + \beta^2 \alpha > 0$ ∴ Statement 2 is correct. Sol. 61(b) Let the roots of the equation are 2α and α Product = 2α . $\alpha = \frac{1}{l-m}$ $\alpha^2 = \frac{1}{2(l-m)}$ and sum = $3\alpha = \frac{-l}{(l-m)} \Rightarrow \alpha = -\frac{l}{3(l-m)}$ $\frac{2l^2}{9(l-m)^2} = \frac{1}{l-m} \Longrightarrow l = \frac{9 \pm \sqrt{81 - 72m}}{4}$ l is real D > 0 $81{-}72m \geq 0 \Longrightarrow m \leq 9/8$ Sol. 62(d) $x^2 + bx + c = 0$ Roots of the equation are $tan\alpha$ and $tan\beta$ Then,

 $\tan \alpha + \tan \beta = -b$ $\tan\alpha$. $\tan\beta = c$ Now, $\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha . \tan \beta}$ or $\tan(\alpha+\beta) = \frac{-b}{1-c} \Rightarrow -b (1-c)^{-1} = b (c-1)^{-1}$ Sol. 63(b) $\sin(\alpha+\beta).\sec\alpha\sec\beta = \frac{\sin\alpha.\cos\beta + \cos\alpha\sin\beta}{\cos\alpha\sin\beta}$ $\cos \alpha \cos \beta$ =tan α +tan β $sin(\alpha+\beta) cos\alpha sec\beta = -b$ Sol. 64(d) If $x^2 - px + 4 > 0$ Then for all real values of x $b^2 - 4ac \ge 0$ or $(-p)^2 - 4(1)(4) \ge 0$ or $p^2 - 16 \ge 0$ or $|\mathbf{p}| \ge 4$ Sol. 65(d) Roots of the equation, $x^2 - 2kx + k^2 - 4 = 0$ are $\frac{-(-21)\pm\sqrt{(-2k)^2-4(k^2-4)}}{2\times 1}$ $=\frac{2k\pm\sqrt{16}}{2}=k\pm 2$ As given roots are lie between -3 and 5, so -3 < k + 2 < 5 and -3 < k - 2 < 5 $\Rightarrow -5 < k < 3$ and -1 < k < 7 $\therefore -1 < k < 3$ Sol. 66(d) We have $x^2 - (1 - 2a^2) x + (1 - 2a^2) = 0$ For real roots, $D \ge 0$ $\therefore (1 - 2a^2)^2 - 4 (1 - 2a^2) \ge 0$ $\Rightarrow (1-2a^2)(1-2a^2-4) \leq 0$ \Rightarrow (1-2a) (2a² + 3) \leq 0 [\because 2a² + 3 > 0] $\Rightarrow (1-2a^2) \le 0 \Rightarrow a^2 \ge 1/2$ Sol. 67(a) We have. α , β as the roots of the equation, $x^{2} - (1-2a^{2})x + (1-2a^{2}) = 0$ $\therefore \, \alpha + \beta = 1 - 2a^2$ $\alpha\beta=1-2a^2$ Now, $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha^2 \beta^2}$ $\Longrightarrow \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\left(\alpha + \beta\right)^2}{\left(\alpha\beta\right)^2} - \frac{2}{\alpha\beta}$ $\Rightarrow \frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}} = \frac{(1 - 2a^{2})^{2}}{(1 - 2a^{2})^{2}} - \frac{2}{1 - 2a^{2}}$ $\Rightarrow \frac{1}{\alpha^2} + \frac{1}{\beta^2} = 1 - \frac{2}{1 - 2a^2}$ Since, $\frac{1}{\alpha^2} + \frac{1}{\beta^2} < 1$ $\therefore 1 - \frac{2}{1 - 2a^2} < 1$ $\Rightarrow \frac{2}{2a^2-1} < 0$ $\Rightarrow 2a^2 < 1 \{ \because 2 > 0 \}$ $\Rightarrow a^2 < 1/2$ Sol. 68(c) \therefore -2 and β are the roots of the equation $2x^2 + 3x - \alpha = 0$ $\therefore 2(-2)^2 + 3(-2) - \alpha = 0$

