
धातु एवं अधातु

तत्त्व (Elements) :- वे पदार्थ जो एक ही प्रकार के परमाणुओं से मिलकर बने होते है , तत्त्व कहलाते हैं ।

> तत्वों को उनके कुछ विशिष्ट गुणों के आधार पर तीन भागों में बाँटा जा सकता है – **धातु** , अधातु तथा उपधातु ।

धातु (Metal) :- बहुत सारे पदार्थों को उनके कुछ खास गुणों (धात्विक चमक, आघातवर्ध्यता, तन्यता विद्युत व ऊष्मीय चालकता तथा ध्वनिता आदि) के कारण धातु कहा जाता है।

जैसे :- आयरन, कॉपर, एलिमनियम, आदि।

अधातु (Non–metals) :- वह तत्व जिसमे धातु के गुण नहीं पाए जाते और भंगुर होते हैं, अधातु कहलाते हैं।

<mark>जैसे:-</mark> कार्बन (Carbon), ऑक्सीजन (Oxygen), सल्फर (Sulphur), क्लोरीन (Chlorine), आदि।

Note :- अधातुओं के गुण प्राय: धातु के गुणों के ठीक विपरीत होता है।

धातु तथा अधातु के भौतिक गुण (Physical properties of metals) :

गुणधर्म	धातु	अधातु
1. धात्विक चमक	धातु की सतह चमकदार होती है, जिसे धातुई चमक कहते हैं	अधातुएँ चमकीली नहीं होती । अपवाद: आयोडीन अधातु होते हुए भी चमकीला होता है ।
2. कठोरता	धातुएँ सामान्यत : कठोर होती हैं लेकिन अपवाद : लीथियम , सोडियम पोटैशियम मुलायम होते हैं और इन्हें चाकू से काटा जा सकता है	अधिकतर कठोर नहीं होते । अपवाद : कार्बन का एक अपरूप हीरा है जो सबसे कठोर प्राकृतिक पदार्थ है
3.रूप	धातुएँ कमरे के ताप पर ठोस रूप में पाई जाती हैं। अपवाद: केवल मर्करी (पारा) को छोड़कर जो द्रव रूप में पाया जाता है।	अधातुएँ ठोस या गैसीय रूप में पाई जाती हैं। अपवाद: केवल ब्रोमीन को छोड़कर जो तरल रूप में होती है।

4. आघातवर्ध्यता	कुछ धातुओं को पीटकर पतली चादर के रूप में परिवर्तित किया सकता है ।	अधातुएँ आघातवर्ध्य नहीं होती ।	
5. तन्यता	धातुओं को पतली तार के रूप खींचा जा सकता है।	आधातुएँ तन्य नहीं होती ।	
6. विद्युत व ऊष्मा के चालक	सामान्यतः धातुएँ विद्युत व ऊष्मा की सुचालक होती हैं । अपवाद: सीसा (Pb) एवं मर्करी (Hg) कुचालक होते हैं ।	सामान्यतः अधातुएँ विद्युत व ऊष्मा की कुचालक होती हैं । अपवाद : ग्रेफाइट सुचालक होता है ।	
7. घनत्व	धातु सामान्यत : अधिक घनत्व व उच्च गलनाक होते हैं <mark>, अपवाद :</mark> सोडियम एवं पोटैशियम का घनत्व तथा गलनांक कम होता है ।	अधातु सामान्यतः अधातुओं का घनत्व व गलनांक कम होते हैं ।	
8. ध्वानिक	धातुएँ कठोर सतह से टकराने पर आवाज पैदा करती हैं ।	अधातुएँ ध्वानिक नहीं होती हैं ।	
9. ऑक्साइड	अधिकतर धातुएँ क्षारकीय ऑक्साइड बनाती है जैसे MgO (मैग्नीशियम ऑक्साइड)	अधातुएँ अम्लीय ऑक्साइड बनाती हैं जैसे SO2	

धातुओं के रासायनिक गुण:-

(1) <mark>धातुओं का ऑक्सीजन से अभिक्रिया : -</mark> जब धातु को हवा में जलाया जाता है तो संबंधित धातु ऑक्साइड बनता है।

धातु + ऑक्सीजन > धातु का ऑक्साइड

अधिकांश धातु यह गुण प्रदर्शित करता है अर्थात धातु को हवा में जलाने पर धातु ऑक्सीजन के साथ अभिक्रिया कर संबंधित मेटल ऑक्साइड बनाता है।

उदाहरण:

(i) जब सोडियम को हवा में गर्म किया जाता है, तो सोडियम तुरंत नारंगी लौ के साथ जलने लगता है तथा सोडियम ऑक्साइड तथा सोडियम पेरॉक्साइड का मिश्रण बनाता है।

$$4Na + O_2 \rightarrow 2Na_2O$$

(ii) जब लिथियम को हवा में गर्म किया जाता है या जलाया जाता है, तो लिथियम भी तुरंत red-tinted flame के साथ जलने लगता है तथा लिथियम ऑक्साइड देता है।

4Li + O₂ → 2Li₂O

(iii) पोटैशियम को हवा में जलाने पर यह पोटैशियम पेरॉक्साइड (Potassium peroxide) तथा पोटैशियम सुपर ऑक्साइड (Potassium super oxide) बनाता है।

• पोटैशियम को हवा में गर्म करते ही तुरत (melt) पिघल जाता है।

Note :-

चूँकि सोडियम (Sodium), पोटैशियम (Potassium) तथा लिथियम (Lithium) काफी अभिक्रिया शील होने के कारण ऑक्सीजन के साथ तेजी से अभिक्रिया करता है, ये धातुएँ जल के साथ भी बहुत तेजी से अभिक्रिया करता है। सोडियम (Sodium) का जल के साथ अभिक्रिया के क्रम में इतनी उष्मा निकलती है कि अभिक्रिया के क्रम में बनने वाले हाइड्रोजन गैस में तुरंत आग लग जाता है। इन अनचाहे अभिक्रिया से बचाने के लिय सोडियम (Sodium), पोटैशियम (Potassium) तथा लिथियम (Lithium) को केरोसिन के तेल (kerosene oil) में डुबाकर रखा जाता है।

