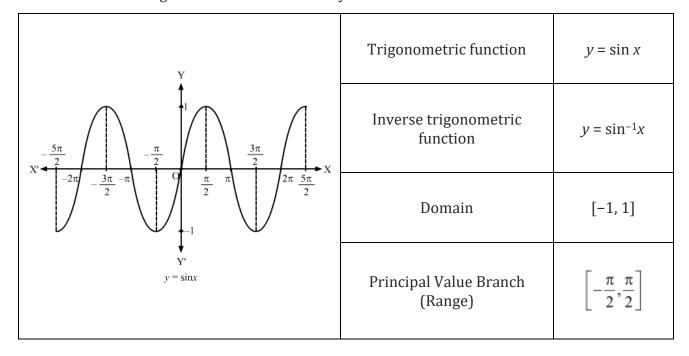
Inverse Trigonometric Functions

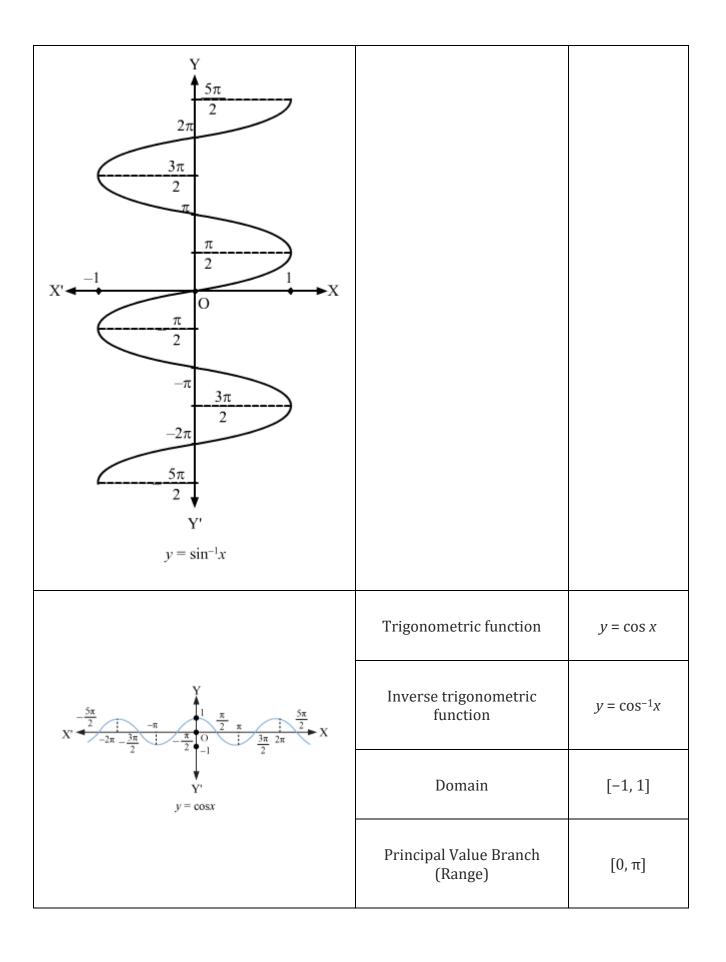
Inverse Trigonometric Functions

 Trigonometric functions are not one-one and onto in their usual natural domain. Hence, they are not invertible.

