# Elements and Compounds of Group 15 and 16

| 1. The order of the oxidation state of the phosphorus atom in H <sub>3</sub> PO <sub>2</sub> , H <sub>3</sub> PO <sub>4</sub> , H <sub>3</sub> PO <sub>3</sub> an | H <sub>4</sub> P <sub>2</sub> O <sub>6</sub> is |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|

|                                                                              | (2017) |
|------------------------------------------------------------------------------|--------|
| (a) $H_3PO_4 > H_3PO_2 > H_3PO_3 > H_4P_2O_6$                                |        |
| (b) $H_3PO_4 > H_4P_2O_6 > H_3PO_3 > H_3PO_2$                                |        |
| (c) $H_3PO_2 > H_3PO_3 > H_4P_2O_6 > H_3PO_4$                                |        |
| (d) $H_3PO_3 > H_3PO_2 > H_3PO_4 > H_4P_2O_6$                                |        |
|                                                                              |        |
| 2. The species in which the N-atom is in a state of sp hybridisation is      | (2016) |
| (a) $NO_2^-$                                                                 |        |
| (b) $NO_{3}^{-}$                                                             |        |
| (c) $NO_2$                                                                   |        |
| (d) $NO_2^+$                                                                 |        |
|                                                                              |        |
| 3. The pair in which phosphorus atoms have a formal oxidation state of +3 is | (2016) |
| (a) pyrophosphorous and hypophosphoric acids                                 |        |
| (b) orthophosphorous and hypophosphoric acids                                |        |
| (c) pyrophosphorous and pyrophosphoric acids                                 |        |
| (d) orthophosphorous and pyrophosphorous acids                               |        |
|                                                                              |        |
| 4. The product formed in the reaction of $SOCI_2$ with white phosphorus is   | (2014) |
| (a) PCl <sub>3</sub>                                                         |        |
| (b) SO <sub>2</sub> Cl <sub>2</sub>                                          |        |
| (c) SCl <sub>2</sub>                                                         |        |
| (d) POCl₃                                                                    |        |

5. Which of the following properties is not shown by NO?

(a) It is paramagnetic in liquid state

(b) It is a neutral oxide

(c) It combines with oxygen to form nitrogen dioxide

(d) Its bond order is 2.5

6. Concentrated nitric acid upon long standing, turns yellow-brown due to the formation of

(a) NO

(b) NO<sub>2</sub>

(c) N<sub>2</sub>O

(d) N<sub>2</sub>O<sub>4</sub>

7. Which of the following is the wrong statement?

(a) ONCl and ONO<sup>-</sup> are not isoelectric

(b) O<sub>3</sub> molecule is bent

(c) Ozone is violet-black in solid state

(d) Ozone is diamagnetic gas

8. The reaction of white phosphorus with aqueous NaOH gives phosphine along with another phosphorus containing compound. The reaction type, the oxidation states of phosphorus in phosphine and the other product respectively are (2012)

(a) redox reaction, - 3 and - 5

(b) redox reaction, 3 and + 5

(c) disproportionation reaction, - 3 and + 5

(d) disproportionation reaction, - 3 and + 3

9. Which ordering of compounds is according to the decreasing order of the oxidation state of nitrogen?

(2012)

(2014)

(2013)

(a) HNO<sub>3</sub>, NO, NH<sub>4</sub>Cl, N<sub>2</sub>

(b) HNO<sub>3</sub>, NO, N<sub>2</sub>, NH<sub>4</sub>Cl

(c)  $HNO_3$ ,  $NH_4Cl$ , NO,  $N_2$ 

(d) NO, HNO<sub>3</sub> NH<sub>4</sub>Cl, N<sub>2</sub>

| 10. Extra pure $N_2$ can be obtained by heating                           | (2011) |
|---------------------------------------------------------------------------|--------|
| (a) NH₃ with CuO                                                          |        |
| (b) NH <sub>4</sub> NO <sub>3</sub>                                       |        |
| (c) (NH <sub>4</sub> ) <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub>        |        |
| (d) Ba(N <sub>3</sub> ) <sub>2</sub>                                      |        |
|                                                                           |        |
| 11. The reaction of $P_4$ with X leads selectively to $P_4O_6$ . The X is | (2009) |
| (a) dry O <sub>2</sub>                                                    |        |
| (b) a mixture of $O_2$ and $N_2$                                          |        |
| (c) moist O <sub>2</sub>                                                  |        |
| (d) O <sub>2</sub> in the presence of aqueous NaOH                        |        |
|                                                                           |        |
| 12. The percentage of p-character in the orbitals forming $P_4$           | (2007) |
| (a) 25                                                                    |        |
| (b) 33                                                                    |        |
| (c) 50                                                                    |        |
| (d) 75                                                                    |        |
|                                                                           |        |
| 13. Which of the following is not oxidised by O <sub>3</sub> ?            | (2005) |
| (a) KI                                                                    |        |
| (b) FeSO <sub>4</sub>                                                     |        |
| (c) KMnO <sub>4</sub>                                                     |        |

(d) K<sub>2</sub>MnO<sub>4</sub>

| 14. Which gas is evolved when $PbO_2$ is treated with concentrated $HNO_3$ ?       | (2005) |
|------------------------------------------------------------------------------------|--------|
| (a) NO <sub>2</sub>                                                                |        |
| (b) O <sub>2</sub>                                                                 |        |
| (c) N <sub>2</sub>                                                                 |        |
| (d) N <sub>2</sub> O                                                               |        |
|                                                                                    |        |
| 15. A pale blue liquid obtained by equimolar mixture of two gases at - 30°C is     | (2005) |
| (a) N <sub>2</sub> O                                                               |        |
| (b) N <sub>2</sub> O <sub>3</sub>                                                  |        |
| (c) N <sub>2</sub> O <sub>4</sub>                                                  |        |
| (d) N <sub>2</sub> O <sub>5</sub>                                                  |        |
|                                                                                    |        |
| 16. Which of the following isomers of phosphorus is thermodynamically most stable? | (2005) |
| (a) Red                                                                            |        |
| (b) White                                                                          |        |
| (c) Black                                                                          |        |
| (d) Yellow                                                                         |        |
|                                                                                    |        |
| 17. Which of the following has $-0-0-$ linkage?                                    | (2004) |
| (a) H <sub>2</sub> S <sub>2</sub> O <sub>6</sub>                                   |        |
| (b) H <sub>2</sub> S <sub>2</sub> O <sub>8</sub>                                   |        |
| (c) H <sub>2</sub> S <sub>2</sub> O <sub>3</sub>                                   |        |
| (d) H <sub>2</sub> S <sub>4</sub> O <sub>6</sub>                                   |        |
|                                                                                    |        |
| 18. For $H_3PO_3$ and $H_3PO_4$ , the correct choice is                            | (2003) |
| (a) H <sub>3</sub> PO <sub>3</sub> is dibasic and reducing                         |        |