(iv) मैग्नेशियम (magnesium) धातु को हवा में जलाने पर यह चौंधियाने वाले प्रकाश (dazzling light) के साथ जलने लगता है तथा मैग्नेशियम ऑक्साइड बनाता है

$$2Mg + O_2 \rightarrow 2MgO$$

(v) जब अल्मुनियम को हवा में जलाया जाता है तो यह अल्मुनियम ऑक्साइड बनाता है।

$$4AI + O_2 \rightarrow 2AI2O_3$$

(vi) जब जिंक (Zinc) को हवा में जलाया या गर्म किया जाता है, तो जिंक (Zinc) का वाष्प बनना शुरू हो जाता है, जिसकी परत जिंक (Zinc) पर चढ जाती है।

$$2Zn + O_2 \rightarrow 2ZnO$$

(vii) जब लेड (Lead) को हवा में जलाया या गर्म किया जाता है, तो यह लेड ऑक्साइड बनाता है, जिसकी एक पतली परत लेड के उपर चढ जाती है।

$$2Pb + O_2 \rightarrow 2PbO$$

(viii) जब कॉपर (Copper) को हवा में जलाया जाता है तो (Copper (II) oxide) बनता है जिसकी पतली परत कॉपर के सतह पर जम जाती है।

- (ix) जब लोहे (Iron) के बुरादे को हवा की उपस्थिति में जलाया जाता है, तो यह चमकदार फुहारे (sprinkled light) के साध जलने लगता है लेकिन लोहे के रॉड (Iron rod) को हवा में जलाने से यह केवल गर्म हो जाता है जलता नहीं है।
- (x) चाँदी (Silver) तथा सोना (Gold) हवा में या बिना हवा के नहीं जलता है क्योंकि ये बहुत ही कम अभिक्रिया शील हैं। इन धातुओं को नोबल धातु कहा जाता है।

(2) धातु का जल के साथ अभिक्रिया

धातु जल के साथ अभिक्रिया कर संबंधित मेटल ऑक्साईड (Metal oxide) तथा हाईड्रोजन गैस (Hydrogen gas) बनाता है।

उदाहरण:

$$2\text{Na} + \text{H}_2\text{O} \rightarrow 2\text{NaOH} + \text{H}_2$$

$$\text{Ca} + \text{H}_2\text{O} \rightarrow \text{Ca} (\text{OH})_2 + \text{H}_2$$

$$\text{Mg} + 2\text{H}_2\text{O} \rightarrow \text{Mg} (\text{OH})_2 + \text{H}_2$$

$$2\text{Al} + 3\text{H}_2\text{O} \rightarrow \text{Al}_2\text{O}_3 + 3\text{H}_2$$

$$3\text{Fe} + 4\text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + 4\text{H}_2$$

लोहे में जंग लगना

लोहा ठंढे जल या हवा में उपस्थित नमी के साथ बहुत धीरे धीरे अभिक्रिया कर आयरन ऑक्साईड बनाता है, जिसकी परत लोहे की सतह के उपर जम जाती है और धीरे धीरे लोहे का पूरा सामान आयरन ऑक्साईड में बदल जाता है। लोहे से बने सामान के उपर आयरन ऑक्साईड की परत चढ़्ने की क्रिया को लोहे में जंग लगना कहते हैं।

4Fe +
$$3O_2$$
 + $2xH_2O \rightarrow 2Fe_2O_3$. xH_2O जंग

Note:- लेड (Lead), कॉपर (Copper), सिल्वर (Silver) तथा सोने (Gold) आदि ठंढे या गर्म जल या जलवाष्प के साथ अभिक्रिया नहीं करता है। ताँबा जल वाष्प के साथ अभिक्रिया नहीं करता है। इसी कारण इसका उपयोग गर्म जल के टंकी में किया जाता है।

<mark>(3) धातु का अम्ल के साथ अभिक्रिया</mark> :-

धातु (Metal), अम्ल के साथ अभिक्रिया कर संबंधित लवण तथा हाईड्रोजन गैस बनाता है।

उदाहरण :

Fe + 2HCl
$$\rightarrow$$
 FeCl₂ + H₂
Mg + 2HCl \rightarrow MgCl₂ + H₂
Zn + 2HCl \rightarrow ZnCl₂ + H₂
2A1 + 6HCl \rightarrow 2AlCl₃ + 3H₂

लेकिन सभी धातु अम्ल के साथ समान तरह से अभिक्रिया नहीं करता है तथा वे लवण (salt) और हाईड्रोजन गैस नहीं बनाते हैं। जैसे कि कॉपर तनु अम्ल के साथ अभिक्रिया नहीं करता है।

NOTE:- Cu, Ag, Hg तनु अम्लों के साथ अभिक्रिया नहीं करते।

<mark>(**4**) धातु ऑक्साइड (Metal oxides) का अम्ल (Acid) के साथ अभिक्रिया</mark> :-

धातु ऑक्साड (Metal oxides) का गुण क्षारीय (basic) होता है। अत: जब धातु ऑक्साइड (Metal oxides) तनु अम्ल के साथ अभिक्रिया करता है तो संबंधित लवण तथा जल (water) बनाता है |

धातु ऑक्साड + अम्ल ⇒ संबंधित लवण + जल

उदाहरण :

(1) सोडियम ऑक्साइड तनु हाईड्रोक्लोरिक अम्ल के साथ अभिक्रिया करता है तो यह सोडियम क्लोराईड तथा जल बनाता है।

Na₂O + 2HCl → 2NaCl + H₂O

(2) पोटैशियम ऑक्साइड (Potassium Oxide) का हाईड्रोक्लोरिक अम्ल (Hydrochloric Acid) के साथ अभिक्रिया करता है तो यह पोटैशियम क्लोराईड तथा जल बनाता है।

K₂O + 2HCl → 2KCl + H₂O

(3) कॉपर ऑक्साइड (Copper Oxide) का हाईड्रोक्लोरिक अम्ल (Hydrochloric Acid) के साथ अभिक्रिया कर कॉपर क्लोराईड (copper chloride) तथा जल (water) बनाता है।

