

DISTANCE LEARNING PROGRAMME

(Academic Session: 2019 - 2020)

NEET(UG) MINOR TEST#11 17-11-2019

Test Pattern

PRE-MEDICAL: LEADER TEST SERIES / JOINT PACKAGE COURSE

12th Undergoing/Pass Students

Test Type : Unit Test # 09

This Booklet contains 44 pages. इस पुस्तिका में 44 पृष्ठ हैं।
Do not open this Test Booklet until you are asked to do so.
इस परीक्षा पुस्तिका को जब तक ना खोलें जब तक कहा न जाए।

Read carefully the Instructions on the Back Cover of this Test Booklet. इस परीक्षा पुस्तिका के पिछले आवरण पर दिए निर्देशों को ध्यान से पढ़ें।

Important Instructions:

- 1. On the Answer Sheet, fill in the particulars on **Side-1** and **Side-2** carefully with **blue/black** ball point pen only.
- 2. The test is of 3 hours duration and this Test Booklet contains 180 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720.
- 3. Use **Blue/Black Ball Point Pen only** for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Form No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- 7. Use of white fluid for correction is *not* permissible on the Answer Sheet.
- 8. If you want to attempt any question then circle should be properly darkened as shown below, otherwise leave blank. Correct Method Wrong Method

महत्वपूर्ण निर्देश :

- उत्तर पत्र के पृष्ठ-1 एवं पृष्ठ-2 पर ध्यानपूर्वक केवल नीले/काले बॉल पॉइंट पेन से विवरण भरें।
- 2. परीक्षा की अवधि 3 घंटे है एवं परीक्षा पुस्तिका में 180 प्रश्न हैं। प्रत्येक प्रश्न 4 अंक का है। प्रत्येक सही उत्तर के लिए परीक्षार्थी को 4 अंक दिए जाएंगें। प्रत्येक गलत उत्तर के लिए कुल योग में से एक अंक घटाया जाएगा। अधिकतम अंक 720 है।
- 3. इस पृष्ठ पर विवरण अंकित करने एवं उत्तर पत्र पर निशान लगाने के लिए केवल नीले/काले बॉल पॉइंट पेन का प्रयोग करें।
- 4. रफ कार्य इस परीक्षा पुस्तिका में निर्धारित स्थान पर ही करें।
- 5. परीक्षा सम्पन्न होने पर, परीक्षार्थी कक्ष/हॉल छोड़ने से पूर्व उत्तर पत्र निरीक्षक को अवश्य सौंप दें। परीक्षार्थी अपने साथ केवल परीक्षा पुस्तिका को ले जा सकते हैं।
- 6. परीक्षार्थी सुनिश्चित करें कि इस उत्तर पत्र को मोड़ा न जाए एवं उस पर कोई अन्य निशान न लगाएं। परीक्षार्थी अपना फॉर्म नम्बर प्रश्न पुस्तिका/उत्तर पत्र में निर्धारित स्थान के अतिरिक्त अन्यत्र न लिखें।
- 7. उत्तर पत्र पर किसी प्रकार के संशोधन हेतु व्हाइट फ्लुइड के प्रयोग की अनमति *नहीं* है।
- यदि आप किसी प्रश्न को हल करने का प्रयास करते हैं तो उचित गोले को नीचे दर्शाये गये अनुसार गहरा काला करें अन्यथा उसे खाली छोड़ दें। सही तरीका गलत तरीका

In case of any ambiguity in translation of any question, English version shall be treated as final. प्रश्नों के अनुवाद में किसी अस्पष्टता की स्थिति में , अंग्रेजी संस्करण को ही अंतिम माना जाऐगा।

Name of the Car परीक्षार्थी का नाम (बर्	ndidate (in Capitals) ਵੇ ਕਬਸੇਂ ਸੇਂ\		
,	• •		
Form Number	: in figures		
फॉर्म नम्बर	: अंकों में		
	: in words		
	: शब्दों में		
Centre of Exami	nation (in Capitals) :		
परीक्षा केन्द्र (बड़े अक्ष	ारों में) :		
Candidate's Sign	nature :	Invigilator's Signature :	
परीक्षार्थी के हस्ताक्षर	:	निरीक्षक के हस्ताक्षर :	

TOPIC: Gravitation, Oscillations (SHM, damped and forced oscillations & Resonance), Modern Physics

1. Binding energy per nucleon versus mass number curve for nuclei is shown in the figure. W, X, Y and Z are four nuclei indicated on the curve. The process that would release energy is:-

- (1) $Y \rightarrow 2Z$
- $(2) W \to X + Y$
- $(3) \text{ W} \rightarrow 2\text{Y}$
- $(4) X \rightarrow Y + Z$
- 2. For PEE in a metal, the graph of stopping potential (V_0) versus frequency v(Hz) of the incident radiation is shown in figure. The work function of the metal :

- (1) 12.5eV
- (2) 14.5eV
- (3) 16.5eV
- (4) 18.5eV

 नाभिकों के लिये द्रव्यमान संख्या के साथ प्रति न्यूक्लिऑन बन्धन ऊर्जा का वक्र चित्र में प्रदर्शित है। वक्र पर चार नाभिक W, X, Y तथा Z चिन्हित किये गये हैं। वह प्रक्रिया जिसमें ऊर्जा मुक्त होगी, है:-

- (1) $Y \rightarrow 2Z$
- $(2) W \to X + Y$
- (3) W \rightarrow 2Y
- $(4) X \rightarrow Y + Z$
- 2. प्रकाश विद्युत प्रभाव के प्रयोग में एक धातु के लिए निरोधी विभव (V_0) तथा आपितत विकिरण की आवृत्ति v(Hz) के बीच ग्राफ चित्र में प्रदर्शित है। धातु का कार्य फलन है:

- (1) 12.5eV
- (2) 14.5eV
- (3) 16.5eV
- (4) 18.5eV

	A = 1		
	ALI	LEN	
3.	A linear harmonic oscillator of force constant	3.	बल नियतांक 2 × 10 ⁶ Nm ⁻¹ तथा आयाम 0.01m
	$2 \times 10^6 \text{Nm}^{-1}$ and amplitude 0.01m has a total		रैखिक आवर्ती दोलक की कुल यांत्रिक ऊर्जा 1
	mechanical energy 160J. Among the following		निम्नलिखित कथनों में से कौनसा सत्य है ?
	statements, which are correct?		(i) अधिकतम स्थितिज ऊर्जा 100J है
	(i) Maximum PE is 100J		(ii) अधिकतम गतिज ऊर्जा 100J है
	(ii) Maximum KE is 100J		(iii) अधिकतम स्थितिज कर्जा 160 J है
	(iii) Maximum PE is 160 J		,
	(iv) Minimum PE is zero		(iv) न्यूनतम स्थितिज ऊर्जा शून्य है
	(1) Both (i) and (iv) (2) Both (ii) and (iii)		(1) (i) व (iv) दोनों (2) (ii) व (iii) दोनों
	(3) Both (i) and (ii) (4) Both (ii) and (iv)		(3) (i) व (ii) दोनों (4) (ii) व (iv) दोनों
4.	According to de-Broglie, the de-Broglie wavelength	4.	डी-ब्रागली के अनुसार, हाइड्रोजन परमाणु की किसी कक्ष
			3

- for electron in an orbit of (radius 5.3×10^{-11} m) hydrogen atom is 1.1×10^{-10} m. The principle quantum number of this electron is :-
 - (1) 1
- (2) 2
- (3) 3
- 5. Electron with energy 80 keV are incident on tungsten target of an X-ray tube. K shell electrons of tungsten have ionization energy 72.5 KeV. X-rays emitted by the tube contain only:-
 - (1) A continuous X-ray spectrum with a minimum wavelength of ~ 0.155 Å.
 - (2) A continuous X-ray spectrum with all wavelengths
 - (3) The characteristics X-rays spectrum of tungsten.
 - (4) A continuous X-ray spectrum with a minimum wavelength of ~ 0.155 Å and the characteristics X-ray spectrum of tungsten
- N_1 atom of a radioactive element emit N_2 beta 6. particles per second. The decay constant of the element is (in s^{-1}):
 - (1) $\frac{N_1}{N_2}$
- (2) $\frac{N_2}{N_1}$
- (3) $N_1 \ell n$ (2)
- (4) N, ln (2)
- 7. Assuming photoemission to take place, the factor by which the maximum velocity of the emitted photoelectrons changes when the wavelength of the incident radiation is increased four times, is $(\phi <<< E_n)$
 - (1) 4
- (2) $\frac{1}{4}$ (3) 2 (4) $\frac{1}{2}$