- (b)  $H_3PO_3$  is dibasic and non-reducing
- (c)  $H_3PO_4$  is tribasic and reducing
- (d)  $H_3PO_3$  is tribasic and non-reducing

| 19. Polyphosphates are used as water softening agents because they                            | (2002) |
|-----------------------------------------------------------------------------------------------|--------|
| (a) form soluble complexes with anionic species                                               |        |
| (b) precipitate anionic species                                                               |        |
| (c) form soluble complexes with cationic species                                              |        |
| (d) precipitate cationic species                                                              |        |
|                                                                                               |        |
|                                                                                               |        |
| 20. The number of S—S bonds in sulphur trioxide trimer, $(S_3O_9)$ is                         | (2001) |
| (a) three                                                                                     |        |
| (b) two                                                                                       |        |
| (c) one                                                                                       |        |
| (d) zero                                                                                      |        |
|                                                                                               |        |
| 21. Ammonia can be dried by                                                                   | (2000) |
| (a) conc. H <sub>2</sub> SO <sub>4</sub>                                                      |        |
| (b) P <sub>4</sub> O <sub>10</sub>                                                            |        |
| (c) CaO                                                                                       |        |
| (d) anhydrous CaCl <sub>2</sub>                                                               |        |
|                                                                                               |        |
| 22. Amongst $H_2O$ , $H_2S$ , $H_2Se$ and $H_2Te$ , the one with the highest boiling point is | (2000) |
| (a) H <sub>2</sub> O because of hydrogen bonding                                              |        |
| (b) H <sub>2</sub> Te because of higher molecular weight                                      |        |
| (c) H <sub>2</sub> S because of hydrogen bonding                                              |        |
| (d) H <sub>2</sub> Se because of lower molecular weight                                       |        |

| 23. The correct order of acidic strength is                           | (2000) |
|-----------------------------------------------------------------------|--------|
| (a) $CI_2O_7 > SO_2 > P_4O_{10}$                                      |        |
| (b) $CO_2 > N_2O_5 > SO_3$                                            |        |
| (c) Na <sub>2</sub> O > MgO > Al <sub>2</sub> O <sub>3</sub>          |        |
| (d) $K_2O > CaO > MgO$                                                |        |
|                                                                       |        |
| 24. The number of P—O—P bonds in cyclic metaphosphoric acid is        | (2000) |
| (a) Zero                                                              |        |
| (b) two                                                               |        |
| (c) three                                                             |        |
| (d) four                                                              |        |
| 25. One mole of calcium phosphide on reaction with excess water gives | (1999) |
| (a) one mole of phosphine                                             |        |
| (b) two moles of phosphoric acid                                      |        |
| (c) two moles of phosphine                                            |        |
| (d) one mole of phosphorus penta oxide                                |        |
| 26. Sodium thiosulphate is propared by                                | (1996) |
| (a) reducing Na <sub>2</sub> SO <sub>4</sub> solution with $H_2S_4$   | (1990) |
| (b) boiling $Na_2SO_2$ solution with S in alkaline medium             |        |
| (c) neutralising $H_2S_2O_2$ solution with NaOH                       |        |
| (d) boiling $N_2 SO_2 SO_3$ solution with S in acidic modium          |        |
|                                                                       |        |
| 27. There is no S—S bond in                                           | (1991) |
| (a) $S_2O_2^{2-}$                                                     |        |

(b)  $S_2O_5^{2-}$ 

| (c) | $S_2O_3^{2-}$ |  |
|-----|---------------|--|
|     |               |  |

(d)  $S_2 O_7^{2-}$ 

| 28. Which one of the following is the strongest base?             | (1989) |
|-------------------------------------------------------------------|--------|
| (a) AsH <sub>3</sub>                                              |        |
| (b) NH₃                                                           |        |
| (c) PH <sub>3</sub>                                               |        |
| (d) SbH₃                                                          |        |
| 29. Amongst the trihalides of nitrogen, which one is least basic? | (1987) |
| (a) NF <sub>3</sub>                                               |        |
| (b) NCl <sub>3</sub>                                              |        |
| (c) NBr <sub>3</sub>                                              |        |
| (d) NI <sub>3</sub>                                               |        |
|                                                                   |        |
| 30. Which of the following oxides of nitrogen is a coloured gas?  | (1987) |
| (a) N <sub>2</sub> O                                              |        |
| (b) NO                                                            |        |
| (c) N <sub>2</sub> O <sub>4</sub>                                 |        |
| (d) NO <sub>2</sub>                                               |        |
|                                                                   |        |
| 31. The bonds present in $N_2O_5$ are                             | (1986) |
| (a) only ionic                                                    |        |
| (b) covalent and coordinate                                       |        |
| (c) only covalent                                                 |        |
| (d) covalent and ionic                                            |        |

| 32. A gas that cannot be collected over water is                                          | (1985) |
|-------------------------------------------------------------------------------------------|--------|
| (a) N <sub>2</sub>                                                                        |        |
| (b) O <sub>2</sub>                                                                        |        |
| (c) SO <sub>2</sub>                                                                       |        |
| (d) PH <sub>3</sub>                                                                       |        |
|                                                                                           |        |
| 33. HNO₃ on dehydration with phosphorus pentoxide yields                                  | (1978) |
| (a) N <sub>2</sub> O                                                                      |        |
| (b) N <sub>2</sub> O <sub>5</sub>                                                         |        |
| (c) NO <sub>2</sub>                                                                       |        |
| (d) N <sub>2</sub> O <sub>3</sub>                                                         |        |
|                                                                                           |        |
| 34. Which of the following is incorrect statement?                                        | (1978) |
| (a) NO is heavier than $O_2$                                                              |        |
| (b) The formula of heavy water is D <sub>2</sub> O                                        |        |
| (c) N <sub>2</sub> diffuses faster than oxygen through an orifice                         |        |
| (d) NH₃ can be used as a refrigerant                                                      |        |
|                                                                                           |        |
|                                                                                           |        |
| 35. The nitrogen containing compound produced in the reaction of $HNO_3$ with $P_4O_{10}$ | (2016) |
| (a) can also be prepared by reaction of $P_4$ and $HNO_3$                                 |        |
| (b) is diamagnetic                                                                        |        |
| (c) contains one N—O bond                                                                 |        |
| (d) reacts with Hg metal producing a yellow coloured gas                                  |        |
|                                                                                           |        |
| 36. The incorrect statement about O <sub>3</sub> is/are                                   | (2013) |
| (a) O—O bond lengths are equal                                                            |        |
| (b) thermal decomposition of O <sub>3</sub> is endothermic                                |        |

| (c) | <b>O</b> <sub>2</sub> | is | diama | agnetic | in | nature |
|-----|-----------------------|----|-------|---------|----|--------|
|-----|-----------------------|----|-------|---------|----|--------|