CuO + 2HCl → CuCl₂ + H₂O

(**5**) धातु ऑक्साईड (Metal oxide) का जल के साथ अभिक्रिया

अधिकांश मेटल ऑक्साईड (Metal oxide) जल में अघुलनशील होता है। परंतु अलकली तथा अलकलाईन अर्थ मेटल के ऑक्साईड जल में घुलनशील होत हैं।

अलकली (Alkali) तथा अलकलाईन अर्थ मेटल (Alkaline earth metal) के ऑक्साईड जल के साथ अभिक्रिया कर संबंधित हाईड्रोक्साईड बनाते हैं। ये काफी प्रबल क्षार होते हैं। ऐसे क्षार को अलकली (Alkali) कहा जाता है

मेटल ऑक्साईड + जल मेटल हाईड्रोक्साईड

उदाहरण:

(i). सोडियम ऑक्साईड (Sodium oxide) जल के साथ अभिक्रिया कर सोडियम हाईड्रोक्साईड (Sodium hydroxide) बनाता है।

 $Na_2O + H_2O \rightarrow 2NaOH$ सोडियम हाईड्रोक्साईड

Note :- सोडियम हाईड्रोक्साईड (Sodium hydroxide) काफी प्रबल क्षार (Strong Base) है।

(ii). पोटैशियम ऑक्साईड जल के साथ अभिक्रिया कर पोटैशियम हाईडोक्साईड बनाता है।

 $K_2O + H_2O \rightarrow 2KOH$ पोटैशियम हाईड्रोक्साईड

• पोटैशियम हाईड्रोक्साईड एक अत्यधिक प्रबल क्षार है।

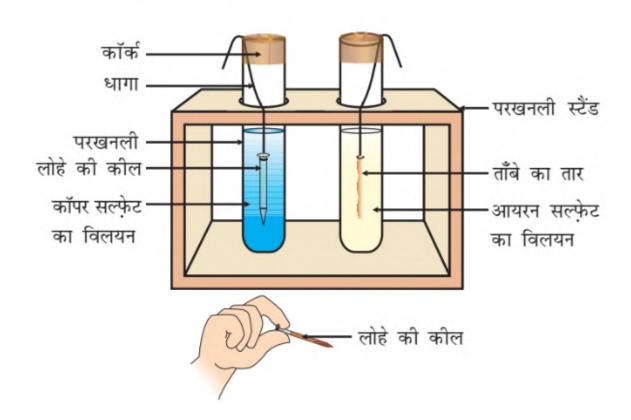
(6) एक धातु अन्य धातुओं के लवण के साथ अभिक्रिया

जब एक ज्यादा अभिक्रियात्मक धातु उससे कम अभिक्रियात्मक धातु के लवण के घोल के साथ अभिक्रिया करता है, तो ज्यादा अभिक्रियात्मक धातु कम अभिक्रियात्मक धातु को उसके लवण से विस्थापित कर देता है।

M1 + M2B(aq)
$$\rightarrow$$
 M1B(aq) + M2

यहाँ M1 धातु, M2 धातु से ज्यादा अभिक्रियात्मक है। तथा M2B धातु M2 का लवण है।. ऐसे अभिक्रिया को <u>विस्थापन</u> <u>अभिक्रिया</u> कहते हैं

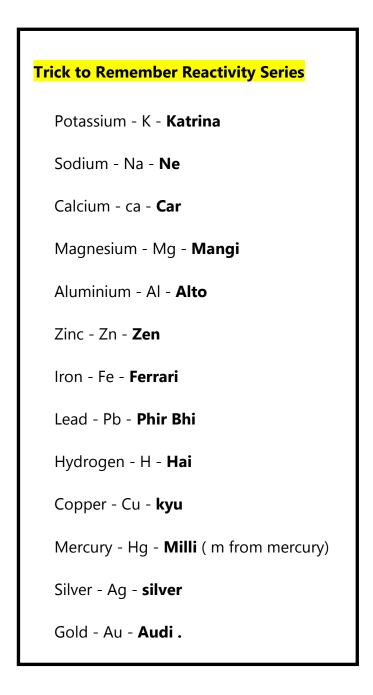
उदाहरण:


जब लोहे के कीलों को कॉपर सल्फेट के घोल में डुबाकर रखा जाता है तो लोहा कॉपर को विस्थापित कर देता है तथा आयरन सल्फेट बनाता है।

Fe (s) + CuSO₄(aq)
$$\rightarrow$$
 FeSO₄(aq) + Cu (s) \downarrow

इस अभिक्रिया में आयरन, कॉपर से अधिक अभिक्रिया शील (reactive) है।

$$Zn + CuSO_4 \rightarrow ZnSO_4 + Cu \downarrow$$


इस अभिक्रिया में जिंक , कॉपर से अधिक अभिक्रिया शील (reactive) है।

सक्रियता श्रेणी (Reactivity Series) :-

सूची जिसमें धातुओं को उनके क्रियाशीलता के आधार पर अवरोही क्रम में व्यवस्थित किया गया है, सक्रियता श्रेणी कहलाती है। इस सूची में सबसे क्रियाशील धातु को सबसे उपर तथा सबसे कम क्रियाशील धातु को सबसे नीचे रखा गया है।

	·	
तत्वों के संकेत	तत्वों के नाम	
K	1))	
N.	पोटेशियम	
No	111	
Na	सोडियम	
Са	केरिकाम	
Ca	कैल्शियम	
Ma	मैग्रीशियम	
Mg	ี	
Al	एलुमिनियम	
AI .	एलुमानपम	
Zn	जिंक	
4 11	10147	
Fe	आयरन	
	311-10 1	
Pb	लेड (सीसा)	
	(((((((((((((((((((((((((((((((((((((((
[H]	[हाइड्रोजन]	
Cu	कॉपर (तांबा)	
	, ,	
Hg	मरकरी (पारा)	
	, ,	
Ag	चांदी (सिल्वर)	
Au	सोना (गोल्ड)	