वाले एक 60J है।

- ∏ (radius $5.3 \times 10^{-11} \text{ m}$) में इलेक्ट्रॉन की डी-ब्रागली तरंगदैर्ध्य 1.1×10^{-10} है। इस इलेक्टॉन की मख्य क्वाण्टम संख्या है :-
 - (1) 1
- (2) 2
- (3) 3
- (4) 4
- एक X-किरण निलका में टंगस्टन लक्ष्य पर 80 keV ऊर्जा वाले इलेक्ट्रॉन आपितत हैं। टंगस्टन की K-कक्षा वाले इलेक्ट्रॉनों की बंधन ऊर्जा 72.5 KeV है। निलंका से उत्सर्जित X-िकरणों में होगा केवल-
 - (1) न्यूनतम तरंगदैर्ध्य $\sim 0.155 \text{Å}$ के साथ सतत् X-किरण वर्णक्रम
 - (2) समस्त तरंगदैध्यों वाला सतत् X-किरण वर्णक्रम
 - (3) टंगस्टन का अभिलाक्षणिक वर्णक्रम
 - (4) न्यूनतम तरंगदैर्ध्य $\sim 0.155 \text{Å}$ के साथ सतत् X-िकरण वर्णक्रम टंगस्टन का अभिलाक्षणिक X-किरण वर्णक्रम
- एक रेडियो सक्रिय तत्व के N, परमाणु प्रति सेकण्ड Nू बीटा कण उत्सर्जित करते हैं। तत्व का क्षय नियतांक (प्रति सेकण्ड में):
 - (1) $\frac{N_1}{N_2}$
- (2) $\frac{N_2}{N_1}$
- (3) $N_1 \, \ell n \, (2)$
- (4) $N_2 \ln (2)$
- यह मानते हुए कि प्रकाश वैद्युत उत्सर्जन होता है, जब आपतित प्रकाश की तरंगदैर्ध्य चार गुना बढा दी जाती है तो उत्सर्जित फोटो इलेक्ट्रोनों के अधिकतम वेग में किस गुणांक से परिवर्तन होता है। $(\phi <<< E_n)$

- (1) 4 (2) $\frac{1}{4}$ (3) 2 (4) $\frac{1}{2}$

- 8. Three uniform spheres of mass M and radius R each are kept in such a way that each touches the other two. The magnitude of the gravitational force on any one of the sphere due to the other two is :-
 - (1) $\frac{\sqrt{3} \,\text{GM}^2}{2 \,\text{R}^2}$ (2) $\frac{3 \,\text{GM}^2}{2 \,\text{R}^2}$
 - (3) $\frac{\sqrt{3} \text{ GM}^2}{4 \text{ R}^2}$ (4) $\frac{\sqrt{3} \text{ GM}^2}{\text{ R}^2}$
- 9. The phase difference between two SHM $y_1 = 10\sin\left(10\pi t + \frac{\pi}{3}\right)$ and $y_2 = 12\sin\left(8\pi t + \frac{\pi}{4}\right)$ at t = 0.5 second is:

 - (1) $\frac{11\pi}{12}$ (2) $\frac{13\pi}{12}$ (3) π (4) $\frac{17\pi}{12}$
- **10.** M_x and M_y denote the atomic masses of the parent and the daughter nuclei respectively, in radioactive decay. The Q-value of a β^- decay is Q_1 and that for a β^+ decay is Q_2 . If m_e denotes the mass of an electron, then which of the following statements is correct?
 - (1) $Q_1 = (M_x M_y) c^2$ and $Q_2 = (M_x M_y 2m_e)c^2$
 - (2) $Q_1 = (M_x M_y) c^2$ and $Q_2 = (M_x M_y)c^2$
 - (3) $Q_1 = (M_x M_y 2m_e) c^2$ and $Q_2 = (M_x M_y + 2c_e)c^2$
 - (4) $Q_1 = (M_x M_v + 2m_e)c^2$ and $Q_2 = (M_x m_v 2m_e)c^2$
- 11. Three identical point masses of mass m lie in x-y plane at point (0, 0) $\left(\frac{a}{2}, 0\right)$, (0, 2a) then gravitational force on mass at origin is :-

 - (1) $\frac{\text{Gm}^2}{\text{a}^2} \left(\frac{1}{4} \hat{\mathbf{i}} + 4 \hat{\mathbf{j}} \right)$ (2) $\frac{\text{Gm}^2}{\text{a}^2} \left(4 \hat{\mathbf{i}} + \frac{1}{4} \hat{\mathbf{j}} \right)$

 - (3) $\frac{Gm^2}{a^2} \left(4\hat{i} + \hat{j} \right)$ (4) $\frac{Gm^2}{a^2} \left(4\hat{i} + 4\hat{j} \right)$

- तीन समरूप गोले प्रत्येक का द्रव्यमान M तथा त्रिज्या R इस प्रकार 8. रखे हुए हैं कि प्रत्येक अन्य दो को स्पर्श करता है। अन्य दो गोलों के कारण किसी एक गोले पर गुरूत्वीय बल का परिमाण है-
 - (1) $\frac{\sqrt{3} \, \text{GM}^2}{2 \text{R}^2}$ (2) $\frac{3 \, \text{GM}^2}{2 \text{R}^2}$
 - (3) $\frac{\sqrt{3} \, \text{GM}^2}{4 \, \text{R}^2}$ (4) $\frac{\sqrt{3} \, \text{GM}^2}{\text{R}^2}$
- दो सरल आवर्त गतियों $y_1 = 10\sin\left(10\pi t + \frac{\pi}{3}\right)$ तथा $y_2 = 12 \sin \left(8\pi t + \frac{\pi}{4} \right)$ के बीच t = 0.5 सेकण्ड पर कलान्तर

- (1) $\frac{11\pi}{12}$ (2) $\frac{13\pi}{12}$ (3) π (4) $\frac{17\pi}{12}$
- रेडियो सक्रिय क्षय में \mathbf{M}_{x} तथा \mathbf{M}_{v} क्रमश: पैतृक नाभिक एवं उत्पाद **10.** नाभिक के परमाणु भारों को व्यक्त करते हैं। β^- क्षय में Q मान Q_1 तथा β^+ क्षय में Q_2 है। यदि m_e इलेक्ट्रॉन के द्रव्यमान को व्यक्त करता है, तो निम्नलिखित में से कौनसा कथन सत्य है -
 - (1) $Q_1 = (M_x M_y) c^2$ तथा $Q_2 = (M_x M_y 2m_e)c^2$
 - (2) $Q_1 = (M_x M_y) c^2$ तथा $Q_2 = (M_x M_y)c^2$
 - (3) $Q_1 = (M_x M_v 2m_e) c^2$ तथा $Q_2 = (M_x M_v + 2c_e)c^2$
 - (4) $Q_1 = (M_x M_v + 2m_e)c^2$ तथा $Q_2 = (M_x m_v 2m_e)c^2$
- m द्रव्यमान वाले एक जैसे तीन बिन्दु द्रव्यमान x-y तल में बिन्दु 11. $(0,0), \left(\frac{a}{2},0\right), (0,2a)$ पर रखे हुए है, तो मूल बिन्दु पर रखे द्रव्यमान पर गुरूत्वीय बल है :-

 - (1) $\frac{Gm^2}{a^2} \left(\frac{1}{4} \hat{i} + 4 \hat{j} \right)$ (2) $\frac{Gm^2}{a^2} \left(4 \hat{i} + \frac{1}{4} \hat{j} \right)$

 - (3) $\frac{\text{Gm}^2}{\text{a}^2} \left(4\hat{\mathbf{i}} + \hat{\mathbf{j}} \right)$ (4) $\frac{\text{Gm}^2}{\text{a}^2} \left(4\hat{\mathbf{i}} + 4\hat{\mathbf{j}} \right)$

- The wavelength of the first spectral line in the 12. Balmer series of hydrogen atom is 6561 Å. The wavelength of the second spectral line in the Balmer series of singly ionized helium atom is :-
 - (1) 1215 Å
- (2) 1640 Å
- (3) 2430 Å
- (4) 4687 Å
- **13.** The stopping potential of most energetic photoelectron emitted from a metal is three times of initial when the wavelength of incedent radiation is reduced from λ_1 to λ_2 . The work function of metal is:

 - (1) $\frac{hc}{2\lambda_1\lambda_2}(2\lambda_1-\lambda_2)$ (2) $\frac{hc}{3\lambda_1\lambda_2}(3\lambda_2-\lambda_1)$
 - (3) $\frac{hc}{2\lambda_1\lambda_2}$ (3 $\lambda_2 \lambda_1$) (4) $\frac{hc}{2\lambda_1\lambda_2}$ ($\lambda_1 3\lambda_2$)
- 14. Two body of same mass 'm' each are placed at distance d from each other, then gravitational force between them is F. If 50% mass is transferred from one body to another and distance between them increased by 50% then new gravitational force between them will be :-

- (1) $\frac{3F}{4}$ (2) $\frac{F}{9}$ (3) $\frac{F}{3}$ (4) $\frac{4F}{9}$
- **15.** The two lines A and B shown in figure are the graphs of the de Broglie wavelength λ as a function of $1/\sqrt{V}$ (V is the accelerating potential) for two particles having the same charge. Then :-

- (1) line A represent the heavier particle
- (2) line B represent the heavier particle
- (3) Both line represent the heavier particle
- (4) Both line represent the lighter particle.