(d) O<sub>2</sub> has a bent structure

| 37. The nitrogen oxides that do not contain(s) N—N bond(s) is | (2009) |
|---------------------------------------------------------------|--------|
| (a) N <sub>2</sub> O                                          |        |
| (b) N <sub>2</sub> O <sub>4</sub>                             |        |
| (C) N <sub>4</sub> O <sub>4</sub>                             |        |
| (d) N <sub>2</sub> O <sub>5</sub>                             |        |
| 38. Ammonia on reaction with hypochlorite anion, can form     | (1999) |
| (a) NO                                                        |        |
| (b) NH₄Cl                                                     |        |
| (c) N <sub>2</sub> H <sub>4</sub>                             |        |
| (d) HNO <sub>2</sub>                                          |        |
|                                                               |        |
| 39. White phosphorus (P <sub>4</sub> ) has                    | (1998) |
| (a) six P—P single bonds                                      |        |
| (b) four P—P single bonds                                     |        |
| (c) five lone pairs of electrons                              |        |
| (d) P—P—P angle of 90°                                        |        |
|                                                               |        |
| 40. Nitrogen (I) oxide is produced by                         | (1989) |
| (a) thermal decomposition of NaNO $_3$                        |        |
| (b) disproportionation of $N_2O_4$                            |        |
| (c) thermal decomposition of $NH_4NO_2$                       |        |
| (d) interaction of hydroxylamine and nitrous acid             |        |
|                                                               |        |

### **Assertion and Reason**

Read the following questions and answer as per the direction given below:

(a) Statement I is correct. Statement II is correct. Statement II is the correct explanation of Statement I

(b) Statement I is correct, Statement II is correct, Statement II is not the correct explanation of Statement I

(c) Statement I is correct, Statement II is incorrect

(d) Statement I is incorrect, Statement II is correct

41. **Statement I** Nitrogen and oxygen are the main components in the atmosphere but these do not react to form oxides of nitrogen.

**Statement II** The reaction between nitrogen and oxygen requires high temperature. (1998)

**Solution: a)** Both Statement I and Statement II are true and Statement II is correct explanation of Statement I.

42. Statement I The electronic structure of O<sub>3</sub> is



Statement II The following structure is not allowed because octet around O cannot be expanded. (1998)



**Solution:a)** Both Statement I and Statement II are true and Statement II is correct explanation of Statement I.

43. Statement I HNO<sub>3</sub> is a stronger acid than HNO<sub>2</sub>.

**Statement II** In HNO<sub>3</sub>, there are two nitrogen to oxygen bonds whereas in HNO<sub>2</sub> there is only one. (1998)

**Solution: a)** Both Statement I and Statement II are true and Statement II explains the Statement I appropriately. Nitrate ion  $(NO_3^-)$  is more stable than nitrite ion :



44. The lead chamber process involves oxidation of SO<sub>2</sub> by atomic oxygen under the influence of which catalyst? (1992)

(a) CO<sub>2</sub>

(b) NO<sub>2</sub>

(c) NO<sub>4</sub>

(d) CO<sub>4</sub>

45. In P<sub>4</sub>O<sub>10</sub> the number of oxygen atoms bonded to each phosphorus atom is (1992)
(a) 1
(b) 6
(c) 4

(d) 2

46. The basicity of phosphorus acid  $(H_3PO_3)$  is (1990)

(a) Two

- (b) Three
- (c) Four
- (d) Five

47. Which phosphorus is reactive because of its highly strained tetrahedral structure? (1987)

(a) Green

(b) Blue

(c) Red

(d) White

- 48. Of the following the most acidic is
- (a) H<sub>3</sub>PO<sub>4</sub>
- (b) H<sub>3</sub>AsO<sub>4</sub>
- (c)  $H_3SbO_4$
- (d) H<sub>3</sub>BiO<sub>4</sub>
- 49. The mixed anhydride of nitrous and nitric acid is
- (a) N<sub>2</sub>O
- (b) NO<sub>2</sub>
- (c) NO
- (d) N<sub>2</sub>O<sub>5</sub>
- 50. Copper reacts with dil. HNO<sub>3</sub> to form a nitrate and
- (a) NO<sub>2</sub>
- (b) NO
- (c) N<sub>2</sub>O<sub>3</sub>
- (d) N<sub>2</sub>O<sub>5</sub>
- 51. When silver nitrate is heated, the products are
- (a) Oxygen and metal nitrate
- (b) Nitrogen dioxide, O<sub>2</sub> and metallic oxide
- (c) Nitrogen dioxide, O<sub>2</sub> and metal
- (d) Nitrogen dioxide and metal oxide
- 52. The strongest acid is

(a) HNO<sub>2</sub>

(b) HNO<sub>3</sub>

(c)  $H_2N_2O_2$ 

(d)  $H_4N_2O_4$ 

53. In which of the following states nitric oxide is paramagnetic?

- (a) Solid
- (b) Liquid
- (c) Gaseous
- (d) It is diamagnetic in all the three states

54. Nitrogen reacts with calcium and carbon or when N<sub>2</sub> gas is passed over heated calcium carbide

- (at 1070 K) it gives \_\_\_\_\_\_ which is an important fertiliser marketed under the name Nitrolium
- (a) Calcium nitrate
- (b) Calcium cyanide
- (c) Calcium cyanamide
- (d) Calcium nitride

55. Catalytic oxidation of NH (passing a mixture of NH<sub>3</sub> and air over heated Pt gauge) gives

- (a) NO
- (b) N<sub>2</sub>O
- (c) N<sub>2</sub>O<sub>3</sub>
- (d) N<sub>2</sub>O<sub>5</sub>
- 56. Ordinary strong solution of HCl, HNO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub> contains roughly
- (a) 1/5, 2/3 and 3/3 fractions of pure acid and water respectively
- (b) 2/3, 1/5 and 3/3 fractions of pure acid and water respectively
- (c) 2/3, 3/3 and 1/5 fractions. of pure acid and water respectively

(d) none

- 57. Hypophosphorous acid is
- (a) A tribasic acid
- (b) A dibasic acid
- (c) A monobasic acid
- (d) Neutral
- 58. Which of the following halide does not hydrolyse?
- (a) SbCl<sub>3</sub>
- (b) AsCl<sub>3</sub>
- (c) PCl<sub>3</sub>
- (d)  $NF_3$
- 59. The structure of phosphide ion is similar to that of
- (a) Nitride ion
- (b) Chloride ion
- (c) Fluoride ion
- (d) Sodium ion
- 60. Basicity of  $H_3PO_4$  and  $H_3PO_3$  are
- (a) 3, 3
- (b) 3, 2
- (c) 2, 3
- (d) 2, 2
- 61. The crown structure is possessed by