 $\Rightarrow 8 - 6 - \alpha = 0 \Rightarrow \alpha = 2$ Sol. 69(a) Since, $\alpha = 2$: Equation becomes $2x^2 + 3x - 2 = 0$ $\Rightarrow 2x^2 + 4x - x - 2 = 0$ \Rightarrow (2x-1) (x+2) = 0 $\Rightarrow x = -2, x = 1/2$ $\therefore \beta = 1/2$ The roots of second equation are given by $x^2 - 3mx + 2m^2 = 0$ $\Rightarrow x^2 = 2mx - mx + 2m^2 = 0$ \Rightarrow (x-2m) (x-m) = 0 $\Rightarrow x = 2m, x = m$ Since, both roots are positive $\therefore m > 0$ $::\beta, 2, 2m$ are in P. $\therefore 4 = 2m\beta \Longrightarrow 4 = 2m \times 1/2 \Longrightarrow m = 4$ $\therefore \beta \sqrt{m} = \frac{1}{2}\sqrt{4} = \frac{1}{2} \times 2 = 1$ Sol. 70(a) We have. c > 0 and 4a + c < 2bLet $f(x) = ax^2 - bx + c$ Then, f(0) = c > 0 $\Rightarrow f(2) = 4a - 2b + c$ $\Rightarrow f(2) < 0$ \therefore f(0). f(2) < 0 Hence, one of the root is lie between (0,2)Sol. 71(c) According to the question, $\alpha + \beta = -k$ $\alpha\beta = 1$ and $\alpha - \beta < \sqrt{5}$ or $(\alpha - \beta)^2 < 5$...(i) Now, $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$ or $(\alpha - \beta)^2 = k^2 - 4$...(ii) From equations (i) and (ii), $k^2 - 4 < 5$ or $k^2 < 9 \Longrightarrow -3 < k < 3$ Also, it is given that $|\mathbf{k}| \ge 2$... The required interval in which k lies, is $(-3, -2] \cup [2,3)$ Sol. 72(a) If α , β are the roots of $x^2 + px + q = 0$ and γ , δ are the roots of $x^2 + lx + m = 0$ then $\frac{\left(\alpha+\beta\right)}{\left(\gamma+\delta\right)} = \sqrt{\frac{\alpha.\beta}{\gamma.\delta}}$ (Remember) or $\frac{(-p)^2}{(-l)^2} = \frac{q}{m}$ or $p^2 m = l^2 q$. Sol. 73(b) Since, $\cot \alpha$ and $\cot \beta$ are the roots of the equation $x^2 + bx + c$, therefore $\cot \alpha + \cot \beta = -b$ and $\cot\alpha. \cot\beta = c$ Now, $\cot(\alpha + \beta) =$ $\frac{\cot\alpha.\cot\beta-1}{\cot\alpha+\cot\beta} = \frac{c-1}{-b} = \frac{1-c}{b}$ Sol. 74(c) ⇒Both the roots are imaginary i.e. complex Sol. 75(b) $(q-r) x^{2} + (r-p) x + (p-q) = 0$ The product of the roots = $\underline{p-q}$ q-r

sum of coefficients is zero, so one root is definitely 1.so other must be p-qq - rSol. 76(d) $|x-3|^2 + |x-3| - 2 = 0$ **Case I.** $(x-3)^2 + (x-3) - 2 = 0$ or $y^2 + y - 2 = 0$ $\{ where y = (x - 3) \}$ or (y+2)(y-1) = 0or y = -2 or y = 1or (x-3) = -2 or (x-3) = 1or x = 1 or x = 4But x=1 does not satisfy the given equation, so x = 4**Case II.