GUIDED Revision

(LOGARITHM + QUADRATIC EQUATION)-26

MATHEMATICS

SECTION-I(i)

Straight Objective Type (3 Marks each, -1 for wrong answer)

- 1. The set of all real numbers x for which $x^2 |x + 2| + x > 0$, is (A) $(-\infty, -2) \cup (2, \infty)$ (B) $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$ (C) $(-\infty, -1) \cup (1, \infty)$ (D) $(\sqrt{2}, \infty)$
- 2. If one root of the equation $x^2 + px + q = 0$ is the square of the other, then (A) $p^3 + q^2 - q(3p + 1) = 0$ (B) $p^3 + q^2 + q(1 + 3p) = 0$ (C) $p^3 + q^2 + q(3p - 1) = 0$ (D) $p^3 + q^2 + q(1 - 3p) = 0$
- 3. Let a, b, c be the sides of a triangle. No two of them are equal and $\lambda \in R$. If the roots of the equation $x^2 + 2(a + b + c)x + 3\lambda(ab + bc + ca) = 0$ are real, then

(A)
$$\lambda < \frac{4}{3}$$
 (B) $\lambda > \frac{5}{3}$ (C) $\lambda \in \left(\frac{1}{3}, \frac{5}{3}\right)$ (D) $\lambda \in \left(\frac{4}{3}, \frac{5}{3}\right)$

4. Let α , β be the roots of the equation $x^2 - px + r = 0$ and $\alpha/2$, 2β be the roots of the equation $x^2 - qx + r = 0$. Then the value of 'r' is

(A)
$$\frac{2}{9}(p-q)(2q-p)$$

(B) $\frac{2}{9}(q-p)(2p-q)$
(C) $\frac{2}{9}(q-2p)(2q-p)$
(D) $\frac{2}{9}(2p-q)(2q-p)$

5. Let p and q be real numbers such that $p \neq 0$, $p^3 \neq q$ and $p^3 \neq -q$. If α and β are nonzero complex numbers satisfying $\alpha + \beta = -p$ and $\alpha^3 + \beta^3 = q$, then a quadratic equation having $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ as its roots is [JEE 2010, 3]

(A)
$$(p^3 + q)x^2 - (p^3 + 2q)x + (p^3 + q) = 0$$
 (B) $(p^3 + q)x^2 - (p^3 - 2q)x + (p^3 + q) = 0$
(C) $(p^3 - q)x^2 - (5p^3 - 2q)x + (p^3 - q) = 0$ (D) $(p^3 - q)x^2 - (5p^3 + 2q)x + (p^3 - q) = 0$

6. Let α and β be the roots of $x^2 - 6x - 2 = 0$, with $\alpha > \beta$. If $a_n = \alpha^n - \beta^n$ for $n \ge 1$, then the value

of
$$\frac{a_{10} - 2a_8}{2a_9}$$
 is [JEE 2011]
(A) 1 (B) 2 (C) 3 (D) 4

7. A value of b for which the equations $x^2 + bx - 1 = 0$, $x^2 + x + b = 0$, have one root in common is - [JEE 2011]

(A)
$$-\sqrt{2}$$
 (B) $-i\sqrt{3}$ (C) $i\sqrt{5}$ (D) $\sqrt{2}$

(LOGARITHM + QUADRATIC EQUATION)-26

MATHEMATICS

Let $-\frac{\pi}{6} < \theta < -\frac{\pi}{12}$. Suppose α_1 and β_1 are the roots of the equation $x^2 - 2x \sec \theta + 1 = 0$ and α_2 and 8. β_2 are the roots of the equation $x^2 + 2x \tan \theta - 1 = 0$. If $\alpha_1 > \beta_1$ and $\alpha_2 > \beta_2$, then $\alpha_1 + \beta_2$ equals [JEE(Advanced)-2016, 3(-1)] (A) $2(\sec\theta - \tan\theta)$ (B) $2 \sec \theta$ (C) $-2\tan\theta$ (D) 0

SECTION-I(ii)

Multiple Correct Answer Type (4 Marks each, -1 for wrong answer)

Let S be the set of all non-zero numbers α such that the quadratic equation $\alpha x^2 - x + \alpha = 0$ has 9. two distinct real roots x_1 and x_2 satisfying the inequality $|x_1 - x_2| < 1$. Which of the following intervals [JEE 2015, 4M, -0M] is(are) a subset(s) of S?

