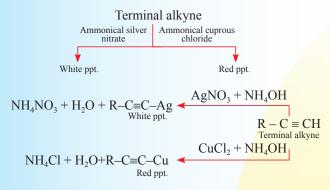
CHAPTER

Distinction between Pairs of Compounds

UNSATURATION TEST

NOTES

- (a) Double/Triple bonded Compounds $(C=C)/(C=C) + Br_2$ in CCl_4 (Brown colour) \rightarrow Colourless compound.
 - $R CH = CH R + Br_2 \xrightarrow{CCl_4} R CH CH R + (Colourless)$

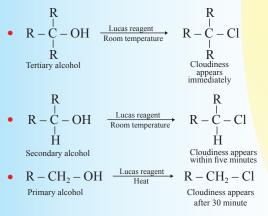

22

- $\mathbf{R} \mathbf{C} \equiv \mathbf{C} \mathbf{R} + \mathbf{Br}_{2}$ (Alkene) (Brown) $(\mathbf{R} - \mathbf{C} = \mathbf{C} - \mathbf{R} + \mathbf{Br}_{2}$ $\mathbf{R} - \mathbf{C} - \mathbf{C} - \mathbf{R} + \mathbf{Br}_{1} + \mathbf{R} + \mathbf{C} - \mathbf{R} + \mathbf{R}$
- (b) Double/Triple bonded Compounds + Baeyer's reagent (Pink colour) → Brown precipitate
 - $R CH = CH R + KMnO_4 \rightarrow R CH CH R + MnO_2$ (Alkene) (Cold, dilute) I (Cold, dilute) I (Coldurress) Brown ppt (Colourless)
 - $R C \equiv C R' + KMnO_4 \rightarrow MnO_2 + RCOOH R'COOH$ (Hot, dilute) Brown ppt.
 - $R C \equiv C H + KMnO_4 \rightarrow MnO_2 + RCOOH + CO_2 + H_2O$ (Alkyne) (Hot, dilute) Brown ppt. (Colourless)

Baeyer's reagent is cold, dilute KMnO₄ solution having pink colour.

The above test are not given by Benzene. Although it has unsaturation.

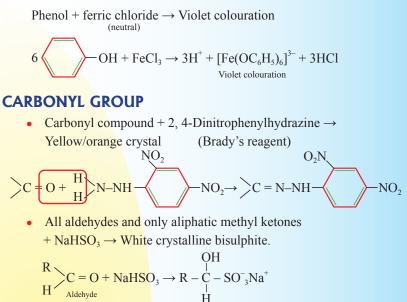
TEST FOR TERMINAL ALKYNE



NATURE OF X-GROUP IN C-X BOND

R-X + aqueous KOH \rightarrow R-OH + KX $\xrightarrow{HNO_3}$ AgX (Precipitate)

If X is Cl, precipitate will be white and for Br yellow precipitate will be obtained.

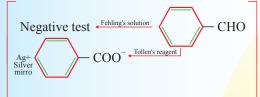

DISTINCTION BETWEEN 1°, 2° AND 3° ALCOHOL

Lucas reagent is anhydrous $ZnCl_2 + conc.$ HCl.

•
$$H_{3}C - CH - R$$
 type of alcohols give iodoform test.
• $H_{3}C - CH - R + I_{2} \xrightarrow{NaOH} CHI_{3} + RCOONa$
• $H_{3}C - CH - R + I_{2} \xrightarrow{NaOH} CHI_{3} + RCOONa$

PHENOL

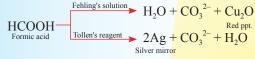
$$R \rightarrow C = O + NaHSO_3 \rightarrow R - C - SO_3Na^{-1}$$


$$H_3C \rightarrow R - C - SO_3Na^{-1}$$

ALDEHYDE GROUP

• Aldehyde + Tollen's reagent \rightarrow Silver mirror O R-C-H+3OH^{Θ} + 2[Ag(NH₃)₂]⁺ \rightarrow RCOO^{Θ} + 2H₂O+4NH₃+2Ag (silver mirror) • Aldehyde + Fehling's solution \rightarrow Reddish brown precipitate O R-C-H+2Cu²⁺ + 5OH⁻ \rightarrow RCOO^{Θ} + 3H₂O+Cu₂O (Reddish brown ppt) • H₃C - C - group also give iodoform test O H₃C - C - R + I₂ + NaOH $\xrightarrow{Iodoform test}$ CHI₃ + RCOONa $\xrightarrow{Iodoform}$ (Yellow ppt.)