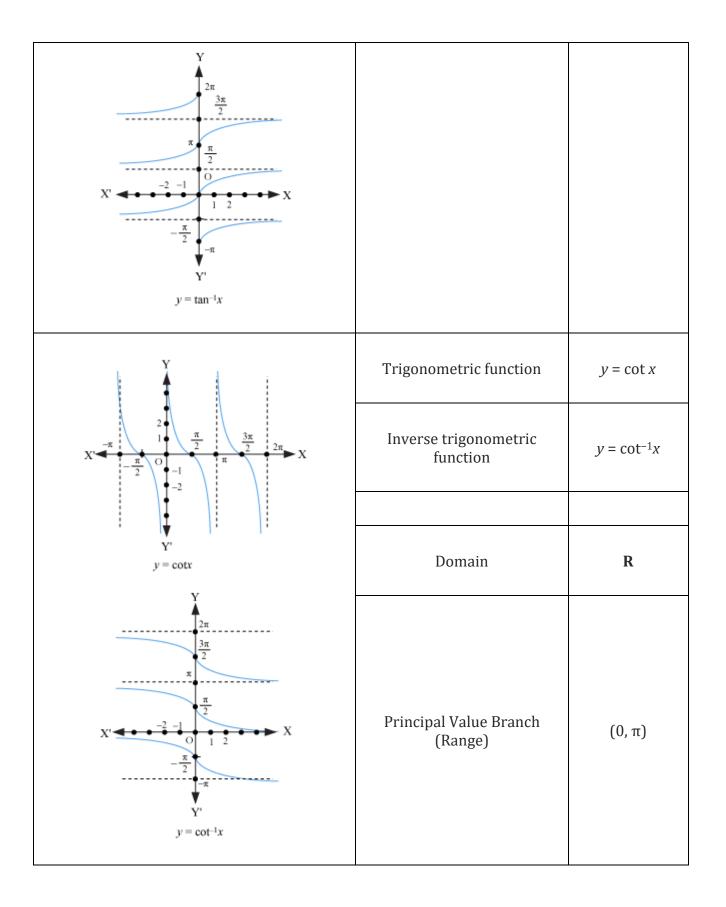
They can be made one-one and onto (i.e., invertible) by restricting their domain. In this case, the

- Range of the inverse of trigonometric function is the proper subset of the domain of that trigonometric function.
- The branch of the inverse trigonometric function with the restricted range is called the Principal Value Branch.
- There are 6 inverse trigonometric functions. They can be described as

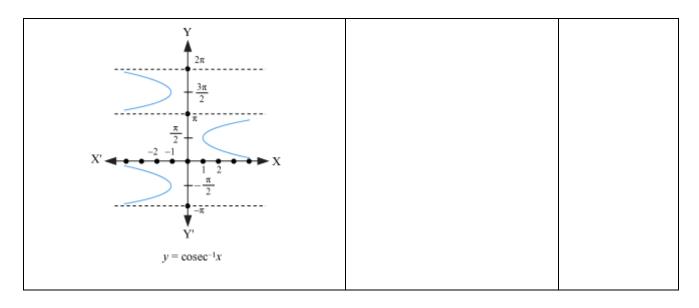




$X' = \frac{3\pi}{2}$ $X' = \frac{3\pi}{2}$ $-\frac{3\pi}{2}$ $-\frac{3\pi}{2}$ $-\frac{3\pi}{2}$ $-\frac{5\pi}{2}$ Y' $y = \cos^{-1}x$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Trigonometric function	<i>y</i> = tan <i>x</i>
	Inverse trigonometric function	<i>y</i> = tan⁻¹ <i>x</i>
	Domain	R
	Principal Value Branch (Range)	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$



$X = \begin{pmatrix} -\pi \\ -\frac{\pi}{2} \\ -1 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{\pi}{2} \\ \frac{3\pi}{2} \end{pmatrix} \times X$	Trigonometric function	$y = \sec x$
	Inverse trigonometric function	$y = \sec^{-1}x$
	Domain	R - (-1, 1)
$y = \sec x$ Y $\frac{3\pi}{2}$ π X' $-2 - 1$ $-\frac{\pi}{2}$ $-\pi$ Y' $y = \sec^{-1}x$	Principal Value Branch (Range)	$\left[0, \ \pi\right] - \left\{\frac{\pi}{2}\right\}$
Y $X' = \frac{\pi}{2}$ Y' $y = \operatorname{cosec} x$	Trigonometric function	$y = \csc x$
	Inverse trigonometric function	$y = \csc^{-1}x$
	Domain	R - (-1, 1)
	Principal Value Branch (Range)	$\left[-\frac{\pi}{2}, \ \frac{\pi}{2}\right] - \{0\}$



Solved Examples

Example 1

 $\cos^{\text{-l}}\!\left(\frac{\sqrt{3}}{2}\right)$ Find the principal value of

Solution:

Let
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = y$$

Accordingly,
$$\cos y = \frac{\sqrt{3}}{2}$$

We know that the range of principal value branch of cos^{-1} is $[0,\pi]$.

$$\cos y = \frac{\sqrt{3}}{2} = \cos\left(\frac{\pi}{6}\right)$$
, where $\frac{\pi}{6} \in [0, \pi]$

 $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6}$ Thus, the principal value of

Example 2

$$\sin^{-1}\!\left(\frac{\sqrt{3}}{2}\right) + 3\cos^{-1}\!\left(\frac{1}{2}\right) + \tan^{-1}\left(1\right)$$
 Find the value of

Solution:

Let
$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = y$$

Accordingly, $\sin y = \frac{\sqrt{3}}{2}$.