(A)
$$\left(-\frac{1}{2}, -\frac{1}{\sqrt{5}}\right)$$
 (B) $\left(-\frac{1}{\sqrt{5}}, 0\right)$ (C) $\left(0, \frac{1}{\sqrt{5}}\right)$ (D) $\left(\frac{1}{\sqrt{5}}, \frac{1}{2}\right)$

If the expression $kx^2 + (2k - 1)xy + y^2 + 2x - 2ky$ can be resolved as a product of two linear factors, 10. then-

(A) there exists no real value of k

(B) at least one value of k is negative

(C) for at least one real value of k, $3k^3 + 1$ is negative

(D) there exist no real value of k for which $3k^3 + 1$ is negative

- 11. If $y = \log_{7-a} (2x^2 + 2x + a + 3)$ is defined $\forall x \in R$, then possible integral value(s) of a is/are (A) - 3(B) - 2(C) 4(D) 5
- Possible set of values of the parameter 'a' for which the inequality $a \cdot 9^{x} + 4(a 1)3^{x} + a 1 > 0$ is satisfied 12. for all real values of x.

 $(D)(-\infty,0]$ $(\mathbf{B})[3,\infty)$ (C)[-3,-1](A)[1,5]

13. Set of values of 't' for which
$$2 \sin t = \frac{1-2x+5x^2}{3x^2-2x-1}$$
, $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, can be

SECTION-II (i)

Numerical Grid Type (Single digit Ranging from 000 to 999) (4 Marks each, -1 for wrong answer)

Let x be a positive real. If the maximum possible value of the expression $y = \frac{x^2 + 2 - \sqrt{x^4 + 4}}{1 + 2 - \sqrt{x^4 + 4}}$, is m 1. then $(m+2)^2$, is

(LOGARITHM + QUADRATIC EQUATION)-26

MATHEMATICS

- Two roots of a biquadratic $x^4 18x^3 + kx^2 + 200x 1984 = 0$ have their product equal to (-32). Find 2. the value of k.
- If roots of the equation $x^2 10cx 11d = 0$ are a, b and those of $x^2 10ax 11b = 0$ are c, d, then find 3. the value of $\frac{a+b+c+d}{10}$ (a, b, c and d are distinct numbers)
- Let P (x) = x^2 + bx + c, where b and c are integer. If P(x) is a factor of both x^4 + 6 x^2 + 25 and 4. $3x^4 + 4x^2 + 28x + 5$, find the value of P(1).

SECTION-III(i)

Numerical Grid Type (Single digit Ranging from 0 to 9) (4 Marks each, -1 for wrong answer)

- If $x^2 + (a b)x + (1 a b) = 0$ where $a, b \in R$ then least integral value of 'a' for which equation has 1. unequal real roots for all values of 'b', is
- The smallest value of k, for which both the roots of the equation, $x^2 8kx + 16(k^2 k + 1) = 0$ are real, 2. distinct and have values at least 4, is
- Let $P(x) = 4x^2 + 6x + 4$ and $Q(y) = 4y^2 12y + 25$. If equation $P(x) \cdot Q(y) = 28$ is satisfied for $x = \alpha$ and 3. $y = \beta$, then $4(\alpha + \beta)$ is

* * * * * * *

(LOGARITHM + QUADRATIC EQUATION)-26

ANSWER KEY

MATHEMATICS

SECTION-I	Q.	1	2	3	4	5	6	7	8	9	10
	Α.	В	D	A	D	В	С	В	С	A,D	B,C
	Q.	11	12	13							
	Α.	B,C,D	A,B	A,D		<u></u>					
SECTION-II	Q.	1	2	3	4						
	Α.	008	086	121	004						
SECTION-III	Q.	1	2	3							
	Α.	2	2	3							