- (a) Phosphorous
- (b) Cyclo-octa ring of Sulphur
- (c) Cyclic trimer of SO<sub>3</sub>
- (d) Cyclic tetrameric form of SeO<sub>3</sub>
- 62. Which one of the following is strongest acid?
- (a) H<sub>2</sub>S
- (b) H<sub>2</sub>Se
- (c) H<sub>2</sub>O
- (d) H<sub>2</sub>Te
- 63. Which of the following is chalcogen?
- (a) O
- (b) S
- (c) Se
- (d) All

64. Which of the following compounds does not evolve oxygen when heated alone ?

- (a) KClO<sub>3</sub>
- (b) KMnO<sub>4</sub>
- (c) NH<sub>4</sub>NO<sub>2</sub>
- (d) KNO<sub>3</sub>
- 65. Basicity of sulphurous acid and sulphuric acid are
- (a) 2, 2
- (b) 1, 2
- (c) 2, 1
- (d) 1*,* 1

66. When oxygen is passed through a solution of  $Na_2SO_3$ , we get

- (a) Na<sub>2</sub>S
- (b) Na<sub>2</sub>SO<sub>4</sub>
- (c) NaHSO<sub>4</sub>
- (d) NaH
- 67. Structure of  $TeCl_4$  is
- (a) Octahedral
- (b) Square planar
- (c) Trigonal bipyramid
- (d) Tetrahedral
- 68. Which of the following is not known?
- (a) SF<sub>6</sub>
- (b) SCl<sub>6</sub>
- (c) SF<sub>4</sub>
- (d) SCl<sub>4</sub>
- 69. High density and low volatility  $H_2SO_4$  is due to
- (a) Strong bonds
- (b) van der Waals force
- (c) Hydrogen bonding
- (d) None
- 70. In the following reaction,  $H_2SO_4$  acts as

$$HCOOH \xrightarrow{H_2SO_4} CO + H_2O$$

(a) Dehydrating agent

(b) Oxidising agent

- (c) Reducing agent
- (d) All

71. Oxalic acid when heated with cone.  $H_2SO_4$  it gives out

- (a) H<sub>2</sub>O and CO<sub>2</sub>
- (b) Oxalic sulphate
- (c) CO<sub>2</sub> and H<sub>2</sub>S
- (d) CO and CO<sub>2</sub>

72. In the following reaction,  $H_2SO_4$  acts as

$$2Ag + H_2SO_4 \longrightarrow Ag_2SO_4 + 2H_2O + SO_2$$

- (a) Reducing agent
- (b) Oxidising agent
- (c) Catalytic agent
- (d) Dehydration agent

73. A boy accidently splashes a few drops of cone.  $H_2SO_4$  on his cotton shirt and splashed part blackens and holes appears. This is because the sulphuric acid

- (a) Heats up the cotton so that it bums
- (b) Dehydrates the cotton
- (c) Causes the cotton to react with oxygen in air
- (d) Removes the elements of water from cotton
- 74. Hypo is used in photography because of its
- (a) Complexing ability
- (b) Solubility in water
- (c) Reducing behaviour
- (d) Sensitivity to light

75. Caro's and Marshall's acid does not react with

(a) S

(b) KMnO<sub>4</sub>

(c) Kl

(d) H<sub>2</sub>O

76. Sulphur dioxide is obtained by the action of dilute  $H_2SO_4$  on:

- (a) Copper turning
- (b) Sodium sulphate
- (c) Sodium sulphite
- (d) Sodium sulphide

77. The ratio of the gases obtained on dehydration of HCOOH and  $H_2C_2O_4$  by cone.  $H_2SO_4$  is

- (a) 2 : 1
- (b) 1 : 2
- (c) 3 : 1
- (d) 1: 3

78. The product A in the following reaction:

$$2KMnO_4 \longrightarrow A + KMnO_2 + O_2$$
 is

- (a) K<sub>2</sub>Mn<sub>2</sub>O<sub>7</sub>
- (b) K<sub>2</sub>MnO<sub>4</sub>
- (c) K<sub>2</sub>O
- (d) K<sub>2</sub>O<sub>2</sub>

79. Anhydride of sulphuric acid is

(a) SO<sub>2</sub>

(b) SO₃

(c)  $H_2S_2O_3$ 

(d) H<sub>2</sub>SO<sub>3</sub>

- 80. When  $SO_2$  is passed through a solution of  $H_2S$  in water:
- (a) Sulphuric acid is formed
- (b) A clear solution is formed
- (c) Sulphur is precipitated
- (d) No change is observed
- 81. Silver chloride dissolves in excess of NH<sub>4</sub>OH. The cation present in solution is
- (a) [Ag(NH<sub>3</sub>)]<sup>⊕</sup>
- (b) [Ag(NH<sub>3</sub>)<sub>4</sub>]<sup>⊕</sup>
- (c) [Ag(NH<sub>3</sub>)<sub>2</sub>]<sup>⊕</sup>
- (d)  $[Ag(NH_3)_6]^{\oplus}$

82. When NH<sub>4</sub>OH is added to copper sulphate solution, blue colour is obtained due to formation of

- (a) Cu(NH<sub>3</sub>)<sub>4</sub>SO<sub>4</sub>
- (b)  $Cu(NH_3SO_4)_2$
- (c) Cu(OH)<sub>2</sub>
- (d) CuO

83. A certain element forms a solid oxide which dissolves in water to form an acidic solution. The element is

(a) Na

- (b) Mg
- (c) S

(d) P

84. A colourless gas X forms a brown coloured gas when mixed with air. The gas X is

(a) N<sub>2</sub>O

- (b) NO
- (c) NH<sub>3</sub>
- (d) NO<sub>2</sub>

85. The number of P- O-P and P-OH bonds present respectively in pyrophosphoric acid molecule are

- (a) 2, 3
- (b) 1, 8
- (c) 1, 4
- (d) 1, 2

86. When ammonia is heated with  $CO_2$  under pressure, the product is

- (a) (NH<sub>4</sub>)<sub>2</sub> CO<sub>3</sub>
- (b) NH<sub>2</sub>CONH<sub>2</sub>
- (c) NH<sub>2</sub>COONH<sub>4</sub>
- (d) NH<sub>4</sub>HCO<sub>3</sub>
- 87. Phosphorus is used in
- (a) Rubber industry
- (b) Cement industry
- (c) Photography
- (d) Match industry

88. When phosphine is bubbled through a solution of nitrate, \_\_\_\_\_ is precipitated.

(a) Silver

### (b) Silver phosphide

- (c) Silver oxide
- (d) None of these

89. When orthophosphoric acid is heated at 240°C, the main product formed is

- (a) H₃PO₃
- (b) H<sub>3</sub>PO<sub>2</sub>
- (c) HPO₃
- (d) H<sub>4</sub>P<sub>2</sub>O<sub>7</sub>