The range of the principal value branch of \sin^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

$$\sin y = \frac{\sqrt{3}}{2} = \sin\left(\frac{\pi}{3}\right)$$
, where $\frac{\pi}{3} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$\therefore \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3} \qquad \dots (1)$$

Let
$$\cos^{-1}\left(\frac{1}{2}\right) = u$$
. Accordingly, $\cos u = \frac{1}{2}$

The range of the principal value branch of \cos^{-1} is $[0, \pi]$.

$$\cos u = \frac{1}{2} = \cos\left(\frac{\pi}{3}\right)$$
, where $\frac{\pi}{3} \in [0, \pi]$

$$\therefore \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \qquad \dots (2)$$

Let $\tan^{-1}(1) = v$. Accordingly, $\tan v = 1$.

The range of the principal value branch of \tan^{-1} is $\left(-\frac{\pi}{2}, \ \frac{\pi}{2}\right)$

$$\tan v = 1 = \tan\left(\frac{\pi}{4}\right)$$
, where $\frac{\pi}{4} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$\tan^{-1}(1) = \frac{\pi}{4}$$
 ...(3)

From (1), (2) and (3), we obtain

$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) + 3\cos^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(1\right)$$

$$= \frac{\pi}{3} + 3 \cdot \frac{\pi}{3} + \frac{\pi}{4}$$

$$= \frac{4\pi + 12\pi + 3\pi}{12}$$

$$= \frac{19\pi}{12}$$

Properties of Inverse Trigonometric Functions

• Properties of $\sin^{-1}x$

•
$$y = \sin^{-1} x \Rightarrow x = \sin y$$

•
$$x = \sin y \Rightarrow y = \sin^{-1} x$$

•
$$\sin(\sin^{-1}x) = x$$

•
$$\sin^{-1}(\sin x) = x$$

$$\sin^{-1}\left(\frac{1}{x}\right) = \cos \sec^{-1} x$$

•
$$\sin^{-1}(-x) = -\sin^{-1}x$$

• Properties of $\cos^{-1}x$.

•
$$y = \cos^{-1} x \Rightarrow x = \cos y$$

•
$$x = \cos y \Rightarrow y = \cos^{-1} x$$

•
$$\cos(\cos^{-1}x) = x$$

$$\bullet \quad \cos^{-1}(\cos x) = x$$

$$\cos^{-1}\left(\frac{1}{x}\right) = \sec^{-1}x$$

•
$$\cos^{-1}(-x) = \pi - \cos^{-1}x$$

• Properties of tan-1x

•
$$x = \tan y \Rightarrow y = \tan^{-1} x$$

•
$$tan^{-1} (tan x) = x$$

•
$$tan (tan^{-1} x) = x$$

$$\tan^{-1}\left(\frac{1}{x}\right) = \cot^{-1}x$$

•
$$tan^{-1}(-x) = -tan^{-1}x$$

• Properties of $\cot^{-1}x$.

$$\cot^{-1}\left(\frac{1}{x}\right) = \tan^{-1}x$$

•
$$\cot^{-1}(-x) = \pi - \cot^{-1}x$$

• Properties of $cosec^{-1}x$.

$$\cos \sec^{-1}\left(\frac{1}{x}\right) = \sin^{-1}x$$

•
$$\csc^{-1}(-x) = -\csc^{-1}x$$

• Properties of sec⁻¹x.

$$\sec^{-1}\left(\frac{1}{x}\right) = \cos^{-1}x$$

•
$$\sec^{-1}(-x) = \pi - \sec^{-1}x$$

$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$

$$\cos \sec^{-1} x + \sec^{-1} x = \frac{\pi}{2}$$

$$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$$

• To understand the proof of the formula
$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$