सबसे ज्यादा क्रियाशील धातु बहुत तेजी से अभिक्रिया करता है जबिक सबसे कम क्रियाशील धातु या तो बिल्कुल ही अभिक्रिया नहीं करता है या विशेष परिस्थियों में ही अभिक्रिया करता है। जैसे कि पोटैशियम (Potassium) जो कि सिक्रियता श्रेणी (Reactivity series) में सबसे उपर है सबसे ज्यादा तेजी से अभिक्रिया करता है जबिक सोना (Gold) तथा चाँदी (Silver) जो कि सिक्रियता श्रेणी में सबसे नीचे है बिल्कुल ही अभिक्रिया नहीं करता है, सोने तथा चाँदी का यह भी एक गुण है जिसके कारण इन धातुओं का उपयोग जेवर बनाने में होता है।

अधातु के रासायनिक गुण :

(1) अधातु का ऑक्सीजन के साथ अभिक्रिया

अधिकांश अधातु ऑक्सीजन के साथ अभिक्रिया कर संबंधित अधातुओं के ऑक्साईड बनाते हैं।

अधातु के ऑक्साईड अम्लीय (Acidic) होते हैं। जब अधातु के ऑक्साईड (Non metal oxide) को जल में घोला जाता है तो संबंधित अम्ल बनता है।

उदाहरण:

(i) .कार्बन का ऑक्सीजन के साथ अभिक्रिया

$$C(s) + O_2 \rightarrow CO_2(g) + उष्मा$$

कार्बन को हवा में जलाना एक उष्माक्षेपी (Exothermic) अभिक्रिया है। यही कारण है कि कार्बन का उपयोग ईंधन के रूप में होता है। कोयला, पेट्रोल, प्राकृतिक गैस, इत्यादि कार्बन के विभिन्न रूप हैं।

(ii) कार्बन का कम ऑक्सीजन की उपस्थिति में दहन:-जब कार्बन को कम ऑक्सीजन की उपस्थिति में जलाया जाता है, तो यह कार्बन मोनो ऑक्साईड (Carbon monoxide) बनाता है।

अधातु के ऑक्साईड के गुण :-

अधातु के ऑक्साईड अम्लीय होते हैं। अधातु के ऑक्साईड जल से गीले ब्लू लिट्मस पत्र (Moist blue litmus paper) को लाल रंग में बदल देता है। जब अधातु के ऑक्साईड जल में घुलकर अम्ल बनाते हैं।

उदाहरण:

जब कार्बन डाईऑक्साइड को जल में घोला जाता है तो यह कार्बीनिक अम्ल बनाता है। कार्बीनिक अम्ल एक कमजोर अम्ल है।

$$CO_2 + H_2O \rightarrow H_2CO_3$$

अम्लीय वर्षा (Acidic Rain):

- अम्लीय (Acidic) गुण वाले जल का बारिश के रूप में पृथ्वी पर गिरना अम्लीय वर्षा (Acidic rain) कहलाती है। गाड़ियाँ, फैक्ट्रियाँ आदि से ईंधन के जलने के बाद कार्बन डाईऑक्साइड तथा सल्फर डाईऑक्साइड धुँए के रूप में निकलती हैं, जो स्वास्थ्य तथा पर्यावरण के लिय काफी खतरनाक है। ये गैसें गाड़ियों तथा फैक्ट्रियों से निकलकर हवा में मिल जाती हैं तथा हवा में ही मौजूद रहती हैं।
- जब बारिश होती है तो कार्बन डाईऑक्साइड तथा सल्फर डाईऑक्साइड बारिश के जल में घुलकर क्रमश: कार्बोनिक अम्ल तथा सल्फ्युरिक अम्ल बनाती हैं जो कि बारिस की बुन्दों के साथ पृथ्वी पर गिर जाती हैं।
- अम्लीय वर्षा ऐतिहासिक धरोहरों (Historical monuments) यथा ताजमहल, जो कि संगमरमर (Marble) का बना है, आदि के लिये काफी कतरनाक है। अम्लीय वर्षा इन ऐतिहासिक इमारतों (Historical buildings) को काफी क्षित पहुँचाती है। अम्लीय वर्षा जब निदयों, तालाबों के में मिलकर उनके जल को आम्लिक (Acidic) बना देती है,

निदयों तथा तालाबों के जल के pH का मान अम्लीय जल के मिलने के कारण कम हो जाता है तथा जलीय जीव मरने लगते हैं।

(**2) अधातु का जल के साथ अभिक्रिया :** – अधातुएँ सामान्य ताप पर जल के साथ अभिक्रिया नहीं करती है ।

(3) अधातु का अम्लों के साथ अभिक्रिया:- अधिकांश अधातुएँ अम्लों के साथ अभिक्रिया नहीं करती है | लेकिन, कुछ अधातुएँ ऑक्सीकारक अम्लों के साथ अभिक्रिया करके ऑक्सीजन अम्ल बनाती है |

Special Case:-

$$S + 6HNO_3 \rightarrow H_2SO_4 + 6NO_2 + 2H_2O$$

(4) अधातु का क्लोरीन के साथ अभिक्रिया :- अधतुएँ क्लोरीन के साथ अभिक्रिया करके क्लोराइड बनाती है।

Ex-
$$H_2 + Cl_2 \rightarrow 2HCl$$

(5) अधातु का हाइड्रोजन के साथ अभिक्रिया: – अधातुएँ हाइड्रोजन के साथ संयोग करके हाइड्राइड बनाते है।

Ex-
$$S + H_2 \rightarrow H_2S$$

(6) एक धातु का दूसरे अधातुओं के साथ अभिक्रिया

एक धातु दूसरे अधातु के साथ अभिक्रिया कर आयनिक यौगिक बनाती है। इसमें धातु इलेक्ट्रान त्याग कर धनायन बनाते है जबिक अधातु इलेक्ट्रान ग्रहण कर ऋणायन बनाते है, ये दो विपरीत आयन (आवेश) एक दूसरे को आकर्षित करते हैं और **आयनिक बंधन** बनाते हैं।

$$K^{*} + CI \rightarrow K^{+} + CI \rightarrow KCI$$

आयनिक बंध या इलेक्ट्रोवैलेंट बांड:-

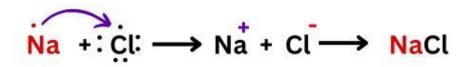
एक परमाणु के द्वारा दूसरे परमाणु पर इलेक्ट्रॉन के स्थानांतरण के कारण बनने वाले रासायनिक बंध को आयनिक बंध (lonic bond) या इलेक्ट्रोवैलेंट बांड (Electrovalent bond) कहते हैं।