- हाइडोजन परमाण की बामर श्रेणी की प्रथम वर्णक्रम रेखा की तरंगदैर्ध्य 6561 Å हैं। एकधा आयनित हीलियम परमाणु की बामर श्रेणी की दूसरी वर्णक्रम रेखा की तरंगदैर्ध्य है -
 - (1) 1215 Å
- (2) 1640 Å
- (3) 2430 Å
- (4) 4687 Å
- एक धातु से उत्सर्जित सर्वाधिक ऊर्जा वाले फोटो इलेक्ट्रॉन के लिये **13.** निरोधी विभव प्रारम्भिक का तीन गुना है जब आपतित विकिरण की तरंगदैर्ध्य घटाकर λ_1 से λ_2 कर दी जाती है। धातु का कार्य फलन है :

 - $(1) \ \frac{hc}{2\lambda_1\lambda_2}(2\lambda_1-\lambda_2) \qquad (2) \ \frac{hc}{3\lambda_1\lambda_2}(3\lambda_2-\lambda_1)$

 - (3) $\frac{hc}{2\lambda_1\lambda_2}$ (3 $\lambda_2 \lambda_1$) (4) $\frac{hc}{2\lambda_1\lambda_2}$ ($\lambda_1 3\lambda_2$)
- समान द्रव्यमान 'm' वाली दो वस्तुएं एक दूसरे से d दूरी पर रखी 14. हैं, तो उनके बीच गुरूत्वीय बल F है। यदि 50% द्रव्यमान एक वस्तु से दूसरी पर स्थानांतरित कर दिया जाये और उनके बीच की दूरी 50% बढ़ा दी जाये तो उनके बीच नया गुरूत्वीय बल हो जायेगा :-

- (1) $\frac{3F}{4}$ (2) $\frac{F}{9}$ (3) $\frac{F}{3}$ (4) $\frac{4F}{9}$
- चित्र मे प्रदर्शित दो रेखाएँ A व B, समान आवेश वाले दो कणों **15.** के लिए $1/\sqrt{V}$ (V त्वरक विभव है) के फलन रूप में डी-ब्रागली तरंगदैर्ध्य λ के ग्राफ हैं। तो :-

- (1) रेखा A भारी कण को व्यक्त करती है।
- (2) रेखा B भारी कण को व्यक्त करती है।
- (3) दोनों रेखाएँ भारी कणों को व्यक्त करती हैं।
- (4) दोनों रेखाएँ हल्के कणों को व्यक्त करती हैं।

- **16.** A motion represented by equation $x = asin^3 \omega t$ is :-
 - (1) Periodic and SHM
 - (2) Non periodic and SHM
 - (3) Periodic but no SHM
 - (4) Non periodic and no SHM
- 17. In a sample of hydrogen like atoms all of which are in ground state, a photon beam containing photons of various energies is passed. In absorption spectrum, five dark lines, are observed. The number of bright lines in the emission spectrum will be (assume that all transitions takes place):-
 - (1) 5

- (2) 10
- (3) 15
- (4) None of these
- **18.** A radioactive nucleus $_{92}X^{235}$ decays to $_{91}Y^{231}$. Which of the following particles are emitted?
 - (1) One alpha and one electron
 - (2) Two deuterons and one positron
 - (3) One alpha and one proton
 - (4) One proton and four neutrons
- 19. A particle of mass 2kg moving on a straight line under the action of force F = (8 2x) N. It is released from rest at x = 6 then time period is:
 - (1) π second
- (2) 4π second
- (3) 3π second
- (4) 2π second
- 20. $^{40}_{19}$ K isotope of potassium has a half life of 1.4×10^9 yr and decays to form stable argon $^{40}_{18}$ Ar. A sample of rock has been taken which contains both potassium and argon in the ratio 1:7. Assuming that when the rock was formed no argon was present in the sample and none has escaped subsequently, determine the age of the rock:
 - $(1) 4.2 \times 10^9 \text{ yr}$
- $(2) 9.8 \times 10^9 \text{ yr}$
- (3) $1.4 \times 10^9 \text{ yr}$
- (4) $10 \times 10^9 \text{ yr}$

- **16.** $x = a sin^3 \omega t$ द्वारा व्यक्त की जाती है :-
 - (1) आवर्ती एवं सरल आवर्त गति
 - (2) अनावर्ती एवं सरल आवर्त गति
 - (3) आवर्ती किन्तु सरल आवर्त गति नहीं
 - (4) अनावर्ती एवं सरल आवर्त गति नहीं
- 17. हाइड्रोजन जैसे परमाणुओं के एक नमूने से जिसमें सारे ही मूल अवस्था में है, विभिन्न ऊर्जाओं वाले फोटॉनों का एक फोटॉन पुंज गुजारा जाता है। अवशोषण वर्णक्रम में, पांच काली रेखाएं प्रेक्षित की जाती है। उत्सर्जन वर्णक्रम में चमकीली रेखाओं की संख्या होगी (मान लीजिये कि सारे संक्रमण होते है)
 - (1) 5

- (2) 10
- (3) 15
- (4) इनमें से कोई नहीं
- **18.** एक रेडियों सक्रिय नाभिक $_{92}X^{235}$ का विखण्डन $_{91}Y^{231}$. में होता है। निम्नलिखित में से कौन से कण उत्सर्जित हुए -
 - (1) एक α तथा एक इलेक्ट्रॉन
 - (2) दो ड्यूट्रॉन तथा एक पॉजिट्रोन
 - (3) एक α तथा एक प्रोटॉन
 - (4) एक प्रोट्रॉन तथा चार न्यूट्रॉन
- 19. 2 kg द्रव्यमान वाला एक कण बल F = (8 2x) N के प्रभाव में सरल रेखा के अनुदिश गित कर रहा है। इसको x = 6 पर विरामावस्था से मुक्त किया जाता है तो इसका आवर्त काल है-
 - (1) π सेकण्ड
- (2) 4π सेकण्ड
- (3) 3π सेकण्ड
- (4) 2π सेकण्ड
- **20.** पोटेशियम के समस्थानिक $^{40}_{19}$ K की अर्द्ध आयु 1.4×10^9 वर्ष है और यह स्थायी आर्गन $^{40}_{18}$ Ar में क्षयित होता है। एक चट्टान का नमूना लिया गया जिसमें पोटेशियम ओर आर्गन दोनो 1:7 में विद्यमान थे। यह मानकर कि जब चट्टान बनी नमूने में कोई आर्गन नहीं थी और बाद में कुछ भी बाहर नहीं गई, चट्टान की आयु का निर्धारण कीजिये
 - $(1) 4.2 \times 10^9 \text{ yr}$
- $(2) 9.8 \times 10^9 \text{ yr}$
- (3) $1.4 \times 10^9 \text{ yr}$
- $(4) 10 \times 10^9 \text{ yr}$

21. The graph that correctly represents the relation of frequency v of a particular characteristics X-ray with the atomic number Z of the material is :-

- The kinetic energy of electron and proton is 10⁻³² J. Then 22. the relation between their de-Broglie wavelength is :-
 - (1) $\lambda_{\rm p} < \lambda_{\rm e}$
- (2) $\lambda_{\rm p} > \lambda_{\rm e}$
- (3) $\lambda_{\rm p} = \lambda_{\rm e}$
- $(4) \lambda_{p} = 2\lambda_{e}$
- 23. Two rings having masses M and 2M respectively, having the same radius are placed coaxially as shown in the figure. The gravitational potential at point 'P' is :-

$$(1) - \frac{GM}{R} \left[\frac{1}{\sqrt{2}} + \frac{2}{\sqrt{5}} \right]$$

- (2) $-\frac{GM}{R} \left| 1 + \frac{2}{3} \right|$
- (3) zero
- (4) None of these
- The de-Broglie wavelength of a neutron at 27°C 24. is λ . What will be its wavelength at 927°C:-
 - $(1) \lambda/2$
- $(2) \lambda/3$
- $(3) \lambda/4$
- $(4) \lambda/9$

एक पदार्थ के परमाणु क्रमांक Z तथा विशिष्ट अभिलाक्षणिक Χ-किरणों की आवृत्ति ν के बीच सम्बन्ध को सही व्यक्त करने वाला ग्राफ है-

- इलेक्ट्रॉन एवं प्रोटॉन की गतिज ऊर्जा 10⁻³² J है। तो उनकी 22. डी-ब्रागली तरंगदैर्ध्यों में सम्बन्ध है :-
 - (1) $\lambda_{\rm p} < \lambda_{\rm e}$

- (3) $\lambda_{p} = \lambda_{e}$ (4) $\lambda_{p} = 2\lambda_{e}$
- दो वलय जिनके द्रव्यमान क्रमश: M व 2M हैं एवं त्रिज्याएँ समान हैं, चित्र में दर्शाये अनुसार समाक्षत: रखी हुई हैं। बिन्दु P पर गुरूत्वीय विभव है :-

$$_{(1)} \, - \frac{GM}{R} \bigg[\frac{1}{\sqrt{2}} + \frac{2}{\sqrt{5}} \bigg]$$

- (2) $-\frac{GM}{R} \left| 1 + \frac{2}{3} \right|$
- (3) श्रन्य
- (4) इनमें से कोई नहीं
- 27° C पर एक न्यूट्रॉन की डी-ब्रागली तरंगदैर्ध्य λ है। 927° C पर इसकी तरंगदैर्ध्य कितनी होगी:-
 - $(1) \lambda/2$
- $(2) \lambda/3$
- $(3) \lambda/4$
- $(4) \lambda/9$