AROMATIC ALDEHYDE GROUP


- Aromatic aldehyde + Tollen's reagent \rightarrow Silver mirror
- Aromatic aldehyde + Fehling's solution \rightarrow Negative test

CARBOXYLIC GROUP

Carboxylic acid + Sodium bicarbonate \rightarrow effervescence RCOOH + NaHCO₃ \rightarrow RCOONa + H₂O + CO₂ \uparrow

FORMIC ACID

AMINES (1°)

Primary amine + KOH + CHCl₃ → Isonitrile (Offensive smell)

Amines (1°, 2°& 3°) (Hinsberg's test)

- Primary amine + Benzenesulphonyl chloride \rightarrow Precipitate $\xrightarrow{\text{KOH}}$ Soluble
- Secondary amine + Benzenesulphonyl chloride \rightarrow Precipitate $\xrightarrow{\text{KOH}}$ insoluble
- Tertiary amine + Benzenesulphonyl chloride \rightarrow No reaction.

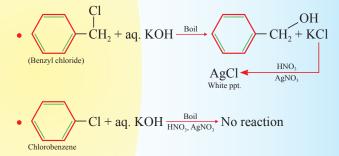
NOTES

Benzenesulphonyl chloride is called Hinsberg's reagent.

Chloroethane and Chlorobenzene

• C_2H_5 -Cl + aq KOH \xrightarrow{Boil} C_2H_5 -OH + KCl $\xrightarrow{HNO_3}$ AgCl White ppt.

• Cl + aq. KOH
$$\xrightarrow[AgNO_3]{AgNO_3}$$
 No reaction


Chlorocyclohexane and chlorobenzene

•
$$-Cl + aq. \text{ KOH} \xrightarrow{Boil} -OH + KCl \xrightarrow{HNO_3} AgCl_{HNO_3} \rightarrow White ppt.$$

• $Cl + aq. \text{ KOH} \xrightarrow{Boil} No \text{ reaction}$

Chlorocyclohexane and bromoethane

- C_2H_5 -Cl + aq. KOH $\xrightarrow{\text{Boil}}$ C_2H_5 -OH+KCl $\xrightarrow{\text{HNO}_3}$ AgCl White ppt.
- C_2H_5 -Br + aq. KOH $\xrightarrow{\text{Boil}}$ C_2H_5 -OH+KBr $\xrightarrow{\text{HNO}_3}$ AgBr (Bromoethane) (Bromoethane)

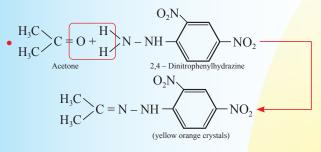
Benzyl chloride and chlorobenzene

Ethyl chloride and vinyl chloride

- C_2H_5 -Cl+aq. KOH $\xrightarrow{\text{Boil}} C_2H_5$ -OH+KCl (Ethyl chloride) $AgCl \xrightarrow{\text{HNO}_3} AgNO_3$
- $H_2C = CH CI + aq$. KOH $\xrightarrow{Boil}_{HNO_3, AgNO_3}$ No reaction

n-Propyl alcohol and iso-propyl alcohol

 CH₃CH₂CH₂OH + HCl ^{ZnCl₂} CH₃CH₂CH₂Cl No cloudiness at room temp. OH Cl H₃C - CH - CH₃ Cloudiness within 5 minutes


Ethyl alcohol and methyl alcohol (lodoform test)

• $CH_3CH_2OH + 4I_2 + 6NaOH \rightarrow CHI_3 + HCOONa$

Yellow ppt.

• $CH_3OH + 4I_2 + 6NaOH \rightarrow No \text{ yellow ppt.}$

Ethyl alcohol and acetone (2,4 – DNP)

• $C_2H_5OH \xrightarrow{2,4-DNP}$ No reaction

Phenol and ethyl alcohol (Neutral FeCl₃)

• Phenol + Neutral ferric chloride \rightarrow Violet colouration

$$6 \longrightarrow OH + FeCl_3 \rightarrow 3H^+ + [Fe(OC_6H_5)_6]^{3-} + 3HCl_{Violet colouration}$$

• $CH_3CH_2OH + Neutral ferric chloride \rightarrow No violet colouration$

Benzoic acid and phenol (NaHCO₃)

- Benzoic acid + Sodium bicarbonate \rightarrow effervescence $C_6H_5COOH + NaHCO_3 \rightarrow C_6H_5COONa + CO_2 \uparrow + H_2O$
- Phenol + Sodium bicarbonate → No effervescence (Phenol is less acidic than benzoic acid)

Propanone and propanol (2,4 – DNP)

• Propanol + 2,4–Dinitrophenylhydrazine \rightarrow No crystals

Ethanal and propanal (lodoform test)

•
$$H_3C - C - H + I_2 + NaOH \xrightarrow{Iodoform test} CHI_3 + HCOONa$$

Ethanal O

• $H_3C - CH_2 - C - H + I_2 + NaOH \xrightarrow{Iodoform test}$ No yellow ppt.