** $[-(x-3)]^2 - (x-3) - 2 = 0$ or $(x-3)^2 - (x-3) - 2 = 0$ or $y^2 - y - 2 = 0$ {where y = (x-3)} or (y-2)(y+1) = 0or y = 2 or y = -1or x-3 = 2 or x - 3 = -1or x = 5 or x = 2But x = 5 does not satisfy the given equation, so x = 2. Thus, the required sum = 4 + 2 = 6Sol. 77(a) α and β are the roots of $3x^2 + 2x + 1 = 0$ $\alpha+\beta=-\ \frac{2}{\beta}=-2=\frac{1}{3}$ Now= = - 8/3 = sumand $= \left(\alpha + \frac{1}{\beta}\right) \cdot \left(\beta + \frac{1}{\alpha}\right) = \alpha\beta + \frac{1}{\alpha\beta} + 2$ $=\frac{1}{3}+3+2=\frac{16}{3}=$ product \therefore required equation is: $x^2 - \left(-\frac{8}{3}\right) \cdot x + 16/3 = 0$ Or $3x^2 + 8x + 16 = 0$ Sol. 78(c) In \triangle PQR. \angle R = $\pi/2 \Rightarrow \angle$ P + \angle Q = $\pi/2$ $\therefore \tan\left(\frac{\mathbf{P}+\mathbf{Q}}{2}\right) = \tan\left(\frac{\pi}{4}\right)$ or $\frac{\tan\left(\frac{P}{2}\right) + \tan\left(\frac{Q}{4}\right)}{1 - \tan\left(\frac{P}{2}\right) \cdot \tan\left(\frac{Q}{2}\right)} = 1$ or $\frac{-\frac{b}{a}}{1 - \frac{c}{a}} = 1$ $\left\{ \because \tan\left(\frac{P}{2}\right) \text{ and } \tan\left(\frac{Q}{2}\right) \text{ are the roots of } ax^2 + bx + c = 0 \right\}$ or $\frac{-b}{a-c} = 1$ or a+b=cSol. 79(c) for real root $b^2 - 4ac \ge 0$ \Rightarrow 16 + 4 log₃ P \ge 0 $\Rightarrow 4 \log_3 P \ge -16$ $\Rightarrow \log_3 P \ge -4$ $\Rightarrow P < 1/81$ Sol.80(a) $|1-x| + x^2 = 5$ \Rightarrow 1-x + x² =5, x < 1 or $-1 + x + x^2 = 5 \ x \ge 1$ $\Rightarrow x^2 - x - 4 = 0, x < 1 \text{ or } x^2 + x - 6 = 0, x \ge 1$ $\Rightarrow x = \frac{-1 - \sqrt{17}}{\sqrt{17}}$ or x = 2Equation has a rational root and an irrational root. Sol. 81(b)

f(x) > 0let $f(x) = x^2 + 1$ g(x) = f(x) + f'(x) + f''(x) $g(x) = x^2 + 1 + 2x + 2$ $g(x) = x^2 + 2x + 3 = (x + 1)^2 + 2 > 0$ g(x) > 0Sol. 82(b) $\frac{d_1}{d} = (\text{ratio of coefficient of } x)^2 = \frac{b^2}{q^2}$ Sol. 83(a) $\cos\alpha.\cos\beta = -3/4$ $\Rightarrow \frac{1}{\cos \alpha . \cos \beta} = \sec \alpha . \sec \beta = -\frac{4}{3}$ Sol. 84(d) $\alpha+\beta=-\alpha,\,\alpha\beta=-\beta\Longrightarrow\!\alpha\beta+\beta=0$ \Rightarrow (α +1) β = 0 $\Rightarrow \alpha$ = -1 ($\beta \neq$ 0) $\Rightarrow 2\alpha + \beta = 0$ $\Rightarrow \beta = 2$ $\therefore -x^2 + \alpha x + \beta = - \, x^2 - x + 2$ Greatest value = $-\frac{1+8}{-4} = \frac{9}{4}$ Sol. 85(b) By definition of rational function Option (b) is correct Sol.86(d) $\left|x^2-x-6\right|=x+2$ |(x-3)(x+2)| = x+2for $x\leq -\ 2$ or $x\geq 3$ $\Rightarrow x^2 - x - 6 = x + 2$ $\Rightarrow x^2 - 2x - 8 = 0$ $\Rightarrow x = 4, -2$ for-2 < x < 3 $\Rightarrow -(x^2 - x - 6) = x + 2$ $\Rightarrow x^2 - 4 = 0$ $\Rightarrow x = 2, -2$ so x = 2, -2, 4Sol. 87(b) If all coefficients are positive than both roots will be negative. Sol. 88(a) $x^2 + px + q = 0$ $\tan 45^\circ = \tan (19^\circ + 26^\circ) = \frac{\tan 19^\circ + \tan 26^\circ}{1 - \tan 19^\circ \tan 26^\circ}$ $\Rightarrow 1 = \frac{-p}{1-q} \Rightarrow 1-q = -p \Rightarrow q-p = 1$ are tan 19° and tan 26° Sol. 89(a) $x^2 + 9|x| + 20 = 0$ (|x|+4)(|x|+5) = 0 $|\mathbf{x}| = -4 \text{ or } -5 \text{ (not possible)}$ number of real roots is zero. Sol. 90(c) $x \le 4$ and $x \le -4$ common interval $x \le -4$ $y \ge 0$ and $y \le 0$ common interval y = 0Sol.91(a) $x^2 + 3|x| + 2 = 0$ $(|\mathbf{x}| + 2)(|\mathbf{x}| + 1) = 0$ $|\mathbf{x}| = -2 \text{ or } - 1 \text{ (not possible)}$ number of real roots is zero. Sol. 92(c) $\begin{array}{l} x^2-(p+q)x+pq-r^2\!/4\!\!=\!\!0\\ \text{for real root }b^2-4ac\geq 0 \end{array}$ $(p+q)^2 - 4(pq - \frac{r^2}{4}) \ge 0$ $(p-q)^2 + \frac{r^2}{4} \ge 0$ it is always correct.

for equal root p = q and r = 0Sol. 93(c) for real root $b^2 - 4ac \ge 0$ $q^2 - 4p \ge 0$ $q^2 \ge 4p$ if p = 1, then possible value of $q = \{2,3,4\}$ if p = 2, then possible value of $q = \{3,4\}$ if p = 3, then possible value of $q = \{4\}$ if p = 4, then possible value of $q = \{4\}$ total 7 solution. Sol. 94(c) sum of coefficients is zero so its one root is 1 and another is $\frac{c(a-b)}{a(b-c)}$ both are equal $\frac{c(a-b)}{a(b-c)} = 1$ 2ac = ab + bcthis condition is of HP. Sol. 95(c) it is only possible when $x^2 - 3x + 2 < 0$ (x-1)(x-2) < 01 < x < 2Sol. 96(c) for real root $b^2 - 4ac \ge 0$ $m^2-8\geq 0$ $m^2 > 8$ Sol. 97(b) $x=2+\frac{1}{x}$ $x^2 - 2x - 1 = 0$ $x = \sqrt{2} + 1$ Sol. 98(b) (x - a)(x - b) > 0i.e. x < a or x > bSol. 99(b) p + q = 30 and pq = 221 $p + q^{2} = 56 \text{ mm } pq = 221$ $(p + q)^{3} = p^{3} + q^{3} + 3pq(p + q)$ $(30)^{2} = p^{3} + q^{3} + 3(221)(30)$ $p^{3} + q^{3} = 7110$ Sol. 100(d) $\alpha\beta = \alpha^2\beta^2$ $\alpha\beta(\alpha\beta-1)=0$ $\alpha\beta = 0 \text{ or } 1$ Now $\alpha + \beta = \alpha^2 + \beta^2$ $\alpha + \beta = (\alpha + \beta)^2 - \frac{1}{2}\alpha\beta$ put $\alpha\beta = 0$ then there are two possible values of α +β $\alpha + \beta = (\alpha + \beta)^2$ $\alpha + \beta = 0 \text{ or } 1$ put $\alpha\beta = 1$ then there are also two possible values of $\alpha + \beta$ $\alpha + \beta = (\alpha + \beta)^2 - 2$ $\alpha + \beta = 2 \text{ or } -1$ so 4 possible quadratic equations are there. Sol. 101(d) given $1.5 \le x$ $3 \le 2x \text{ or } 2x \ge 3 \Rightarrow (2x - 3) \ge 0 \dots$ (i) and $x \le 4.5$ $2x \le 9 \Rightarrow (2x - 9) \le 0$ (ii) multiply (i) and (ii) $(2x-3)(2x-9) \le 0$ Sol. 102(a) If α and β are the roots of the equation $4x^2 + 2x - 1 = 0$, $\alpha + \beta = -1/2$ $\beta^2 + 2\beta - 1 = 0,$ $4\left(-\frac{1}{2}\!-\!\alpha\right)^{\!2}\!+\,2\beta\,-1\,=\,0$ by solving it

 $\beta = -2\alpha^2 - 2\alpha$ Sol. 103(d) Roots of the equation $x^2 + 2x + k = 0$ are real then $D \geq 0$ $\Rightarrow 4 - 4k \ge 0$ $\Rightarrow k < 1$ Sol. 104(c) If one root of equation is reciprocal to other then a = cSo k = 5Sol. 105(c) $\alpha - \beta = 1$ $\sqrt{(\alpha+\beta)^2-4\alpha\beta}=1$ $\left(\frac{5k+1}{4}\right)^2 - 4\left(\frac{5k}{4}\right) = 1$ $25k^2 + 10k + 1 = 5k + 1$ $25k^2 - 70k - 15 = 0$ K = 3, k = -1/5Sol. 106(d) Roots are real $b^2 - 4 \ ac > 0$ $(k^2 + 5k)^2 - 4$ (3) $(3k^2 - 5k) > 0$ $k(k^3 + 10k^2 - 11k + 60) > 0$ Both values of k = 0, -5Do not satisfy given Inequality So no such value of k exist Roots are equal magnitude But opposite sing so, $\alpha + \beta = 0$ $k^2 + 5k = 0$ k = 0, k = -5Sol. 107(b) $x^2 + px + q = 0$ p + q = -p/1 $\Rightarrow 2p = q$ is sum of roots = -b/apq = (q)/1 \Rightarrow (p-1) = 0 product of roots = c/a \Rightarrow q=0 or p = 1 As p and q are non zero roots so $q \neq 0$ So we are left with p = 1 when p = 1 $\Rightarrow 9 = -2$ So ans is one (b) option Sol. 108(c) $x^4 - 10x + 9 = 0$ $(x^2 - 9)(x^2 - 1) = 0$ All values of x are 3, -3, 1, -1Sum of absolute values=3+3+1+1=8 Sol. 109(d) 5x - 4y + 12 < 0x + y < 2x < 0, y > 0By checking option. Only (-1, 2) satisfies these inequalities. Sol. 110(d) $\alpha + \beta = -p$ (1) $\alpha\beta = q$ (2) $\alpha^{3}+\beta^{3}=-m$ (3) $\alpha^3\beta^3 = n$ (4) By (3) and (4) $m+n=\alpha^{3}\beta^{3}-(\alpha^{3}+\beta^{3})$ $=\alpha^{3}\beta^{3}-[(\alpha+\beta)^{3}-3\alpha\beta(\alpha+\beta)]$ $=q^{3}-[-p^{3}-3q(-p)]$ =p³ + q³ - 3pq Sol. 111(a) $\alpha + \beta = a + b$ $\alpha\beta=ab-c$ $\Rightarrow a + b = \alpha + \beta$