90. When treated with nitric acid which of the following liberates hydrogen?

- (a) Zinc
- (b) Copper
- (c) Magnesium
- (d) Mercury

91. White phosphorus reacts with caustic soda. The products are  $PH_3$  and  $NaH_2PO_2$ . This reaction is an example of

- (a) Oxidation
- (b) Reduction
- (c) Neutralisation
- (d) Disproportionation
- 92. Which one of the acids is a di basic acid?
- (a) H₃PO₃
- (b)  $H_3PO_2$
- (c) HPO<sub>3</sub>
- (d)  $H_3PO_4$

93. Which of the following solutions does not change its colour on passing ozone through it?

- (a) starch iodine solution
- (b) alcoholic solution of benzidine
- (c) acidic solution of K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>
- (d) Acidified solution of FeSO<sub>4</sub>

94. Hydrolysis of one mole of peroxydisulphuric acid produces

(a) Two moles of sulphuric acid

(b) Two moles of peroxymonosulphuric acid ·

(c) One mole of sulphuric acid and one mole of peroxymonosulphuric acid

(d) One mole of sulphuric acid, one mole of peroxymonosulphuric acid and one mole of hydrogen peroxide

95. When an inorganic compound reacts with  $SO_2$  in aqueous medium produces (A). (A) on reaction with  $Na_2CO_3$  gives the compound (B) which with sulphur gives a substance (C) used in photography. The compound (C) is

- (a)  $Na_2S_2O_3$
- (b) Na<sub>2</sub>SO<sub>4</sub>
- (c) Na<sub>2</sub>S
- (d)  $Na_2S_2O_7$

96. Identify the correct sequence of increasing number of  $\pi$ -bonds in structures of the following molecules.

- (I) H<sub>2</sub>S<sub>2</sub>O<sub>6</sub> (II) H<sub>2</sub>SO<sub>3</sub> (III) H<sub>2</sub>S<sub>2</sub>O<sub>5</sub>
- (a) I, II, III
- (b) II, III, I

(c) II, I, III

(d) I, III, II

97. Sulphur reacts with chlorine in 1: 2 ratio and forms (X). (X) on hydrolysis gives a sulphur compound (Y). What is the hybridised state of central atom in the anion of (Y)?

(a) sp

(b) sp<sup>3</sup>

(c) sp<sup>2</sup>

(d) sp<sup>3</sup>d

98. Which gas is used to improve the atmosphere of the crowded places?

(a) H<sub>2</sub>

(b) O<sub>2</sub>

(c) O<sub>3</sub>

(d)  $N_2O$ 

99. In  $NO_3^{\Theta}$  ion, the number of bond pair and lone pair of electrons on nitrogen atoms are

(a) 2, 2

- (b) 3, 1
- (c) 1, 3
- (d) 4, 0

100.  $H_3BO_3$  is

- (a) monobasic and weak Lewis acid
- (b) monobasic and weak Bronsted acid
- (c) monobasic and strong Lewis acid
- (d) tribasic and weak Bronsted acid

| Answer Keys: |  |
|--------------|--|
|              |  |

| 1. b  | 2. d  | 3. b  | 4. a  | 5. a  | 6. b  | 7. c  | 8. c  | 9. b  | 10. d  |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| 11. d | 12. b | 13. d | 14. c | 15. b | 16. b | 17. c | 18. b | 19. a | 20. c  |
| 21. d | 22. c | 23. a | 24. с | 25. c | 26. b | 27. d | 28. b | 29. a | 30. d  |
| 31. b | 32. c | 33. b | 34. a | 35. b | 36. b | 37. d | 38. c | 39. a | 40. d  |
| 41. b | 42. c | 43. a | 44. d | 45. a | 46. b | 47. b | 48. c | 49. b | 50. c  |
| 51. c | 52. a | 53. a | 54. c | 55. d | 56. a | 57. b | 58. b | 59. d | 60. d  |
| 61. c | 62. a | 63. b | 64. c | 65. b | 66. b | 67. c | 68. a | 69. d | 70. b  |
| 71. d | 72. a | 73. b | 74. c | 75. b | 76. b | 77. b | 78. c | 79. a | 80. d  |
| 81. b | 82. c | 83. b | 84. d | 85. b | 86. d | 87. c | 88. d | 89. a | 90. c  |
| 91. c | 92. a | 93. b | 94. b | 95. c | 96. d | 97. a | 98. c | 99. d | 100. a |

Solutions:

# 1.

**Solution:**  $H_3 \overset{+5}{P}O_4 > H_4 \overset{+4}{P}_2 O_6 > H_3 \overset{+3}{P}O_3 > H_3 \overset{+1}{P}O_2$ 

2.



Solution:

Orthophosphorous acid,  $H_3PO_3 : HO - P - OH$ H H  $H_3PO_3 = 3 + x + 3(-2) = 0 \text{ or } x = + 3$ Pyrophosphorous acid,  $H_4P_2O_5 :$  HO - P - O - P - OHH HO - P - O - P - OHH H = H  $H_4P_2O_5 = 4 + 2x + 5(-2) = 0$ 4 + 2x - 10 = 0, x = + 3

Solution:

PLAN This problem is based on chemical properties of phosphorus.

White phosphorus on reaction with thionyl chloride  $(SOCl_2)$  produces phosphorus trichloride.

$$P_4(s) + 8SOCl_2(l) \longrightarrow 4PCl_3(l) + 4SO_2(g) + 2S_2Cl_2(g)$$

But if amount of thionyl chloride  $(SOCl_2)$  is in excess then it produces phosphorus pentachloride.

 $P_4 + 10SOCl_2(l) \longrightarrow 4PCl_5 + 10SO_2$ 

# 5.

Solution:

NO is paramagnetic in gaseous state because in gaseous state, it has one unpaired electron.

Total number of electrons =  $7 + 8 = 15 e^{-1}$ 

Hence, there must be the presence of unpaired electron in gaseous state while in liquid state, it dimerises due to unpaired electron.

### 6.

Solution:

NO<sub>2</sub> is a brown coloured gas and imparts this colour to

concentrated HNO<sub>3</sub> during long standing.  $4HNO_3 \longrightarrow 2H_2O + 2NO_2 + 3O_2$ 

#### 7.

(a)  $ONCl = 8 + 7 + 17 = 32e^{-1}$ 

$$ONO^{-} = 8 + 7 + 8 + 1 = 24 e^{-}$$
 (correct)

Central O-atom is  $sp^2$ -hybridised with 1 lone pair, so bent shape (correct).