जब एक धातु एक अधातु के साथ अभिक्रिया करता है तो वे आयनिक बंध बनाते हैं तथा बनने वाला यौगिक आयनिक यौगिक (Ionic compound) कहलाता है।

उदाहरण : 1 सोडियम क्लोराईड का [NaCl] बनना

सोडियम [Na], जो कि एक धातु है, की परमाणु संख्या = 11

सोडियम [Na] का इलोक्ट्रोनिक विन्यास = 2, 8, 1


सोडियम [Na] में संयोजी इलेक्ट्रॉन (Valence electron) की संख्या = 1

क्लोरीन [CI], जो कि एक अधातु है, की परमाणु संख्या = 17

क्लोरीन [CI] का इलोक्ट्रोनिक विन्यास = 2, 8, 7

क्लोरीन [CI] में संयोजी इलेक्ट्रॉन की संख्या = 7

सोडियम के बाह्यतम कोश में 1 इलेक्ट्रॉन है सोडियम अष्टक पूरा करने के लिए 1 इलेक्ट्रॉन का त्याग कर Na+ बनाता है, जबिक क्लोरीन के बाह्यतम कोश में 7 इलेक्ट्रॉन है क्लोरीन अष्टक पूरा करने के लिए 1 इलेक्ट्रॉन ग्रहण कर CI- बनाता है, ये दो विपरीत आयन (आवेश) एक दूसरे को आकर्षित करते हैं और आयनिक बंधन बनाते हैं।

उदाहरण: 2 पोटैशियम क्लोराईड [KCI] का बनना

पोटैशियम [K], जो कि एक धातु है, की परमाणु संख्या = 19

पोटैशियम [K] का इलोक्ट्रोनिक विन्यास = 2, 8, 8, 1

पोटैशियम [K] में संयोजी इलेक्ट्रॉन की संख्या = 1

क्लोरीन [CI], जो कि एक अधातु है, की परमाणु संख्या = 17

क्लोरीन [CI] का इलोक्ट्रोनिक विन्यास = 2, 8, 7

क्लोरीन [CI] में संयोजी इलेक्ट्रॉन की संख्या = 7

पोटैशियम के बाह्यतम कोश में 1 इलेक्ट्रॉन है पोटैशियम अष्टक पूरा करने के लिए 1 इलेक्ट्रॉन का त्याग कर **K**+ बनाता है , जबिक क्लोरीन के बाह्यतम कोश में 7 इलेक्ट्रॉन है क्लोरीन अष्टक पूरा करने के लिए 1 इलेक्ट्रॉन ग्रहण कर **CI**- बनाता है, ये दो विपरीत आयन (आवेश) एक दूसरे को आकर्षित करते हैं और आयनिक बंधन बनाते हैं।

$$\dot{\mathbf{K}} + : \dot{\mathbf{C}} : \longrightarrow \mathbf{K}^{+} + \mathbf{C} : \overset{}{\mathbf{K}} \longrightarrow \mathbf{K} \mathbf{C}$$

आयनिक यौगिक के गुण

- (1) भौतिक प्रकृति: ये ठोस व कुछ कठोर होते हैं। ये सामान्यत: भंगुर होते हैं।
- (2) गलनांक एवं कथनांक: आयनिक यौगिकों का गलनांक व क्वथनांक बहुत अधिक होता है।
- (3) **घुलनशीलता :** आयनिक यौगिक प्रायः जल में घुलनशील व केरोसीन , पेट्रोल जैसे विलायकों में अविलेय होते हैं ।
- (4) **विद्युत चालकता:** आयनिक यौगिक जलीय विलयन में और गलित रूप में विद्युत का चालन करते हैं। ये ठोस रूप में विद्युत का चालन नहीं करते हैं।

संयोजी इलेक्ट्रॉन (Valence Electron)

किसी भी परमाणु के बाहरी कक्षा (outermost orbit) में वर्तमान इलेक्ट्रॉन की संख्या संयोजक इलेक्ट्रॉन या संयोजी इलेक्ट्रॉन (Valence Electron) कहलाती है।

उदाहरण:

सोडियम (Sodium) की परमाणु संख्या = 11 इलेक्ट्रॉनिक विन्यास = 2, 8, 1 बाहरी कक्षा में वर्तमान इलेक्ट्रॉन की संख्या = 1 अत: सोडियम का संयोजक इलेक्ट्रॉन = 1

प्रकृति में धातुओं की उपस्थिति:- प्रकृति में धातुएँ पृथ्वी की परत तथा समुद्री जल में पाई जाती है ये धातुएँ दो रूपों में पाई जाती है |

- 1. मुक्त अवस्था में वे धातुओं मुक्त अवस्था में पाई जाती है जिन पर वायु के ऑक्सीजन, जलवाष्प, कार्बन डाइऑक्साइड आदि का कोई प्रभाव नहीं पड़ता है | जैसे सिल्वर, गोल्ड, प्लैटिनम आदि |
- 2. संयुक्त अवस्था में वे धातुएँ संयुक्त अवस्था में पाई जाती है | जिन पर वायु के ऑक्सीजन, जलवाष्प, कार्बन डाइऑक्साइड आदि आसानी से क्रिया कर पाते हैं | जैसे सोडियम, पोटैशियम, कॉपर

खनिज (Minerals):- तत्व या यौगिक जो पृथ्वी की भूपर्पटी (earth's crust) में पाये जाते हैं को खनिज कहते हैं। Ex - लोहा, अभ्रक, कोयला, बॉक्साइट, नमक, जस्ता, चूना पत्थर आदि मुख्य खनिज पदार्थों के उदाहरण है।