 $ab = \alpha\beta + c$ Equation will be $x^2 - \alpha x - \beta x + \alpha \beta + c = 0$ Sol. 112(c) Both roots are equal so B3 - 4AC = 0 $(a + b + c)^2 - 4(bc + ca) = 0$ $a^2 + b^2 + c^2 + 2ab + 2bc + 2ca - 4bc - 4ca = 0$ $(a + b - c)^2 = 0$ $\Rightarrow a + b - c = 0$ Sol. 113(d) ...(1) $\alpha + \beta = 8$...(b) $\alpha\beta = q$ $\alpha^2 - \beta^2 = 16$ $(\alpha + \beta) (\alpha - \beta) = 16$ of $(\alpha - \beta) = 16$ $\alpha - \beta = 2$...(3) By (1) & (2) α=5, β=3 ∵αβ=q \therefore q=5×3 = 15 Sol. 114(d) $x^2 - (sum)x + (product) = 0$ $x^2 - 2x + 2 = 0.$ $x^2 - 3x + 3 = 0$ $x^2 - 4x + 4 = 0$ infinite equations of this type are possible Sol. 115(a) Let p, q (p > q) be the roots of the quadratic equation $x^2 + bx + c = 0$ where c > 0. If $p^2 + q^2 - 11 pq = 0$, $(p-q)^2 = p^2 + q^2 - 2 pq$ $(p-q)^2 = 11pq - 2 pq = 9pq = 9c$ $p-q=3\sqrt{c}$ Sol. 116(b) How many real numbers satisfy the equation |x - 4| + |x - 7| = 15If x > 7x - 4 + x - 7 = 15x = 13 if 4 < x < 7x - 4 - x + 7 = 153 = 15 not possible If x < 4-x + 4 - x + 7 = 15 $\mathbf{x} = -2$ so two values of x are possible 13 and -2Sol. 117(c) 1. $\alpha + \beta = 0 \implies \alpha = -\beta$ $\alpha^2 + \beta^2 = 2 \Longrightarrow \beta^2 + \beta^2 = 2$ $\beta^2 = 1$ $\beta=1$ than $\alpha=-1$ $\beta = -1$ than $\alpha = 1$ 2. $\alpha\beta^2 = -1$, a = 0a = 0 then $\alpha + \beta = 0 \implies \alpha = -\beta$ $\alpha^{3} = -1$ $\alpha = -1$ Both statements are individually sufficient to answer the question Sol. 118(d) If $\alpha = 2 - i\sqrt{3}$ then $\beta = 2 - i\sqrt{3}$ Then equation will be $x^2 - (\alpha + \beta)x + \alpha\beta = 0$ $x^2 - 4x + 7 = 0$ a = -4 and b = 7a + b = -4 + 7 = 3

Sol. 119(b) roots are real $b^2 - 4ac \ge 0$ $16-4k \geq 0$ $4 \ge k$ (i) both roots lie between 0 and 5 so f(0)f(5) > 0k(5+k) > 0i.e. k ∈ (−5,0) so k may be 1,2,3,4 Sol. 120(b) $\Rightarrow (1-x)^4 + (5-x)^4 = 82$ $\Rightarrow (x-1)^4 + (x-5)^4 = 82$ let x - 3 = y $\Rightarrow (y+2)^4 + (y-2)^4 = 82$ $\Rightarrow (y^4 + 4.y^3.2 + 6.y^2.2^2 + 4.y.2^3 + 2^4) + (y^4 - 4.y^2.2^2 + 4.y^2 + 4.y^2.2^2 + 4.y^2 + 4.y^2$ $4.y^3.2 + 6.y^2.2^2 - 4.y.2^3 + 2^4) = 82$ $\Rightarrow 2y^4 + 48y^2 + 32 = 82$ $\Rightarrow y^4 + 24y^2 - 25 = 0$ $\Rightarrow (y^2 + 25)(y^2 - 1) = 0$ so y = 1, -1, 5i, -5ithen x = 4, 2, 3 + 5i, 3 - 5ithere is two real roots Sol. 121(b) from above solution sum of all roots = 4 + 2 + 3 + 5i + 3 - 5i = 12Sol. 122(b) for nature of roots $B^2 - 4AC$ $(a + b + c)^2 - 4(a + b)k$ put k = c/2 $a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ca - 2(a + b)c$ $a^2 + b^2 + c^2 + 2ab$ $(a + b)^2 + c^2$ given that $c \neq 0$ so $(a + b)^2 + c^2 > 0$ $B^2 - 4AC > 0$ so roots will be real and different. Sol. 123(c) if sum of coefficients is 0 then one root will be definitely 1 so let $\alpha = 1$ and we know that $\alpha\beta = \frac{C}{A} \Rightarrow \beta = \frac{c}{a+b}$ Sol. 124(c) if one root is $-\sqrt{2}$ then other will be $\sqrt{2}$ and if one root is $\sqrt{3}$ then other will be $-\sqrt{3}$ so all four roots are $-\sqrt{2}$, $\sqrt{2}$, $\sqrt{3}$, $-\sqrt{3}$ then equation will be $(x - \sqrt{2})(x + \sqrt{2})(x + \sqrt{3})(x - \sqrt{3}) = 0$ $(x^2 - 2)(x^2 - 3) = 0$ $x^4 - 5x^2 + 6 = 0$ now compare with given equation in question $a_0 = 6$, $a_1 = 0$, $a_2 = -5$, $a_3 = 0$ Sol. 125(d) roots are real $b^2 - 4ac > 0$ $\cos^2\beta - 4(\cos\beta - 1)\sin\beta \ge 0$ $\cos^2\beta + 4(1 - \cos\beta)\sin\beta \ge 0$ we know that $\cos^2\beta$ and $\sin\beta$ is always positive for given interval and $(1 - \cos\beta)$ should be ≥ 0 Sol. 126(d)

a, b, c are in GP so $b^2 = ac$ we know that $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{c}$ $x = \frac{2a}{2a} = \left(\frac{b}{a}\right) - \frac{1 \pm \sqrt{3}i}{2}$ equation has imaginary roots $\left(\frac{b}{a}\right)\omega$ and $\left(\frac{b}{a}\right)\omega^2$ ratio of both above roots is $1: \omega$ product of roots is $\left(\frac{b}{a}\right)^2 \omega^3 = \left(\frac{b}{a}\right)$ Sol. 127(c) $x^2 + mx + n = Z$ for all x put x = 0 then n = Z so n must be integer. put x = 1 then 1 + m + n = Z so m must be integer. both statements are correct. Sol. 128(c) if sum of coefficients is 0 then one root will be definitely 1 so let $\alpha = 1$ both roots are equal so $\alpha = \beta = 1$ and we know that $\alpha\beta = \frac{C}{A} \Longrightarrow \beta = \frac{c^2(a^2 - b^2)}{a^2(b^2 - c^2)} = 1$ $c^{2}(a^{2}-b^{2})=a^{2}(b^{2}-c^{2})$ $2a^2c^2 = a^2b^2 + b^2c^2$ $\frac{1}{b^2} = \frac{1}{a^2} + \frac{1}{c^2}$ so a^2 , b^2 , c^2 are in HP. Sol. 129(c) $\alpha + \beta = -\frac{B}{2}$ $\alpha + \alpha = -\frac{b^2(c^2 - a^2)}{a^2(b^2 - c^2)}$ $2\alpha = \frac{b^2(c^2 - a^2)}{a^2(c^2 - b^2)}$ $\alpha = \frac{b^2 (c^2 - a^2)}{2a^2 (c^2 - b^2)}$ Sol. 130(a) $(x-1)^2 + (x-3)^2 + (x-5)^2 = 0$ $3x^2 - 18x + 35 = 0$ $b^2 - 4ac < 0$ so both roots are imaginary. Sol. 131(c) n is a root of the equation $x^2 + px + m = 0$ so $n^2 + pn + m = 0$(i) m is a root of the equation $x^2 + px + n = 0$ so $m^2 + pm + n = 0$(ii) subtract above equations $n^2 - m^2 + p(n - m) + (m - n) = 0$ (n-m)(n+m+p-1) = 0so m + n + p = 1Sol. 132(b) $g(x) = 9x - 8\sqrt{x} - 1$ $g(x) = 9x - 9\sqrt{x} + \sqrt{x} - 1$ $g(x) = 9\sqrt{x}\left(\sqrt{x}-1\right) + 1\left(\sqrt{x}-1\right)$ $g(x) = (\sqrt{x} - 1)(9\sqrt{x} + 1) = 0$ so x = 1 is only one real root.