- (c) In solid state, ozone is violet-black. Ozone does not exist in solid state, thus incorrect.
- (d) O<sub>3</sub> has no unpaired electrons, so diamagnetic (correct).
   Hence, (c) is the correct.

# 8.

Solution:

The reaction of white phosphorus with aqueous alkali is

 $P_4 + 3NaOH + 3H_2O \longrightarrow PH_3 + NaH_2PO_2$ In the above reaction, phosphorus is simultaneously oxidised  $[P_4(0) \longrightarrow NaH_2 \stackrel{+1}{P}O_2]$  as well as reduced  $[P_4(0) \longrightarrow \stackrel{-3}{P}H_3]$ . Therefore, this is an example of disproportionation reaction. Oxidation number of phosphorus in PH<sub>3</sub> is - 3 and in NaH<sub>2</sub>PO<sub>2</sub> is +1 However, +1 oxidation number is not given in any option, one might think that NaH<sub>2</sub>PO<sub>2</sub> has gone to further decomposition on heating.

$$2NaH_2PO_2 \xrightarrow{\Delta} Na_2H \overset{+5}{P}O_4 + PH_3$$

9.

Let oxidation number of N be x. In HNO<sub>3</sub>,  $+1 + x + 3(-2) = 0 \implies x = +5$ In NO,  $x - 2 = 0 \implies x = +2$ In N<sub>2</sub>, x = 0In NH<sub>4</sub>Cl,  $x + 4 - 1 = 0 \implies x = -3$ 

10.

Solution:

 $\operatorname{Ba}(N_3)_2 \xrightarrow{\operatorname{Heat}} \operatorname{Ba}(s) + 3N_2(g)$ 

Azide salt of barium can be obtained in purest form as well as the decomposition product contain solid Ba as by product alongwith gaseous nitrogen, hence no additional step of separation is required.

Other reactions are

$$NH_4NO_3 \xrightarrow{\text{Heat}} N_2O + 2H_2O$$

$$2NH_3 + 3CuO \xrightarrow{\text{Heat}} 3Cu + 3H_2O + N_2$$

$$(NH_4)_2Cr_2O_7 \xrightarrow{\text{Heat}} Cr_2O_3 + 4H_2O + N_2$$

11.

Solution:

In limited supply of oxygen, phosphorus is oxidised to its lower oxide  $P_4O_6$  while excess of oxygen gives  $P_4O_{10}$ . A mixture of  $O_2$  and  $N_2$  is used for controlled oxidation of phosphorus into  $P_4O_6$ .

Solution:

In  $P_4$ , all phosphorus are  $sp^3$ -hybridised and has  $75^{\circ}$  p-character.



# 13.

# Solution:

In  $KMnO_4$ , Mn is already in its highest oxidation state (+7), cannot be oxidised by any oxidising agent.

### 14.

Solution:

$$PbO_2 + HNO_3 \longrightarrow Pb(NO_3)_2 + H_2O + O_2$$

15.

Solution:

Equimolar amounts of NO and NO<sub>2</sub> at  $-30^{\circ}C$  gives  $N_2O_3(l)$  which is a blue liquid.

16.

Solution: Black phosphorus is thermodynamically most stable allotrope of phosphorus.

It is due to three dimensional, network structure of polymeric black phosphorus.

#### 17.

**Solution:** H<sub>2</sub>S<sub>2</sub>O<sub>8</sub> is a peroxy acid, has -O-O-linkage



Peroxodisulphuric acid

### 18.

**Solution:** H<sub>3</sub>PO<sub>3</sub> is a dibasic, reducing acid. H<sub>3</sub>PO<sub>4</sub> is tribasic, non-reducing acid.



#### 19.

Solution: Polyphosphates are used as water softening agents because they form soluble complexes with cationic species of hard water.

$$Na_{2}[Na_{4}(PO_{3})_{6}] + CaSO_{4} \longrightarrow Na_{2}[(Ca_{2}(PO_{3})_{6})]$$
  
Soluble complex  $+ Na_{2}SO_{4}$ 

Solution:



It has no S—S linkage.

21.

Solution: CaO, a basic oxide, is most suitable for drying of basic ammonia.

### 22.

**Solution:** H<sub>2</sub>O, due to its ability to form intermolecular H-bonds.

23.

Solution: Corresponding acids are HClO<sub>4</sub> , H<sub>2</sub>SO<sub>3</sub> and H<sub>3</sub>PO<sub>4</sub>. Hence the order of acidic strength is

 $Cl_2O_7 > SO_2 > P_4O_{10}$ 

24.

Solution:

The structure of cyclic metaphosphate is



There is three P—O—P bonds.

25.

Solution:

 $Ca_3P_2 + 6H_2O \longrightarrow 3Ca(OH)_2 + 2PH_3$ 

26.

Solution:

$$Na_2SO_3 + S \xrightarrow{OH^-} Na_2S_2O_3$$

27.

Solution:

$$S_2O_7^{2^-}$$
 has no S—S linkage.  
 $O_3 = O_3 = O_3 = O_3 = O_3$   
 $O_3 = O_3 = O_3 = O_3$   
 $O_3 = O_3$   

All others have atleast one S—S linkage.

**Solution:** Amongst  $XH_3$  where 'X' is group-15 elements, basic strength decreases from top to bottom. Hence,  $NH_3$  is strongest base.

### 29.

**Solution:** The electron withdrawing inductive effect of halogen decreases electron density on nitrogen, leads to lowers basic strength. Since, fluorine is most electronegative,  $NF_3$  is least basic.

#### 30.

**Solution:** NO<sub>2</sub>(g) is deep brown coloured.

#### 31.

**Solution:** In N<sub>2</sub>O<sub>5</sub> , there are  $\sigma$  (sigma) covalent bonds,  $\pi$  (pi) bonds and coordinate covalent bonds as



### 32.

Solution: SO<sub>2</sub> cannot be collected over water because it reacts with water forming H<sub>2</sub>SO<sub>3</sub>.

$$SO_2 + H_2O \rightarrow H_2SO_3$$

#### 33.

Solution:  $4HNO_3 + P_4O_{10} \rightarrow 4HPO_3 + 2N_2O_5$ 

**Solution:** NO<sub>2</sub> is lighter than O<sub>2</sub>.

D<sub>2</sub>O is commonly known as heavy water.

 $N_2$  is lighter than  $O_2$ , effuse at faster rate under identical experimental conditions.  $NH_3$  liquefies at very low temperature. Therefore, liquid  $NH_3$  is used as a refrigerant.