- 25. The time period of an artificial satellite in a circular orbit of radius R is 2 days and its orbital velocity is v₀. If time period of another satellite in a circular orbit is 16 days, then
 - (1) its radius of orbit is 4R and orbital velocity is v_0
 - (2) its radius of orbit is 4R and orbital velocity is $\frac{v_0}{2}$
 - (3) its radius of orbit is 2R and orbital velocity is
 - (4) its radius of orbit is 2R and orbital velocity is $\frac{v_0}{2}$
- **26.** How much work must be done to pull apart the electron and the proton that make up the Hydrogen atom, if the atom is initially in the state with n = 2:
 - (1) $13.6 \times 1.6 \times 10^{-19} \text{ J}$
 - (2) $3.4 \times 1.6 \times 10^{-19} \text{ J}$
 - (3) $1.51 \times 1.6 \times 10^{-19}$ J
 - (4) 0
- **27.** When a nucleus in an atom undergoes a radioactive decay, the electronic energy level of the atom :
 - (1) Do not change for any type of radioactivity
 - (2) Change for α and β -radioactivity but not for γ -radioactivity
 - (3) Change for α -radioactivity but not for others
 - (4) Change for β -radioactivity but not for others
- 28. In a spring block system shown, the block of mass m moves over a smooth horizontal surface and under goes SHM with time period T and amplitude A. A constant horizontal force F now begins act on the block. Motion of the block will be:-

- (1) Periodic but not SHM
- (2) SHM with time period = T
- (3) SHM with time period = $T + (F/mA)^{-1/2}$
- (4) SHM with time period = $T-(F/mA)^{-1/2}$

- 5. R त्रिज्या की वृत्ताकार कक्षा में एक कृत्रिम उपग्रह का आर्वतकाल 2 दिन है और इसका कक्षीय वेग \mathbf{v}_0 है। यदि किसी अन्य उपग्रह का किसी वृत्ताकार कक्षा में आर्वतकाल 16 दिन है, तो
 - (1) इसकी कक्षा की त्रिज्या 4R एवं कक्षीय वेग v_0 है।
 - (2) इसकी कक्षा की त्रिज्या 4R एवं कक्षीय वेग $\frac{v_0}{2}$ है।
 - (3) इसकी कक्षा की त्रिज्या 2R एवं कक्षीय वेग v_0 है।
 - (4) इसकी कक्षा की त्रिज्या 2R एवं कक्षीय वेग $\frac{v_0}{2}$ है।
- 26. हाइड्रोजन परमाणु को बनाने वाले इलेक्ट्रॉन तथा प्रोटॉन को अलग-अलग करके दूर करने के लिये कितना कार्य करना पड़ेगा, यदि परमाणु प्रारम्भ में n = 2 अवस्था में है -
 - (1) $13.6 \times 1.6 \times 10^{-19} \text{ J}$
 - (2) $3.4 \times 1.6 \times 10^{-19} \text{ J}$
 - (3) $1.51 \times 1.6 \times 10^{-19}$ J
 - $(4) \ 0$
- जब किसी परमाणु के नाभिक का रेडियो सिक्रिय विखण्डन होता
 है, तो परमाणु के इलेक्ट्रॉन ऊर्जा स्तर
 - (1) किसी भी प्रकार की रेडियो सक्रियता में परिवर्तित नहीं होते है।
 - (2) α तथा β रेडियो सिक्रयता में परिवर्तित होते हैं किन्तु γ -रेडियो सिक्रयता में नहीं
 - (3) α -रेडियो सिक्रयता में परिवर्तित होते हैं किन्तु अन्य में नहीं
 - (4) β-रेडियो सक्रियता में परिवर्तित होते हैं किन्तु अन्य में नही
- 28. प्रदर्शित स्प्रिंग ब्लॉक निकाय में, m द्रव्यमान का ब्लॉक चिकनी क्षेतिज सतह पर गित करता है और आवर्तकाल T एवं आयाम A के साथ सरल आवर्त गित करता है। अब ब्लॉक पर एक नियत बल F लगना प्रारम्भ होता है। ब्लॉक की गित होगी :-

- (1) आवर्ती किन्तु स.आ.ग. नहीं
- (2) T आवर्तकाल के साथ स.आ.ग.
- (3) $T + (F/mA)^{-1/2}$ आवर्तकाल के साथ स.आ.ग.
- (4) T-(F/mA)^{-1/2} आवर्तकाल के साथ स.आ.ग.

- 29. Energy of 24.6 eV is required to remove one of the electron from a neutral helium atom. The energy (in eV) required to remove both the electrons from a neutral helium atom is :-
 - (1) 38.2
- (2) 49.2
- (3) 51.8
- (4) 79.0
- **30.** An X-rays tube operates at 20 kV. A particular electron loses 5% of its kinetic energy to emit an photon at the first collision. The wavelength corresponding to this photon will be :-
 - (1) 1.24 nm
- (2) 2.24 nm
- (3) 3.5 nm
- (4) zero
- 31. A skylab of mass m kg is first launched from the surface of the earth in a circular orbit of radius 2R (from the centre of the earth) and then it is shifted from this circular orbit to another circular orbit of radius 3R. The minimum energy required to place the lab in the first orbit and to shift the lab from first orbit to the second orbit are

 - (1) $\frac{3}{4}$ mgR, $\frac{\text{mgR}}{6}$ (2) $\frac{3}{4}$ mgR, $\frac{\text{mgR}}{12}$
 - (3) mgR, mgR
- (4) 2mgR, mgR
- From the figure describing photoelectric effect we **32.** may infer correctly that

- (1) Na and Al both have the same threshold frequency
- (2) Maximum kinetic energy for both the metals depend linearly on the frequency
- (3) Al is a better photo sensitive material than Na
- (4) None of these

- उदासीन हीलियम परमाण से एक इलेक्टॉन हटाने के लिये 24.6 eV ऊर्जा की आवश्यकता होती है। उदासीन हीलियम परमाण से दोनो इलेक्ट्रॉनों को हटाने के लिये आवश्यक ऊर्जा (eV में)
 - (1) 38.2
- (2) 49.2
- (3) 51.8
- (4) 79.0
- एक X-किरण नलिका 20 kV पर प्रचलित है। X-किरण **30.** फोटॉन उत्सर्जन के लिये एक इलेक्टॉन पहली टक्कर में इसकी गतिज ऊर्जा का 5% खो देता है। इस फोटॉन के संगत तरंगदैर्ध्य होगी-
 - (1) 1.24 nm
- (2) 2.24 nm
- (3) 3.5 nm
- (4) श्रन्य
- m kg द्रव्यमान वाली एक अंतरिक्ष प्रयोगशाला पहले पृथ्वी की 31. सतह से 2R त्रिज्या (पृथ्वी के केन्द्र से) वाली वृत्ताकार कक्षा में स्थापित की जाती है और फिर इस वृत्ताकार कक्षा से एक अन्य 3R त्रिज्या वाली वत्ताकार कक्षा में स्थानांतरित की जाती है। प्रयोगशाला को प्रथम कक्षा में ले जाने और फिर पहली कक्षा से दूसरी कक्षा में ले जाने के लिये आवश्यक न्यूनतम ऊर्जाएं हैं क्रमश:
 - (1) $\frac{3}{4}$ mgR, $\frac{\text{mgR}}{6}$ (2) $\frac{3}{4}$ mgR, $\frac{\text{mgR}}{12}$
 - (3) mgR, mgR
- (4) 2mgR, mgR
- प्रकाश वैद्युत प्रभाव को अभिव्यक्त करने वाले चित्र से हमे एकदम **32.** सही जानकारी प्राप्त होती है कि

- (1) Na एवं Al दोनों के लिये देहली आवत्ति समान है।
- (2) दोनों धातुओं के लिये, अधिकतम गतिज ऊर्जा रैखिक रूप से आवत्ति पर निर्भर करती है
- (3) Na की तुलना में Al प्रकाश का अधिक सुग्राही पदार्थ है।
- (4) इनमें से कोई नहीं

- A simple pendulum of length L has an energy E **33.** and linear amplitude A. The energies of the simple pendulum (i) when the length is 2L with same amplitude A and (ii) when the amplitude is 2A but with the same length L, are respectively:
 - (1) 2E, 2E
- (2) $\frac{E}{2}, \frac{E}{2}$
- (3) $\frac{E}{2}$,2E
- (4) $\frac{E}{2}$,4E
- 34. Which of the following is true of the Balmer series of the hydrogen spectrum :-
 - (1) The entire series falls in the ultraviolet region
 - (2) The entire series falls in the infrared region
 - (3) The series is partly in the visible region and partly in the ultraviolet region
 - (4) The series is partly in the visible region and partly in the infrared region
- **35.** After absorbing a slowly moving neutron of mass m_N (momentum ~0) a nucleus of mass M breaks into two nuclei of masses m₁ and $5m_1(6m_1 = M + m_N)$. If the de-Broglie wavelength of the nucleus with mass m_1 is λ , then de Broglie wavelength of the other nucleus will be :-
 - (1) 25λ (2) 5λ
- $(3) \frac{\lambda}{5} \qquad (4) \lambda$
- A particle of mass 'm' is placed at the centre of a **36.** uniform spherical shell of mass 3m and radius R. The gravitational potential on the surface of the shell is :-
 - $(1) \frac{-Gm}{R}$
- $(2) \frac{-3Gm}{R}$
- $(3) \ \frac{-4Gm}{p}$
- $(4) \frac{-2Gm}{D}$
- **37.** If 10% of a radioactive substance decay in every 5 year. At what time 19% of radioactive substance will have decayed:
 - (1) 15 year
- (2) 20 year
- (3) 10 year
- (4) 40 year