अयस्क (Ores):- खनिज जिनमें किसी विशेष धातु या तत्व की मात्रा ज्यादा होती है तथा उन धातुओं या तत्वों को लाभकारी रूप से कम खर्च में निकाला जा सकता है, अयस्क कहते हैं।

Note: - सभी अयस्क खनिज होते हैं, किंतु सभी खनिज अयस्क नहीं होते |

अयस्क के प्रकार :- अयस्कों को निम्नलिखित भागों में वर्गीकृत किया गया है।

- 1. सल्फाइड अयस्क
- 2. ऑक्साइड अयस्क
- 3. कार्बोनेट अयस्क
- 4. क्लोराइड अयस्क
- 1. सल्फाइड अयस्क :- इन अयस्कों में धातुएं अपने सल्फाइडों के रूप में पायी जाती हैं। जैसे –

कॉपर ⇒ कॉपर पायराइट (CuFeS₂)

लेड \Rightarrow गैलेना (PbS)

आयरन ⇒ आयरन पायराइट (FeS₂)

मरकरी ⇒ सिनेबार (HgS) **जिंक** ⇒ जिंक ब्लेंडी (ZnS)

2. ऑक्साइड अयस्क :- इन अयस्कों में धातुएं अपने ऑक्साइडों के रूप में पायी जाती हैं। जैसे –

एल्युमीनियम \Rightarrow बॉक्साइट ($Al_2O_3 \cdot 2H_2O$)

कॉपर \Rightarrow क्यूप्राइट (Cu_2O)

जिंक ⇒ जिंकाइट (ZnO)

आयरन \Rightarrow हेमेटाइट (Fe₂O₃)

कार्बोनेट अयस्क:- इन अयस्कों में धातुएं अपने कार्बोनेटों के रूप में मिलती हैं।

जैसे –

जिंक ⇒ कैलेमाइन (ZnCO₃)

मैग्नीशियम ⇒ मैग्नेसाइड (MgCO₃)

कॉपर \Rightarrow मैलेकाइट (Cu(OH)₂•CuCO₃)

लेड (सीसा) \Rightarrow सेरूसाइट (PbCO₃)

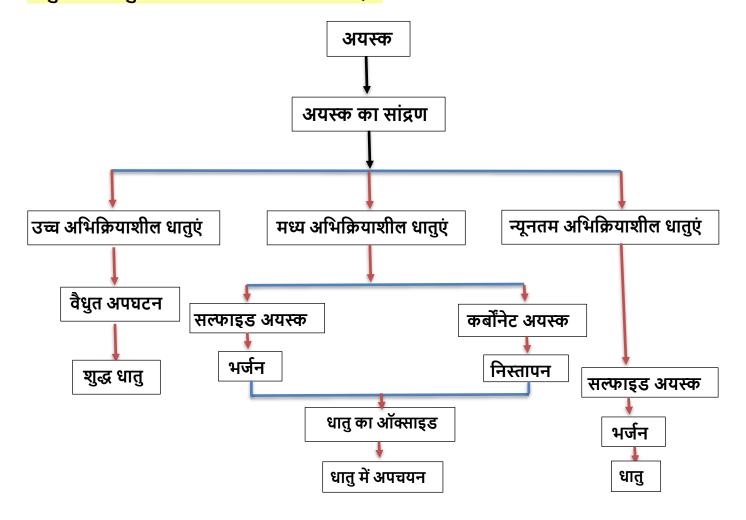
4. क्लोराइड अयस्क:- इन अयस्कों में धातुएं अपने क्लोराइडों के रूप में पायी हैं। जैसे –

सोडियम ⇒ रॉकसॉल्ट (NaCl)

पोटेशियम ⇒ सिल्वाइन (KCI)

सिल्वर \Rightarrow हॉर्निसल्वर (AgCI)

कुछ महत्वपूर्ण अयस्क:-


क्रमां	धातु	अयस्क	संगठन सूत्र	
	कॉपर	कॉपर पाइराइट	CuFeS ₂	
1		मैलेकाइट	Cu(OH) ₂ • CuCO ₃	
I		क्यूप्राइट	Cu ₂ O	
		कॉपर ग्लांस	Cu ₂ S	
2	एल्युमीनि	बॉक्साइट	[Al ₂ O ₃ • 2H ₂ O]	
2		केयोलिनाइट	Al ₂ (OH) ₄ • Si ₂ O ₅	
	आयरन	हैमेटाइट	Fe ₂ O ₃	
		मैग्नेटाइट	Fe ₃ O ₄	
3		सिडेराइट	FeCO ₃	
		आयरन पायराइट	FeS ₂	
4	जिंक	जिंक ब्लेंडी	ZnS	
		कैलेमाइन	ZnCO ₃	
		जिंकाइट	ZnO	

धातु का निष्कर्षण /धातु कर्म (Extraction of Metals / Metallurgy):- चूँकि अयस्क में उपस्थित धातु की मात्रा शुद्ध मात्रा में नहीं पायी जाती है इसलिए अयस्को से विभिन्न तरीकों से धातुओं को अलग करना पड़ता है और अयस्क से धातुओं की शुद्ध मात्रा को अलग करना या प्राप्त करने की प्रक्रिया को धातु निष्कर्षण या धातु कर्म (metallurgy) कहते है।

धातुओं को अयस्कों से उनकी सक्रियता श्रेणी (Reactivity series) के आधार पर प्राप्त किया जाता है। अयस्क (ores) से धातुओं के निष्कर्षण (Extraction) के लिये धातुओं को तीन श्रेणियों में विभाजित किया गया है।