Propanal and propanone (Tollen's and Fehling reagent)

- Propanal + Tollen's reagent \rightarrow Silver mirror $H_3C-CH_2-CH+3OH^- + 2[Ag(NH_3)_2]^+$ $CH_3CH_2COO^- + 2H_2O+4NH_3+2Ag\downarrow$ (Silver mirro)
- Propanal + Fehling's solution \rightarrow Reddish brown precipitate 0 H₃C-CH₂-CH+2Cu²⁺ + 5OH⁻ ----

Tollen's reagent > Negative test

Pentan-2-one and pentan-3-one (lodoform test)

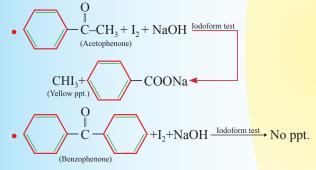
Propanal and benzaldehyde (Fehling solution)

Propanal + Fehling's solution → Reddish brown precipitate

$$\begin{array}{c} O\\ \parallel\\ H_{3}C-CH_{2}-C-H+2Cu^{2+}+5OH^{-}\rightarrow CH_{3}CH_{2}COO^{-}+3H_{2}O+Cu_{2}O\\ Fehling's\\ solution \end{array}$$

• Benzaldehyde + Fehling's solution \rightarrow No precipitate

- CHO+2Cu²⁺+5OH⁻ \rightarrow No reaction


Methanoic acid and ethanoic acid (Tollen's & Fehling solution)

• HCOOH Methanoic acid • Ethanoic acid • Ethanoic acid • HCOOH Methanoic acid • HCOOH Tollen's reagent • CO₃²⁻ + Cu₂O • CO₃²⁻ + Cu₂O

Ethanal and methanal (lodoform test)

- CH₃CHO+I₂+NaOH <u>lodoform test</u> CHI₃+HCOONa Ethanal <u>lodoform</u> (Yellow ppt.)
- HCHO+I₂+NaOH <u>Iddoform test</u> No yellow ppt. Methanal

Acetophenone and benzophenone (lodoform test)

Benzoic acid and ethylbenzoate

• $C_6H_5COOH+NaHCO_3 \rightarrow C_6H_5COONa+CO_1 + H_2O$

effervescence

Ethyl benzoate + Sodium bicarbonate → No effervescence

Benzaldehyde and acetophenone (Tollen's test)

• Benzaldehyde + Tollen's reagent \rightarrow Silver mirror

$$-CHO+3OH^{-}+2[Ag(NH_3)_2]^{+}$$
(Tollen's reagent)

$$-COO^{-}+2H_2O+4NH_3+2Ag\downarrow \blacktriangleleft$$

• Acetophenone + Tollen's reagent \rightarrow No silver mirror

Methyl amine and dimethyl amine (lsocyanide test)

• $CH_3NH_2 + CHCl_3 + 3KOH \rightarrow CH_3NC + 3KCl + 3H_2O$ Methyl amine Methyl isocyanide (alc.) (Offensive smell) CH₃ • $H_3C-NH+CHCl_3+3KOH(alc.) \rightarrow No offensive smell$ Di-methyl amine Aniline and ethyl amine (Diazotisation) OH NaNO₂ + HCl N₂Cl Diazotisation = NOH Orange dye p-hydroxy azobenzene OH NaNO₂+HCl → CH₃CH₂OH No Orange dve CH₃CH₂NH₂ -Ethyl amine Aniline and N-methylaniline (Isocyanide Test) NH₂+CHCl₃+3KOH NC+3KCl+3H₂O (alc.) Phenyl isocyanide (Offensive smell) Aniline NH–CH₃+CHCl₃+3KOH → No offensive smell (alc.) N-Methylaniline Aniline and Benzylamine (Diazotisation + phenol) NaNO₂+HCl NH₂ Diazotisation Aniline N = NOH • Orange dye NaNO2+HCl CH₂-NH₂ CH₂-OH Benzylamine

No orange dye

Glucose and fructose

- Glucose + Br_2 + $H_2O \rightarrow$ Gluconic acid + 2HBr (Brown colour) (Colourless)
- Fructose + Br_2 + $H_2O \rightarrow Brown \ colour$ (Brown colour) (no change in colour)

Glucose and sucrose

- Glucose + Tollen's reagent \rightarrow Silver mirror
- Sucrose + Tollen's reagent \rightarrow No silver mirror

Glucose and starch

- Glucose + Fehling's solution \rightarrow Red ppt.
- Starch + Fehling's solution \rightarrow No red ppt. OR
- Glucose + I_2 solution \rightarrow No blue colour
- Starch + I_2 solution \rightarrow Blue colour