- 33. L लम्बाई वाले एक सरल लोलक की ऊर्जा E एवं रैखिक आयाम A है। सरल लोलक की ऊर्जा के मान (i) जब लम्बाई 2L व आयाम समान A हो (ii) जब आयाम 2A किन्तु लम्बाई समान L हो. होंगे क्रमश:
 - (1) 2E, 2E
- (2) $\frac{E}{2}, \frac{E}{2}$
- (3) $\frac{E}{2}$,2E
- (4) $\frac{E}{2}$,4E
- हाइड्रोजन वर्णक्रम की बामर श्रेणी के लिये निम्नलिखित में से कौनसा 34.
 - (1) संपूर्ण श्रेणी परार्बेंगनी क्षेत्र में है।
 - (2) संपूर्ण श्रेणी अवरक्त क्षेत्र में है।
 - (3) श्रेणी आंशिक रूप से दृश्य क्षेत्र में और आंशिक रूप से पराबेंगनी क्षेत्र में है।
 - (4) श्रेणी आंशिक रूप से दृश्य क्षेत्र में और आंशिक रूप से अवरक्त
- धीमे गतिशील m_N द्रव्यमान वाले न्यूट्रॉन (संवेग \sim 0) को अवशोषित **35.** करने के पश्चात् M द्रव्यमान वाला एक नाभिक m_1 तथा $5m_1(6m_1 = M + m_N)$ द्रव्यमानों वाले दो नाभिकों में विखण्डित हो जाता है। यदि m_1 द्रव्यमान वाले नाभिक की डी-ब्रागली तरंगदैर्ध्य λ है, तो दूसरे नाभिक की डी-ब्रागली तरंगदैर्ध्य होगी :-
 - (1) 25 λ (2) 5λ (3) $\frac{\lambda}{5}$ (4) λ

- 'm' द्रव्यमान वाले एक कण को 3m द्रव्यमान एवं R त्रिज्या वाले **36.** समरूप गोलीय कोश के केन्द्र पर रखा गया है। कोश की सतह पर गुरूत्वीय विभव है :-
 - $(1) \frac{-Gm}{R}$
- $(2) \frac{-3Gm}{R}$
- $(3) \frac{-4Gm}{R}$
- $(4) \frac{-2Gm}{R}$
- यदि किसी रेडियो सक्रिय पदार्थ का 10% प्रत्येक 5 वर्ष में क्षय **37.** हो जाता है। रेडियो सक्रिय पदार्थ का 19% कितने समय में क्षयित हो जायेगा-
 - (1) 15 year
- (2) 20 year
- (3) 10 year
- (4) 40 year

- 38. K_{α} X-rays of molybdenum has wavelength 71 pm, if the energy of a molybdenum atom with a K- electron knocked out is 23.32 keV, then energy of this atom when L electron is knocked out will be :-
 - (1) 15.82 keV
- (2) 5.82 keV
- (3) 10 keV
- (4) zero
- **39.** Maximum height reached by a rocket fired with a speed equal to 50% of the escape velocity from earth's surface is
 - (1) R/2
- (2) 16R/9
- (3) R/3
- (4) R/8
- **40.** The cathode of a photoelectric cell is changed such that the work function changes from W_1 to W_2 ($W_2 > W_1$). If the current before and after change are I_1 and I_2 , all other conditions remaining unchanged, then (assuming $hv > W_2$)
 - (1) $I_1 = I_2$
- (2) $I_1 < I_2$
- $(3) I_1 > I_2$
- $(4) I_1 < I_2 < 2I_1$
- 41. For the damped oscillator with mass of the block 200 g, spring constant $90\frac{N}{m}$ and the damping constant is $40~{\rm gs^{-1}}$. Then find the time taken for its mechanical energy to drop to half of its initial value.
 - (1) 3.46 s
- (2) 4.46 s
- (3) 5.46 s
- (4) 7 s
- **42.** The ratio of minimum wavelengths of Lyman and Balmer series will be :-
 - (1) 5

- (2) 10
- (3) 1.25
- (4) 0.25

- 38. मॉलिब्डेनम के लिये K_{α} X-िकरणों की तरंगदैर्ध्य 71 pm है, यदि K-इलेक्ट्रॉन के बाहर निकलने पर मॉलिब्डेनम परमाणु की ऊर्जा $23.32~{\rm keV}$ है, तो L इलेक्ट्रॉन बाहर निकलने पर इस परमाणु की ऊर्जा होगी–
 - (1) 15.82 keV
- (2) 5.82 keV
- (3) 10 keV
- (4) शून्य
- 39. पृथ्वी की सतह से पलायन वेग के 50% चाल के साथ दागे गये रॉकेट द्वारा प्राप्त की गई अधिकतम ऊँचाई है -
 - (1) R/2
- (2) 16R/9
- (3) R/3
- (4) R/8
- **40.** एक फोटो सेल का कैथोड़ परिवर्तित किया जाता है जिससे कार्य फलन W_1 से W_2 ($W_2>W_1$) हो जाता है। यदि परिवर्तन से पहले और पश्चात् धाराएँ I_1 तथा I_2 हैं, अन्य परिस्थितियाँ अपरिवर्तित रहती हैं, तो (मान लीजिये कि $h\nu>W_2$)
 - (1) $I_1 = I_2$
- (2) $I_1 < I_2$
- (3) $I_1 > I_2$
- $(4) I_1 < I_2 < 2I_1$
- **41.** एक अवमन्दित दोलक के लिये, ब्लॉक का द्रव्यमान $200\,\mathrm{g}$, स्प्रिंग नियतांक $90\,\frac{\mathrm{N}}{\mathrm{m}}$ तथा अवमन्दन गुणांक $40\,\mathrm{gs}^{-1}\,$ है। तो इसकी यांत्रिक ऊर्जा का मान, मूल मान का आधा होने में लगा समय ज्ञात कीजिये
 - (1) 3.46 s
- (2) 4.46 s
- (3) 5.46 s
- (4) 7 s
- 42. लाइमन श्रेणी तथा बामर श्रेणी की न्यूनतम तरंगदैर्ध्य का अनुपात होगा-
 - (1) 5

- (2) 10
- (3) 1.25
- (4) 0.25

43. A nuclear reaction along with the masses of the particle taking part in it is as follows:-

$$\begin{array}{c} A \\ 1.002 \\ amu \end{array} + \begin{array}{c} B \\ 1.004 \\ amu \end{array} \rightarrow \begin{array}{c} C \\ 1.001 \\ amu \end{array} + \begin{array}{c} D \\ 1.003 \\ amu \end{array} + \begin{array}{c} Q \, MeV \end{array}$$

The energy Q liberated in the reaction is

- (1) 1.234 MeV
- (2) 0.931 MeV
- (3) 0.465 MeV
- (4) 1.862 MeV
- **44.** Consider a photon of continuous X-ray and a photon of characteristics X-ray of the same wavelength. Which of the following is different for the two photons:-
 - (1) Frequency
 - (2) Energy
 - (3) Method of creation
 - (4) Penetrating power
- 45. The variation of decay rate of two radioactive samples A and B with time is shown in figure. Which of the following statements is true?

- (1) Decay constant of A is greater than that of B, hence A always decays faster than B
- (2) Decay constant of B is greater than that of A but its decay rate is always smaller than that of A
- (3) Decay constant of A is greater than that of B but it does not always decay faster than B
- (4) All of the above

43. एक नाभिकीय अभिक्रिया, इसमें भाग ले रहे कणों के द्रव्यमानों के साथ निम्नानुसार है:-

$$\begin{array}{c} A \\ 1.002 \\ amu \end{array} \begin{array}{c} + B \\ 1.004 \\ amu \end{array} \begin{array}{c} - C \\ 1.001 \\ amu \end{array} \begin{array}{c} + D \\ 1.003 \\ amu \end{array} \begin{array}{c} + Q \, MeV \end{array}$$

अभिक्रिया में मुक्त ऊर्जा Q है

- (1) 1.234 MeV
- (2) 0.931 MeV
- (3) 0.465 MeV
- (4) 1.862 MeV
- 44. समान तरंगदैर्ध्य वाले सतत X-िकरण फोटोन और अभिलाक्षणिक X-िकरण फोटोन पर विचार कीजिये। इन दोनों फोटोनों के लिये निम्न में से क्या अन्तर है-
 - (1) आवृत्ति
 - (2) ऊर्जा
 - (3) उत्पन्न होने की विधि
 - (4) भेदन क्षमता
- 45. दो रेडियो सिक्रय पदार्थो A व B के लिए समय के साथ विखण्डन दर का परिवर्तन चित्र में दर्शाया गया है। निम्नलिखित में से कौनसा कथन सत्य है-