तत्वों के संकेत	तत्वों के नाम	
K	पोटेशियम	
Na	सोडियम	उच्च अभिक्रियाशील धातुएं
Ca	कैल्शियम	> (क्लोराइड और ऑक्साइड के रूप में पाए जाते हैं)
Mg	मैग्नीशियम	निष्कर्षण : विद्युत अपघटन द्वारा
Al	एलुमिनियम	
Zn	जिंक	
Fe	आयरन	मध्य अभिक्रियाशील धातुएं
Pb	लेड (सीसा)	(सल्फाइड ऑक्साइड व कार्बीनेट के रूप में पाए जाते हैं)
Н	हाइड्रोजन	निष्कर्षण : कार्बन द्वारा अपचयन
Cu	कॉपर (तांबा)	
Hg	मरकरी (पारा)	
Ag	चांदी (सिल्वर)	न्यूनतम अभिक्रियाशील धातुएं
Au	सोना (गोल्ड)) (शुद्ध रूप में पाए जाते हैं)

धातुकर्म में प्रयुक्त विभिन्न चरण निम्नलिखित है:-

अयस्क का सान्द्र्ण (Concentration of Ores):- धातु के अयस्क से निष्कर्षण के पूर्व अयस्कों में से अशुद्धियों (गैंग) को हटाया जाता है। गैंग (Gangue) को धातु के अयस्क से साफ किये जाने की प्रक्रिया को अयस्क का सान्द्र्ण कहते हैं।

<mark>गैंग (Gangue) :-</mark> पृथ्वी की भूपर्पटी से प्राप्त अयस्क में पाई जाने वाली अशुद्धियाँ ,मिट्टी, बालू आदि, गैंग कहलाती है।

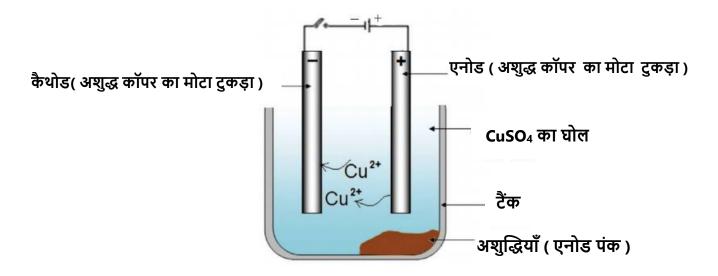
धातु के अयस्क से अशुद्धियों (गैंग) को कई तरीकों से हटाया जाता है, ये प्रक्रियाएँ अयस्क के भौतिक (Pysical) तथा रासायनिक (Chemical) गुणों पर निर्भर करते हैं।

अयस्क के सांद्रण की विधियाँ :-

- (a) हाथ में चुनकर
- (b) गुरुत्व पृथक्करण विधि
- (c) फेन प्लवन विधि
- (d) चुंबकीय पृथक्करण विधि

भर्जन (Roasting):- सल्फाईड के रूप में पाये जाने वाले अयस्क को वायु की पर्याप्त उपस्थिति में गर्म करने की प्रक्रिया को भर्जन (Roasting) कहते हैं। भर्जन की प्रक्रिया में सल्फाईड अयस्क संबंधित ऑक्साईड में बदल जाता है।

निस्तापन (Calcination):- कार्बोनेट के रूप में पाये जाने वाले अयस्क को सीमित हवा (limited air) में उसके द्रवणांक से कम ताप पर गर्म कर धातु को उसके ऑक्साइड में परिवर्तित करने की प्रक्रिया निस्तापन कहलाती है।


अवकरण या अपचयन (Reduction):- भर्जन (Roasting) या निस्तापन (Calcination) के बाद प्राप्त धातु के ऑक्साईड को संबंधित धातु में परिवर्तित करने की प्रक्रिया को अवकरण या अपचयन कहते हैं। अवकरण या अपचयन की प्रक्रिया में धातु के ऑक्साईड को उपयुक्त अपचायक के साथ गर्म किया जाता है, जिससे धातु ऑक्साईड संबंधित धातु में बदल जाता है।

धातुओं का परिष्करण (Refining of metals)

निष्कर्षण की विभिन्न विधियों द्वारा प्राप्त धातुओं में कई तरह की अशुद्धियाँ होती हैं। अत: इन प्राप्त धातु का परिष्करण कर शुद्ध धातु प्राप्त किया जाता है।

शुद्ध धातु प्राप्त करने की कई विधियाँ हैं लेकिन वैद्युत अपघटनी परिष्करण एक प्रचलित विधि है। इस विधि द्वारा ताम्बा, सोना, चाँदी, जिंक, टिन आदि धातुओं का परिष्करण किया जाता है।

कॉपर का विद्युत परिष्करण (Electrolytic Refining of copper)

- कॉपर ऑक्साइड के अवकरण से प्राप्त कॉपर धातु से विद्युत परिष्करण विधि द्वारा शुद्ध धातु प्राप्त किया जाता है।
- अशुद्ध कॉपर का एक मोटा तथा शुद्ध कॉपर का एक पतला टुकड़ा लिया जाता है। इन दोनों टुकड़ों को कॉपर स्ल्फेट के घोल में डुबा दिया जाता है। कॉपर के अशुद्ध टुकड़े को विद्युत धारा के धन ध्रुव से तथा कॉपर के शुद्ध टुकड़े को ऋण ध्रुव से जोड़ दिया जाता है
- जब इससे विद्युत धारा प्रवाहित की जाती है तो, अशुद्ध टुकड़े से कॉपर धातु घुलकर कैथोड पर कॉपर के शुद्ध टुकड़े पर जमा हो जाता है। कॉपर में वर्तमान घुलनशील अशुद्धियाँ इलेक्ट्रोलाइट में घुल जाती है तथा अघुलनशील अशुद्धियाँ एनोड पंक के रूप में तल में जमा हो जाता है।
- > इस प्रक्रिया में कापर धातु अशुद्ध टुकड़े से इलेक्ट्रॉन खोता है तथा कॉपर आयन (Cu²+) बनाता है। कॉपर आयन धन आवेशित होने के कारण ऋण ध्रुव की ओर आकर्षित होता है तथा कैथोड पर इलेक्ट्रॉन प्राप्त कर कॉपर धातु में बदलकर जमा हो जाता है।

एनोड पर -
$$Cu \rightarrow Cu^{2+} + 2e^{-}$$

कैथोड पर - $Cu^{2+} + 2e \rightarrow Cu$ (s)