#### 35.

#### Solution:

 $P_4O_{10}$  is a dehydrating agent and converts HNO<sub>3</sub> into N<sub>2</sub>O<sub>5</sub>

 $\begin{array}{ccc} 2HNO_3 \longrightarrow N_2O_5 + H_2O \\ P_4O_{10} + 6H_2O \longrightarrow 4H_3PO_4 \\ (a) \ P_4 + 20HNO_3 \longrightarrow 4H_3PO_4 + 20NO_2 + 4H_2O \\ Thus, (a) is incorrect. \end{array}$ 

(b) N<sub>2</sub>O<sub>5</sub> has no unpaired electron and is thus, diamagnetic thus,
 (b) is correct.

(c)



There is no N—N bond, thus, (c) is incorrect. (d)  $N_2O_5 + Na \longrightarrow NaNO_3 + NO_2$  $N_2O_5$  vapours are of brownish colour. Thus, (d) is incorrect.

#### 36.

Plan Due to resonance, bond lengths between two atoms are equal. Species is said to be diamagnetic if all electrons are paired.

Process is endothermic if it takes place with absorption of heat.



bent molecule all electrons paired thus, diamagnetic  $2O_3 \longrightarrow 3O_2 \quad \Delta H^\circ = -142 \text{ kJ mol}^{-1}$ Exothermic Thus, (b) is incorrect. (a, c, d) are correct.

#### 37.

Solution:

The structures of these oxides are



(a), (b), (c) have N—N bonds.

38.

Solution:  $2NH_3 + OCl^- \rightarrow H_2N - NH_2 + H_2O + Cl^-$ 

# Solution:

The structure of  $P_4$  is



It has six P—P single bonds.

...

There are four lone pairs on four phosphorus. P—P—P bond angles are of 60°.

# 40.

Solution:

$$\begin{array}{rcl} \mathrm{NH_4NO_3} & \xrightarrow{\mathrm{Heat}} & \mathrm{N_2O} + 2\mathrm{H_2O} \\ \mathrm{NH_2OH} \cdot \mathrm{HCl} + \mathrm{NaNO_2} & \longrightarrow & \mathrm{NaCl} + 2\mathrm{H_2O} + \mathrm{N_2O} \\ \mathrm{However}, \, \mathrm{NH_4NO_2} \text{ on heating gives } \mathrm{N_2}. \end{array}$$

41.

Solution:

$$NO_2: 2SO_2(g) + O_2(g) \xrightarrow{Oxides of N_2} 2SO_3(g)$$

42.



Here four oxygen atoms are bonded to each phosphorus atom.

#### 43.

**Solution:**  $H_3PO_3$  [O = PH(OH)<sub>2</sub>] is a dibasic acid.

### 44.

Solution: White phosphorus has highly strained, tetrahedral structure, therefore highly reactive.

#### 45.

**Solution:** When oxidation state of central atom is same, with the decrease in electronegativity of central atom, acidic character decreases. Hence  $H_3PO_4$  is most acidic.

$$H_3PO_4 > H_3AsO_4 > H_3SbO_4 > H_3BiO_4$$

46.

Solution:  $HNO_2 + HNO_3 \rightarrow NO_2 + H_2O$ 

Hence NO<sub>2</sub> is mixed anhydride of HNO<sub>2</sub> and HNO<sub>3</sub>.

 $\textbf{Solution: } 3\text{Cu} + 8\text{HNO}_3(\text{dil}) \rightarrow 3\text{Cu}(\text{NO}_3)_2 + 2\text{NO} + 4\text{H}_2\text{O}$ 

### 48.

Solution:

$$2AgNO_3 \xrightarrow{\Delta} 2Ag + 2NO_2 + O_2$$

### 49.

**Solution:** Greater the positive oxidation of the central atom of the oxyacid, greater is the acidic strength. Hence HNO<sub>3</sub> is the strongest acid.

#### 50.

Solution: In gaseous state, nitric oxide exist as NO, an odd electron molecule, hence paramagnetic.

#### 51.

Solution:

 $N_2 + Ca + C \longrightarrow CaCN_2$  (Calcium cyanamide)

52.

$$2NH_3 + 5/2 O_2 \xrightarrow{Pt} 2NO + 3H_2O$$

### Solution:

HCl, HNO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub> form azeotrope at 20%, 68% and 98% respectively by mass of acid. Therefore, HCl contains  $\approx 20/100 = 1/5$ HNO<sub>3</sub> contains  $\approx 68/100 \approx 2/3$ H<sub>2</sub>SO<sub>4</sub> contains  $\approx 98/100 \approx 3/3$ Thus, ordinary strong solution of HCl, HNO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub> contains roughly 1/5, 2/3 and 3/3 fractions of pure acid and water respectively.

### 54.

Solution: In H<sub>3</sub>PO<sub>2</sub>; since only one P—OH group is present it acts as monobasic acid.

#### 55.

**Solution:** Due to high N—F bond strength, NF<sub>3</sub> is highly stable and hence inert towards hydrolysis.

#### 56.

Solution: Phosphide ion is P<sup>3-</sup>. Hence, similar structure with nitride ion (N<sup>3-</sup>).

#### 57.

**Solution:**  $H_3PO_4$  has 3 P–OH groups whereas  $H_3PO_3$  has 2P–OH groups, hence they are tribasic and di basic respectively.

Solution: Sulphur exists as S<sub>8</sub> molecule.

59.

**Solution:** H<sub>2</sub>Te due to the weakest Te-H bond strength, acts as the strongest acid.

60.

**Solution:** Chalcogens are ore-forming elements, i.e. O, S and Se.

# 61.

Solution:

$$NH_4NO_2 \xrightarrow{\Delta} N_2 + 2H_2O$$

$$2KClO_3 \xrightarrow{\Delta} 2KCl + 3O_2$$

$$2KMnO_4 \xrightarrow{\Delta} K_2MnO_4 + MnO_2 + O_2$$

$$2KNO_3 \xrightarrow{\Delta} 2KNO_2 + O_2$$

62.

$$H_{2}SO_{3} \rightleftharpoons H^{\oplus} + HSO_{3}^{\ominus}$$

$$HSO_{3}^{\ominus} \rightleftharpoons H^{\oplus} + SO_{3}^{2-}$$

$$H_{2}SO_{4} \rightleftharpoons H^{\oplus} + HSO_{4}^{\ominus}$$

$$HSO_{4}^{\ominus} \rightleftharpoons H^{\oplus} + SO_{4}^{2-}$$

Solution:  $2Na_2SO_3 + O_2 \rightarrow 2Na_2SO_4$ 

64.

Solution: Geometry-Trigonal bipyramid Shape-(See-saw)

65.

**Solution:** Due to (i) less electronegativity of Cl, oxidation state +6 cannot be achieved in S and (ii) Steric hindrance.

### 66.

**Solution:**  $H_2SO_4$  molecules are associated with intermolecular H-bonding, which results in its high density and low volatility.