- (1) A की क्षयांक B से अधिक है अत: A सदैव B की तुलना में तेजी से विखण्डित होगा
- (2) B की क्षयांक A से अधिक है किन्तु इसकी विखण्डन दर सदैव A से कम होगी
- (3) A का क्षयांक B से अधिक है किन्तु यह हमेशा B से अधिक तेजी से विखण्डित नहीं होगा
- (4) उपरोक्त सभी

TOPIC: Alcohol, Phenol and Ether: Aldehydes, Ketones and Carboxylic Acids, Environmental Chemistry: Environmental pollution

46. The structure of main product of following reaction is:

$$CH_{2}-C-OCH_{3} \xrightarrow{NaBH_{4}} Product$$

$$(1) \bigcirc \begin{matrix} OH & O \\ II \\ CH_2-C-OCH_3 \end{matrix}$$

(2)
$$CH_2$$
- CH_2 - $OH + CH_3OH$

47. Suppose following reaction

$$\xrightarrow{\text{Conc.H}_2\text{SO}_4} A \xrightarrow{\text{NaOH}} B \xrightarrow{\text{H}^\oplus} Product$$

The structure of main product will be:

$$SO_3H$$
 SO_3Na OH ONa ONa OH ONa OH ONa

48. The compounds A and B in the reaction sequence

$$A \xleftarrow{Phenol} CH_3COCl \xrightarrow{CH_3COONa} B$$

are given by the set :-

- (1) CH₃CO-O-COCH₃, C₆H₅CH₂OH
- (2) CH₃CO-O-COCH₃, C₆H₅OCOCH₃
- (3) CH₃COCH₃, C₆H₅OCOCH₃
- (4) CH₃—C—O—C₆H₅, CH₃—C—O—C—CH₃

46. निम्न अभिक्रिया के मुख्य उत्पाद की संरचना है:

$$CH_2$$
— $C-OCH_3$ $\xrightarrow{NaBH_4}$ उत्पाद

$$(1) \bigcirc \begin{matrix} OH & O \\ II \\ CH_2-C-OCH_3 \end{matrix}$$

(2)
$$CH_2$$
- CH_2 - $OH + CH_3OH$

47. निम्न अभिक्रिया के मुख्य उत्पाद की संरचना होगी

$$(1) \bigcirc \qquad (2) \bigcirc \qquad (3) \bigcirc \qquad (4) \bigcirc \qquad$$

48. निम्नलिखित अभिक्रिया अनुक्रम में A और B किस समुच्चय द्वारा दिये जाते हैं:-

$$A \xleftarrow{Phenol} CH_3COCl \xrightarrow{CH_3COONa} B$$

- (1) CH₃CO-O-COCH₃, C₆H₅CH₂OH
- (2) CH₃CO-O-COCH₃, C₆H₅OCOCH₃
- (3) CH₃COCH₃, C₆H₅OCOCH₃
- (4) $CH_3 C O C_6H_5$, $CH_3 C O C CH_5$

- **49.** Which of the following statement is incorrect:
 - (1) Phenol is stronger acid than water
 - (2) Water is stronger acid than ethanol
 - (3) Alkoxide ion is better proton acceptor than phenoxide ion
 - (4) OH^{Θ} is weaker proton acceptor than phenoxide ion
- **50.** Suppose the following statement :
 - (A)The compound which is more acidic than H_2O form H_3O^\oplus ion in aqueous solution
 - (B) Any compound which is more acidic than carbonic acid gives effervescence test with aqueous NaHCO₃
 - (C) Phenol is more acidic than alcohol because of delocalisation of lone pair of electron of -OH group
 - (D)Phenol is more acidic than alcohol because of extra stabilisation of phenoxide ion (Conjugate base of phenol) due to resonance.

The correct statement are:

- (1) ABD
- (2) AB
- (3) ABCD
- (4) AD
- **51.** Which of the following is most acidic among following:

(1)
$$CH_3$$
 CH_3 $CH_$

- **49.** निम्न में से असत्य कथन है :
 - (1) फीनॉल, जल की तुलना में प्रबल अम्ल है।
 - (2) जल, ऐथेनॉल की तुलना में प्रबल अम्ल है।
 - (3) सभी एल्कोक्साइड आयन फीनॉक्साइड की तुलना में प्रबल H[®] ग्राही होते है।
 - (4) OH^{Θ} , फीनॉक्साइड की तुलना में दुर्बल H^{\oplus} ग्राही होते है।
- 50. निम्न कथन पर ध्यान दें :
 - (A) यौगिक जो H_2O से अधिक अम्लीय होते है जलीय विलयन में H_2O^\oplus बनाते है।
 - (B) कोई यौगिक जो कार्बोनिक अम्ल से अधिक अम्लीय होते है, $NaHCO_3$ से झाग परीक्षण देते है।
 - (C) फीनाल, एल्कोहल से अधिक अम्लीय होता है क्योंकि इसमें –OH समूह का एकॉकी इलेक्ट्रॉन युग्म वलय से अनुनाद करता है।
 - (D) फीनाल एल्कोहल से अधिक अम्लीय होता है क्योंकि फीनॉक्साइड आयन (संयुग्मी क्षार) अनुनाद के कारण अधिक स्थायी होता है।

इनमें सही कथन है:

- (1) ABD
- (2) AB
- (3) ABCD
- (4) AD
- 51. निम्न में से सर्वाधिक अम्लीय है:

(1)
$$CH_3$$
 CH_3 $CH_$

(3)
$$O_2N$$
 O_2 O_2N O_2 O_2 O_3 O_4 O_2 O_4 O_2 O_4 O_2 O_2 O_3 O_4 O_4 O_2 O_4 O_4 O_5 O_5

52. Arrange the following in order of their acidic strength:

(III)
$$O_2N$$
 OH NO_2 OH NO_2 OH NO_2 NO_2

- (1) I > II > III > IV
- (2) III > IV > II > I
- (3) III > II > IV > I
- (4) III > IV > I > II
- **53.** Suppose the following acetylation reaction :

$$\begin{array}{c} OH \\ C-OH + CH_3-C-CI \\ \hline \\ Salicylic \\ acid \\ \end{array}$$

$$\begin{array}{c} OH \\ C-OH + CH_3 \\ \hline \\ Aspirin \\ \end{array}$$

$$\begin{array}{c} O-C-CH_3 \\ \hline \\ C-OH + HCI \\ \hline \\ Aspirin \\ \end{array}$$

Most suitable explanation for presence of pyridine to favour the rate of reaction is :

- (1) Acetylation of alcohol or phenol only takes place in basic medium
- (2) Pyridine reacts with HCl produce in reaction thus shift the equilibrium toward right
- (3) Pyridine reacts with phenolic –OH group and form salt
- (4) Analgesic effect of Aspirin is only operational in presence pyridine
- **54.** The most suitable reagent for following conversion is:

$$CH_3$$
-CH=CH-CH $_2$ -OH \longrightarrow CH $_3$ -CH=CH-C-H

- (1) dil. KMnO₄/OH
- (2) Conc. $K_2Cr_2O_7/H^{\oplus}$
- (3) Br₂ / H₂O
- (4) Pyridinium chloro chromate

52. निम्न को उनके अम्लीय सामर्थ्य के क्रम में व्यवस्थित करें :

$$(I) \bigcirc OH \\ (II) \bigcirc O_{2}N \bigcirc NO_{2}$$

(III)
$$O_2N$$
 OH NO_2 OH NO_2 OH NO_2 NO_2

- (1) I > II > III > IV
- (2) III > IV > II > I
- (3) III > II > IV > I
- (4) III > IV > I > II
- 53. निम्न एसीटिलीकरण अभिक्रिया में :

पिरीडीन की उपस्थिति अभिक्रिया की दर को बढ़ाती है। इससे संबंधित सर्वाधिक उपयुक्त कथन है:

- (1) एल्कोहल अथवा फीनॉल की एसीटिलीकरण अभिक्रिया सिर्फ क्षारीय माध्यम में होती है।
- (2) पिरीडीन, अभिक्रिया में बनने वाले सह उत्पाद HCl से अभिक्रिया कर साम्य को उत्पाद की तरफ अग्रसारित कर देता है।
- (3) पिरीडीन, फीनालिक—OH से अभिक्रिया कर लवण बनाता है।
- (4) एस्प्रिन का पीड़ाहारी प्रभाव सिर्फ पिरीडीन की उपस्थित में होता है।
- 54. निम्न परिवर्तन के लिए सर्वाधिक उपयुक्त अभिकर्मक है:

$$\begin{array}{c} \text{O} \\ \text{II} \\ \text{CH}_3\text{-CH=CH-CH}_2\text{-OH} \longrightarrow \text{CH}_3\text{-CH=CH-C-H} \end{array}$$

- (1) dil. KMnO₄/OH⁻
- (2) Conc. $K_2Cr_2O_7/H^{\oplus}$
- (3) Br₂ / H₂O
- (4) Pyridinium chloro chromate

55. Suppose following reaction:

$$\begin{array}{c} OH \\ \hline \\ OH \\ \hline \\ OH \\ \hline \\ NO_2 \\ \hline \\ O-nitrophenol \\ \end{array}$$

These two isomeric compound can be separated by steam distillation because o-nitrophenol is steam volatile but p-nitrophenol is less volatile due to:

- (1) Intramolecular H-bonding
- (2) Intermolecular H-bonding
- (3) Higher molecular mass than O-nitrophenol
- (4) P-nitrophenol is major product of reaction
- **56.** O-nitrophenol is less acidic than its isomeric P-nitrophenol, this is due to :
 - (1) Intermolecular H-bonding in P-nitrophenol
 - (2) Intermolecular H-bonding in ortho nitrophenol
 - (3) Intramolecular H-bonding in O-nitrophenol
 - (4) All of these
- **57.** Suppose the following reaction sequence :

$$\begin{array}{c}
OH \\
\hline
& conc. H_2SO_4
\end{array}
A \xrightarrow{conc. HNO_3} B \xrightarrow{Zn-dust} C \xrightarrow{A} C \xrightarrow{(An explosive)}$$

The structure of main product (C) is:

$$(1) \begin{array}{cccc} OH & & & O_2N & & NO_2 \\ & & & & & & & \\ SO_3H & & & & & NO_2 \end{array}$$

(3)
$$NO_2$$
 NO_2 NO_2 NO_3 NO_2 NO_3 NO_3

55. निम्न अभिक्रिया में :

$$\begin{array}{c} OH \\ \hline \\ OH \\ \hline \\ OH \\ \hline \\ NO_2 \\ \hline \\ O-nitrophenol \\ \end{array}$$

दोनों समावयवी यौगिको को वाष्प आसवन से पृथक किया जाता है क्यों कि o-नाइट्रोफीनॉलभापवाष्पीकृत होता है परन्तु p-नाइट्रोफीनॉल भाव वाष्पीकृत नहीं होता, क्योंकि इसमें :

- (1) अन्त: आण्विक H-बन्ध होता है।
- (2) अन्तर आण्विक H-बन्ध होता है।
- (3) O-नाइट्रोफीनॉल की तुलना में अधिक अणुभार होता है।
- (4) P-नाइट्रोफीनॉल इस अभिक्रिया का मुख्य उत्पाद होता है।
- **56.** आर्थोनाइट्रोफीनॉल अपने समावयवी पैरा नाइट्रोफिनाल से कम अम्लीय होता है, क्योंकि :
 - (1) पैरा नाइट्रोफिनाल में अन्तर आण्विक H-बन्ध होता है।
 - (2) आर्थोनाइट्रोफिनाल में अन्तर आण्विक H-बन्ध होता है।
 - (3) आर्थोनाइट्रोफिनाल में अन्त: आण्विक H-बन्ध होता है।
 - (4) इनमें से सभी
- 57. निम्न अभिक्रिया में मुख्य उत्पाद की संरचना है:

$$(1) \begin{array}{cccc} OH & & & O_2N & & O_2N & & NO_2 \\ & & & & & & & & & \\ SO_3H & & & & & & NO_2 \end{array}$$

(3)
$$OH NO_2$$
 $OH NO_2$ $OH NO_2$ $OH NO_2$ $OH NO_2$ $OH NO_2$

TARGET: PRE-MEDICAL 2020/NEET-UG/17-11-2019

- 58. The bromination reaction of benzene ring requires AlBr₃ or lewis acid but in case of phenol it takes place even in absence of AlBr₃ or lewis acid. This is due to:
 - (1) reaction is taking place at ortho-para position
 - (2) –OH group is highly activating thus facilitate on easy electrophilic substitution reaction
 - (3) Bromination of aromatic ring is fastest electrophilic substitution reaction
 - (4) Bromination reaction form precipitate of tribromo phenol
- **59.** The main product of following reaction is:

$$\begin{array}{c} OH \\ \hline \\ CH_3 \end{array} \xrightarrow{conc.HNO_3} A \xrightarrow{conc.HNO_3} Product$$

(1)
$$O_2N$$
 O_1 O_2N O_2 O_3 O_4 O_4 O_4 O_5 O_4 O_5 O_5 O_6 O_7 O_8 O_8

$$(3) \begin{array}{c} OH \\ NO_2 \\ CH_3 \end{array} \qquad (4) \begin{array}{c} OH \\ O_2N \\ NO_2 \end{array}$$

- 60. Phenol its self does not reacts with CO₂ but phenoxide ion does undergoes electrophilic substitution reaction at ortho position because:
 - (1) Phenol is meta directing
 - (2) In phenoxide ion 'O⁻' is much more stronger ring activator thus facilitate the ESR with CO₂
 - (3) CO₂ is an strong electrophile thus reacts with phenoxide ion only
 - (4) –OH group of phenol does not involve in resonance with ring

- 58. बेन्जीन की ब्रोमीनिकरण अभिक्रिया के लिए AlBr₃ अथवा लुइस अम्ल की आवश्यकता होती है परन्तु फीनॉल में यह बिना AlBr₃ अथवा लुइस अम्ल से ही जाती है, क्योंकि :
 - (1) अभिक्रिया आर्थो-पैरा पर होती है।
 - (2) –OH समूह प्रबल सिक्रयकारी होता है यह वलय पर आसानी से इलेक्ट्रॉन स्नेही प्रतिस्थापन अभिक्रिया को प्रेरित करता है।
 - (3) एरोमैटिक वलय पर ब्रोमीनिकरण अभिक्रिया सर्वाधिक तीव्र इलेक्ट्रॉन स्नेही अभिक्रिया होती है।
 - (4) ब्रोमीनिकरण अभिक्रिया ट्राइव्रोमोफिनॉल का अवक्षेप बनाता है।
- 59. निम्न अभिक्रिया का मुख्य उत्पाद है:

$$\begin{array}{c}
OH \\
CH_{3}
\end{array}
\xrightarrow{conc.HNO_{3}}
A \xrightarrow{conc.HNO_{3}}
A \xrightarrow{conc.HNO_{3}}
Product$$

$$(3) \begin{array}{c} OH \\ NO_2 \\ CH_3 \end{array} \qquad (4) \begin{array}{c} OH \\ O_2N \\ NO_2 \end{array} \\ CH_3 \end{array}$$

- **60.** फीनॉल स्वयं CO_2 से अभिक्रिया नहीं करता परन्तु फीनौक्साइड आयन आर्यो पर इलेक्ट्रॉन स्नेही प्रतिस्थापन अभिक्रिया प्रदर्शित करता है क्योंकि :
 - (1) फीनॉल मेटा निर्देशक होता है।
 - (2) फीनॉक्साइड आयन में 'O-' एक प्रबल वलय सक्रियकारी होता है अत: CO₂ से ESR को प्रेरित करता है।
 - (3) CO_2 एक प्रबल इलेक्ट्रॉन स्नेही होता है अत: यह सिर्फ फीनॉक्साइड से अभिक्रिया करता है।
 - (4) फीनाल का –OH समूह वलय के साथ अनुनाद में भाग नहीं लेता।

61. In following reaction:

The most suitable structure of intermediate 'A' will be :

$$(1) \bigcirc^{0} Na^{\oplus}$$

$$CHCl_{2}$$

$$(2) \bigcirc^{H} Cl$$

$$Cl$$

$$Cl$$

$$(3) \bigcirc \begin{matrix} OH & Cl \\ C-Cl \\ Cl \end{matrix}$$

62. In the given reaction A is :-

$$\begin{array}{c}
\text{OH} \\
\hline
& \text{Na}_2\text{Cr}_2\text{O}_7 \\
\hline
& \text{H}_2\text{SO}_4
\end{array}$$

63. Which of the following statement is correct:

- (1) ROH is more acidic than H_2O thus its reacts with NaOH to form alkoxide ion (R-O $^{\odot}$)
- (2) R–OH is less acidic than $\rm H_2O$ thus it does not react NaOH
- (3) Alcohol is more basic than NaOH
- (4) All of these

__` **61.** निम्न अभिक्रिया में :

$$\begin{array}{c} OH \\ \hline \bigcirc & \xrightarrow{CHCI_3+aq.NaOH} & A \\ \hline & Intermediate \\ \hline \end{array} \xrightarrow{(1) \ NaOH} \begin{array}{c} OH \\ \hline \\ (2) \ H^{\oplus} \end{array}$$

मध्यवर्ती 'A' की सर्वाधिक उपयुक्त संरचना होगी:

$$(3) \bigcirc \begin{matrix} OH & Cl \\ I & ONa \\ C-Cl \end{matrix}$$

$$(4) \bigcirc \begin{matrix} ONa \\ C & Cl \end{matrix}$$

62. दी गयी अभिक्रिया में A है:-

63. निम्न में से कौनसा कथन सत्य है:

- (1) ROH, ${
 m H_2O}$ से अधिक अम्लीय होता है अत: यह NaOH से अभिक्रिया कर एल्काक्साइड (${
 m R-O^{\odot}}$) बनाता है।
- (2) R-OH, H_2O से कम अम्लीय होता है अतः यह NaOH से अभिक्रिया नहीं करता है।
- (3) R-OH, NaOH से अधिक क्षारीय होता है।
- (4) इनमें से सभी

TARGET: PRE-MEDICAL 2020/NEET-UG/17-11-2019

64. Suppose the following reaction :

$$\begin{array}{c} \text{OH} \\ \text{R-CH-CH}_{3} \xrightarrow[\Delta (\approx 120^{\circ}\text{C})]{\text{Conc. H}_{2}\text{SO}_{4}} \\ \xrightarrow[\Delta (\approx 180^{\circ}\text{C})]{\text{Conc. H}_{2}\text{SO}_{4}} \\ \text{R-CH-O-CH-R} \end{array}$$