🕨 इस प्रक्रिया में प्राप्त धातु शुद्ध होता है।

धातुओं का संक्षारण (Corrosion of metals):- धातु हवा में वर्तमान ऑक्सीजन, जलवाष्प, कार्बन डाईऑक्साईड, सल्फर, अम्ल आदि के साथ अभिक्रिया के कारण धातु की परत धीरे धीरे क्षय होने लगता है, धातु की चमक खराब हो जाती है आदि। इस प्रक्रिया को धातु का संक्षारण कहते हैं।

उदाहरण :

- (1) सिल्वर: वायु में उपस्थित सल्फर के साथ अभिक्रिया कर सिल्वर सल्फाइड बनाता है जिसके कारण वस्तु काली हो जाती है ।
- (2) कॉपर: कॉपर आर्द्र कार्बन डाइआक्साइड के साथ अभिक्रिया करके हरे रंग का कॉपर कार्बीनेट बनाता है।

(3) लोहा: आर्द्र वायु में लोहे पर भूरे रंग के पदार्थ की परत चढ़ जाती है, जिसे जंग कहते हैं

संक्षारण से सुरक्षा: धातु को जंग लगने से बचाया जा सकता है:

- > पेंट करके
- तेल लगाकर
- > ग्रीज लगाकर
- > यशदलेपन करके
- क्रोमियम लेपन द्वारा
- 🕨 ऐनोडीकरण या मिश्रधातु बनाकर ।

यशदलेपन (जास्तीकरण) Galvanization : लोहे को जंग से सुरक्षित रखने के लिए उन पर जस्ते (Zinc) की पतली परत चढ़ाई जाती है , इसे यशदलेपन प्रक्रम कहते हैं ।

लोहे में जंग लगना

जब लोहे से बने सामान नमी वाले हवा में वर्तमान ऑक्सीजन से अभिक्रिया करते हैं तो लोहे पर एक भूरे रंग की परत (Iron oxide) जम जाती है । यह भूरे रंग की परत लोहे का ऑक्सीजन के साथा अभिक्रिया के कारण आयरन ऑक्साइड बनने से होता है।

लोहे में जंग लगने की अभिक्रिया

लोहा + जल + ऑक्सीजन → Rust (जंग)

 $4Fe + 3O_2 + 2xH_2O \rightarrow 2Fe_2O_3. xH_2O$

फेरिक ऑक्साईड (जंग)

जंग का रासायनिक नाम iron (III) oxide या Ferric oxide है।

लोहे में जंग लगने की शर्तें :- लोहे में जंग लगने के लिये लोहे का जल तथा ऑक्सीजन के संपर्क में आना आवश्यक है। किसी एक, अर्थात हवा या ऑक्सीजन की अनुपस्थिति में लोहे में जंग नहीं लगता है।

मिश्रातु (Alloy):- दो या दो से अधिक धातु के समांगी मिश्रण को मिश्रातु कहते हैं। मिश्रात्वन धातु के गुणों यथा शक्ति, संक्षारण रोधन क्षमता आदि को बढ़ाता है।

मिश्र धातु लाभ :-

- 🕨 धातु की कठोरता बढ़ाने के लिए।
- > धातुओं के गलनांक को कम करने के लिए.
- > जंगरोधी और मजबूत बनाने के लिए.
- > स्थाई और अच्छे आकार, रंग की वस्तुएँ बनाने के लिए.
- 🕨 तन्यता में वृद्धि के लिए आदि।

उदाहरण: स्टेनलेश स्टील (stainless steel) आयरन, निकेल तथा क्रोमियम का मिश्रातु है। इन धातुओं को आयरन में मिला देने से आयरन की संक्षारण रोधन क्षमता बढ़ जाती है। कार्बन को आयरन के साथ मिला देने से आयरन की कठोरता तथा शक्ति बढ़ जाती है।

Important Alloy:-

मिश्रधातु	<mark>अवयव घटक</mark>	<mark>उपयोग</mark>	Trick to Remember
पीतल (Brass)	Cu + Zn (70 % + 30 %)	बर्तन बनाने में	पिताजी
			पीतल= ताम्बा + ज़िंक
काँसा (Bronze)	Cu + Sn (90 % + 10 %)	सिक्का एवं बर्तन बनाने में	टीका
		1	टिन + कॉपर
जर्मन सिल्वर (German	Cu + Zn + Ni (60 % + 20	बर्तन बनाने में ।	नेताजी
Silver)	% + 20 %)		निकेल + ताम्बा+ ज़िंक
गन मेटल (Gun Metal)	Cu + Zn + Sn (90 %+ 2	तोप , गेयर बनाने में ।	जैकेट
	% + 8 %)		ज़िंक + कॉपर + टिन
डेल्टा मेटल (Delta Metal)	Cu + Zn + Fe (60 % + 38	वॉल्व , बेयरिंग बनाने में ।	
	% + 2 %)		
मुज मेटल (Muntz Metal)	Cu + Zn (60 % + 40 %)	जहाज़रानी उद्योग में ।	ताज
			ताम्बा + ज़िंक
डच मेटल ((Dutch Metal)	Cu + Zn (80 % + 20 %)	सस्ते आभूषण बनाने में ।	ताज
			ताम्बा + ज़िंक
टाँका (Solder)	Sn + Pb (67 % + 33 %)	जोड़ों में टाँका	सिटी
			सीसा + टिन
ड्यूरेलुमिन (Duralumin)	Al + Cu + Mg + Mn (95	प्रेशर कुकर , हवाई जहाज	
	% + 4 % + 5 % + 5 %)	का ढाँचा बनाने में	
अमेलगम (Amalgam)	मिश्रातु + पारा	दाँत के कोटरों को भरने	
_		हेतु	
स्टील	कार्बन + लोहा	ऑटोमोबाइल के पुर्जे ,	काला
		साइकिल , घडी , ब्लेड	कार्बन + लोहा
		निर्माण में	
स्टेनलेस स्टील	क्रोमियम + लोहा + निकेल	मोटर वाहन और	कॉलोनी
		एयरोस्पेस संरचनात्मक के	क्रोमियम + लोहा + निकेल
		रूप में	