$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right), xy < 1$$

$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right), xy > -1$$

• To understand the proof of the formula of $\tan^{-1} x + \tan^{-1} y$,

$$2 \tan^{-1} x = \begin{cases} \sin^{-1} \left(\frac{2x}{1+x^2} \right), |x| \le 1 \\ \cos^{-1} \left(\frac{1-x^2}{1+x^2} \right), x \ge 1 \\ \tan^{-1} \left(\frac{2x}{1-x^2} \right), -1 < x < 1 \end{cases}$$

• To understand the proof of the formula $2 \tan^{-1} x = \sin^{-1} \left(\frac{2x}{1+x^2} \right)$

$$2\sin^{-1} x = \sin^{-1} \left(2x\sqrt{1-x^2}\right), -\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}$$
$$2\cos^{-1} x = \sin^{-1} \left(2x\sqrt{1-x^2}\right), \frac{1}{\sqrt{2}} \le x \le 1$$

Solved Examples

Example 1

Solve the equation $(\tan^{-1} x)^2 + (\cot^{-1} x)^2 = \frac{5\pi^2}{8}$.

Solution:

$$(\tan^{-1} x)^{2} + (\cot^{-1} x)^{2} = \frac{5\pi^{2}}{8}$$

$$\Rightarrow (\tan^{-1} x + \cot^{-1} x)^{2} - 2\tan^{-1} x \cot^{-1} x = \frac{5\pi^{2}}{8}$$

$$\Rightarrow (\frac{\pi}{2})^{2} - 2\tan^{-1} x \cdot \cot^{-1} x = \frac{5\pi^{2}}{8}$$

$$\Rightarrow 2\tan^{-1} x \cot^{-1} x = \frac{\pi^{2}}{4} - \frac{5\pi^{2}}{8}$$

$$\Rightarrow 2\tan^{-1} x \cot^{-1} x = -\frac{3\pi^{2}}{8}$$

$$\Rightarrow 2\tan^{-1} x \left(\frac{\pi}{2} - \tan^{-1} x\right) = -\frac{3\pi^{2}}{8}$$

$$\Rightarrow \pi \tan^{-1} x - 2(\tan^{-1} x)^{2} = -\frac{3\pi^{2}}{8}$$

Let
$$tan^{-1} x = y$$

$$\Rightarrow 8\pi y - 16y^2 = -3\pi^2$$

$$\Rightarrow 16y^2 - 8\pi y - 3\pi^2 = 0$$

$$\Rightarrow y = \frac{8\pi \pm \sqrt{64\pi^2 + 192\pi^2}}{32} = \frac{8\pi \pm 16\pi}{32}$$

$$\Rightarrow y = \frac{\pi \pm 2\pi}{4}$$

$$\Rightarrow y = -\frac{\pi}{4} \text{ and } \frac{3\pi}{4}$$

$$\Rightarrow \tan^{-1} x = -\frac{\pi}{4} \text{ and } \tan^{-1} x = \frac{3\pi}{4}$$

The principal value branch of $\tan^{-1} x$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

$$\therefore \tan^{-1} x = -\frac{\pi}{4} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

$$\Rightarrow x = \tan\left(-\frac{\pi}{4}\right)$$

$$\Rightarrow x = -1$$

Example 2

If
$$\tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\tan^{-1}x$$
, $x > 0$, then prove that $x = \pm \frac{1}{\sqrt{3}}$.

Solution:

$$\tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\tan^{-1}x$$
$$\Rightarrow 2\tan^{-1}\left(\frac{1-x}{1+x}\right) = \tan^{-1}x$$

$$\Rightarrow \tan^{-1} \left\{ \frac{2\left(\frac{1-x}{1+x}\right)}{1-\left(\frac{1-x}{1+x}\right)^2} \right\} = \tan^{-1} x$$

$$\Rightarrow \frac{2(1-x^2)}{4x} = x$$

$$\Rightarrow 1-x^2=2x^2$$

$$\Rightarrow x^2 = \frac{1}{3}$$

$$\Rightarrow x = \pm \frac{1}{\sqrt{3}}$$