### 67.

**Solution:** Since H<sub>2</sub>O is lost, H<sub>2</sub>SO<sub>4</sub> is acting as a dehydrating agent.

$$\text{HCOOH} \xrightarrow{\text{H}_2\text{SO}_4} \text{CO} + \text{H}_2\text{O}$$

68.

$$\begin{array}{c} \text{COOH} \\ | \\ \text{COOH} \end{array} \xrightarrow{\text{Conc. } \text{H}_2\text{SO}_4} \text{CO} + \text{CO}_2 + \text{H}_2\text{O} \end{array}$$

Solution:

 $2Ag + H_2SO_4 \longrightarrow Ag_2SO_4 + 2H_2O + SO_2$  $Ag \longrightarrow Ag^{\oplus}$ , hence  $H_2SO_4$  acts as oxidising agent.

70.

Solution: Charring occurs

#### 71.

Solution:

 $AgBr + 2Na_2S_2O_3 \rightarrow Na_3[Ag(S_2O_3)_2] + NaBr$ 

This reaction is used in photography to remove undecomposed silver halide on photographic plate.

### 72.

**Solution:** KMnO<sub>4</sub> is stronger oxidising agent.

#### 73.

Solution:

$$Na_{2}SO_{3} + H_{2}SO_{4} \longrightarrow Na_{2}SO_{4} + SO_{2} + 2H_{2}O$$
  
dil.  
or SO<sub>3</sub><sup>2-</sup> + 2H<sup>⊕</sup>  $\longrightarrow$  SO<sub>2</sub> + H<sub>2</sub>O

#### 74.

HCOOH 
$$\xrightarrow{\text{Conc. H}_2\text{SO}_4}$$
 CO + H<sub>2</sub>O (1 gaseous product)  
COOH  $\xrightarrow{\text{Conc. H}_2\text{SO}_4}$  CO + CO<sub>2</sub> + H<sub>2</sub>O  
COOH  $\xrightarrow{\Delta}$  CO + CO<sub>2</sub> + H<sub>2</sub>O  
(2 gaseous product)

The ratio of two gases obtained is 1:2.

75.

Solution:

$$2KMnO_{4} \rightarrow K_{2}MnO_{4} + MnO_{2} + O_{2}$$
(A)

76.

Solution:  $SO_3 + H_2O \rightarrow H_2SO_4$ 

77.

Solution:

$$SO_2 + 2H_2S \longrightarrow 3S\downarrow + 2H_2O$$

81.

$$AgCl + 2NH_4OH \longrightarrow [Ag(NH_3)_2]^{\oplus}Cl^{\ominus} + 2H_2O$$
(Excess)

Solution:

$$CuSO_4 + 4NH_4OH \longrightarrow [Cu(NH_3)_4]SO_4 + 4H_2O$$

# 83.

Solution:

$$P_4 + O_2 \longrightarrow P_4O_{10} \text{ or } P_4O_8 \text{ or } P_4O_6$$

$$P_4O_{10} + 4H_2O \longrightarrow 4H_3PO_4$$

$$P_4O_8 + 4H_2O \longrightarrow 2H_3PO_4 + 2H_3PO_3$$

$$P_4O_6 + 4H_2O \longrightarrow 4H_3PO_3$$

# 84.

Solution:

$$\begin{array}{ccc} \text{NO} & + & \text{O}_2 \longrightarrow & \text{NO}_2 \\ \text{Colourless} & \text{Air} & & \text{Brown} \\ \text{gas} & & \text{coloured gas} \end{array}$$

# 85.

Solution:

 $H_4P_2O_7$  Number of bonds are: P-O-P bonds = 1; P-OH bonds = 4

### 86.

$$2NH_3 + CO_2 \longrightarrow H_2NCONH_2 + H_2O$$

**Solution:** The chemical present in matchstick is potassium chlorate, sulfur, starch and glue. These chemicals present on the tip of the matchstick. Matchbox striking surface contains **red phosphorus**, powdered glass and glue.

88.

Solution:

$$P_4 + 3AgNO_3 \longrightarrow Ag_3P + NO_2$$

89.

Solution:

$$2H_3PO_4 \xrightarrow{240^{\circ}C} H_4P_2O_7 + H_2O_7$$

90.

Solution:

$$Mg + 2HNO_3 \longrightarrow Mg(NO_3)_2 + H_2$$

91.

**Solution:** H<sub>3</sub>PO<sub>3</sub> contains 2P–OH groups.

93.

**Solution:** Ozone does not react with acidified solution of  $K_2Cr_2O_7$ .

94.

Solution:

$$H_{2}S_{2}O_{8} + H_{2}O \xrightarrow{\text{Partially} \\ \text{hydrolysis}}} H_{2}SO_{5} + H_{2}SO_{4}$$

$$H_{2}S_{2}O_{8} + 2H_{2}O \xrightarrow{\text{Complete} \\ \text{hydrolysis}}} 2H_{2}SO_{4} + H_{2}O_{2}$$

95.

Inorganic compound + SO<sub>2</sub> in aq. medium 
$$\longrightarrow$$
 (A)  
(A) + Na<sub>2</sub>CO<sub>3</sub>  $\longrightarrow$  (B)  
(B) + S  $\longrightarrow$  (C) (Used in photography)  
Na<sub>2</sub>CO<sub>3</sub> + 2SO<sub>2</sub> + H<sub>2</sub>O  $\longrightarrow$  2NaHSO<sub>4</sub> + CO<sub>2</sub>  
(A)  
2NaHSO<sub>4</sub> + Na<sub>2</sub>CO<sub>3</sub>  $\longrightarrow$  2Na<sub>2</sub>SO<sub>3</sub> + H<sub>2</sub>O + CO<sub>2</sub>  
(B)  
Na<sub>2</sub>SO<sub>3</sub> + S  $\longrightarrow$  Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>  
(C)

Solution:

$$H_{2}S_{2}O_{6}, H \xrightarrow{O} G_{8} \xrightarrow{O} \xrightarrow{O} G_{8} \xrightarrow{O} G_$$

97.

Solution:

$$S + 2Cl_{2} \longrightarrow SCl_{4} \xrightarrow{4H_{2}O} S(OH)_{4} + 4HCl$$

$$\downarrow$$

$$H_{2}SO_{3} + H_{2}O$$
(Y)
$$2$$

The hybridised state of S in (Y) in  $sp^3$ .

### Solution:

$$O_3 \longrightarrow O_2 + [O]$$

 $O_3$  decomposes to produce  $O_2$ , thus improves the air of crowded places.

### 99.

#### Solution:

Number of bond pairs = 4

Number of lone pairs = 0



#### 100.

### Solution:

 $B(OH)_3 + 2H_2O \rightleftharpoons [B(OH)_4]^- + H_3O^+$ 

Boron completes its octet by accepting the OH<sup>-</sup> from water molecule. So it is monobasic and weak Lewis acid and not proton donor (as it does not give proton).`