In this reaction, when R is replaced by electron releasing group. The rate of reaction is increased which of the following reaction intermediate should suppose to involves:

- (1) Carbon free radical (2) Carbanion
- (3) Carbocation
- (4) Carbene
- **65.** Which of the following alcohol undergoes dehydration reaction most easily:

(1)
$$CH_3$$
– C – CH_2 – OH (2) CH_3

$$(3) \stackrel{OH}{\underbrace{\bigcirc}} \stackrel{OH}{\underbrace{-CH-CH-CH_3}} \stackrel{OH}{\underbrace{\bigcirc}} -CH_2 \stackrel{C-CH_3}{\underbrace{-CH_3}}$$

66. Which of the following reaction is most suitable for preparation of unsymmetrical ether :

(1)
$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

(2)
$$CH_3$$
– C – C – C Na + CH_3 – CH_2 – Cl \rightarrow Product CH_3

(3)
$$\langle \bigcirc \rangle$$
 -Cl + CH₃-CH₂-ONa \rightarrow Product

(4)
$$Cl$$
 + CH_3 - CH_2 - $ONa \rightarrow Product$

64. निम्न अभिक्रिया में :

$$\begin{array}{c} \text{OH} & \text{CH}_{_{3}} & \text{CH}_{_{3}} \\ \text{R-CH-CH}_{_{3}} & \xrightarrow{\text{conc. H}_{_{2}\text{SO}_{_{4}}}} \\ \text{R-CH-O-CH-R} \\ & \xrightarrow{\text{conc. H}_{_{2}\text{SO}_{_{4}}}} \\ \text{R-CH=CH}_{_{2}} \end{array}$$

जब R के स्थान पर इलेक्ट्रॉन प्रदायी समूह लगाते है तब अभिक्रिया की दर बढ़ जाती है इस अभिक्रिया में बनने वाले मध्यावर्ती होना चाहिए:

- (1) Carbon free radical (2) Carbanion
- (3) Carbocation
- (4) Carbene
- **65.** निम्न में से एल्कोहल का निर्जलीकरण सर्वाधिक आसानी से होगा:

(1)
$$CH_3$$
– C – CH_2 – OH (2) CH_3

$$(3) \stackrel{OH}{\longleftrightarrow} CH-CH-CH_{^3}(4) \stackrel{OH}{\longleftrightarrow} CH_2-C-CH$$

66. निम्न में से कौनसी अभिक्रिया असममिति ईथर संश्लेषण के लिए सर्वाधिक उपयुक्त है:

(1)
$$CH_3$$
— C — C 1 + CH_3 — CH_2 — $ONa \rightarrow 3$ त्पाद CH_3

(2)
$$CH_3$$
— C — $ONa + CH_3 — CH_2 — $Cl \rightarrow 3$ तपाद $CH_3$$

(4)
$$\leftarrow$$
 + CH_3 - CH_2 - $\text{ONa} \rightarrow 3$ त्पाद

67. Which of following reaction will results into formation of tert. butyl methyl ether in maximum yield:

(1)
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

(2)
$$CH_3$$
– C – C 1 + CH_3 – C Na $\xrightarrow{\Delta}$

(3)
$$CH_3$$
– C – ONa + CH_3 – Cl $\xrightarrow{\Delta}$ CH_3

(4)
$$CH_3$$
– CH – CH – Cl + CH_3 – ONa $\xrightarrow{\Delta}$ CH_3

68. Ether are almost equally miscible as to alcohol due to H-bonding. Most suitable presentation for H-bonding with ether is:

$$(3) \begin{array}{c} R \\ O \end{array} \begin{array}{c} O \\ H \end{array}$$

$$(4) \qquad \begin{matrix} R^{\delta^{+}} & \delta^{\bullet} & \delta^{\bullet} \\ \delta^{+} & R & 0 \end{matrix}$$

67. निम्न में से किस अभिक्रिया में tert. ब्युटिल मेथिल ईथर की लब्धि सर्वाधिक होगी :

(1)
$$CH_3$$
 + CH_3 - CH_3 + CH_3 - CH_3 - CH_3 + CH_3 - CH_3

(2)
$$CH_3$$
– C – C 1 + CH_3 – C Na $\xrightarrow{\Delta}$ CH_3

(3)
$$CH_3$$
 – C – C

(4)
$$CH_3$$
– CH – CH – Cl + CH_3 – ONa $\xrightarrow{\Delta}$ CH_3

68. ईथर में जल में H-बन्ध के कारण इसकी घुलनशीलता एल्कोहल की घुलनशीलता के लगभग बराबर होती है। ईथर के साथ H_2O के साथ H-बंध को सर्वाधिक उपयुक्त प्रदर्शन किसमें है :

$$(4) \qquad \begin{matrix} R^{\delta^{+}} & \delta^{-} & & \delta^{+} & O^{\delta^{-}} \\ R & & & H \end{matrix}$$

69. In following reaction

$$\begin{array}{c}
O-R \\
& + H-X \xrightarrow{\Delta}
\end{array}$$

The correct reactivity order of different halogen acid will be:

- (1) HF > HCl > HBr > HI
- (2) HCl > HBr > HI > HF
- (3) HI > HBr > HCl > HF
- (4) HBr > HI > HF > HCl
- The main product of following reaction is: **70.**

$$CH_3$$
 CH_3 - CH_2 - CH_2 - CH_2 - CH_3
 $\xrightarrow{HI(1mole)}$ Products
 CH_3

- (3) $CH_3-CH_2-\dot{C}H-CH_2-I+CH_3-CH_2-OH$ CH₃ CH₃ (4) CH₃-CH₂-CH-I + CH₃-CH-OH
- **71.** The main product of following reaction is:

$$CH_{3}\text{-}CH_{2}\text{-}CH_{2}\text{-}O\text{-}\overset{CH_{3}}{\underset{CH_{3}}{\longleftarrow}}CH_{2}\text{-}CH_{3} \xrightarrow{\overset{HI(1 \text{mole})}{\Delta}} Product$$

(1)
$$CH_3$$
- CH_2 - CH_2 - $OH + CH_3 - CH_2 - $C-I$
 $CH_3$$

(4)
$$CH_3$$
– CH_2 – CH_2 – OH + CH_3 – CH – CH – OH

$$CH_3$$

निम्न अभिक्रिया में

$$\begin{array}{c}
O-R \\
+ H-X \xrightarrow{\Delta}
\end{array}$$

हैलोजन अम्ल के साथ क्रियाशील का सही क्रम है :

- (1) HF > HCl > HBr > HI
- (2) HCl > HBr > HI > HF
- (3) HI > HBr > HCl > HF
- (4) HBr > HI > HF > HCl
- निम्न अभिक्रिया का मख्य उत्पाद है:

$$CH_3$$
 CH_3 — CH_2 — CH_2 — CH_2 — CH_3 — $\frac{HI(1mole)}{\Delta}$ उत्पाद

(1)
$$CH_3-CH_2-C-CH_3+CH_3-CH_2-OH_3$$

निम्न अभिक्रिया का मुख्य उत्पाद होगा: **71.**

$$\begin{array}{c} CH_3 \\ CH_3-CH_2-CH_2-O-C-CH_2-CH_3 & \xrightarrow{HI(1 \text{mole})} \\ CH_3 \end{array} \rightarrow \overline{\text{3}} \overline{\text{CHI}} \overline{\text{G}}$$

(1)
$$CH_3-CH_2-CH_2-OH + CH_3-CH_2-C-I$$

 CH_3
 CH_3

(2)
$$CH_3 - CH_2 - CH_2 - I + CH_3 - CH_2 - C - OH CH_3$$

72.
$$CH_3$$
 CH_2
 CH_3
 CH_3
 $HI(1 \text{mole})$
 $Heat$ Product

The main product of above reaction is:

$$\begin{array}{c|c} OH & CH_3 \\ \hline CH_2 & CH_3 \\ \hline (1) \bigcirc \bigcirc \bigcirc \bigcirc \\ \end{array} \qquad \begin{array}{c} O \\ CH_2 \\ \hline (2) \bigcirc \bigcirc \bigcirc \\ \end{array} \qquad \begin{array}{c} CH_2 \\ CH_2 \\ \end{array}$$

73. Suppose the following reaction:

$$\begin{array}{c}
\text{Br} \\
\hline
& \text{conc. HNO}_3 \\
\hline
& \text{conc. H_2SO}_4
\end{array}$$

$$A \xrightarrow{\text{CH}_3\text{ONa}} B \xrightarrow{\text{HI}} \text{Product}$$

The structure of main product of reaction will be:

$$(1) \bigcirc \qquad \qquad (2) \bigcirc \qquad \qquad (2) \bigcirc \qquad \qquad (3)$$

$$(3) \bigcirc \qquad \qquad (4) \bigcirc \qquad \qquad (NO)$$

72.
$$CH_3$$
 CH_3 $HI(1mole)$ उत्पाद

अभिक्रिया का मुख्य उत्पाद होगा :

$$\begin{array}{ccccc}
OH & CH_3 & & & & & \\
CH_2 & CH_3 & & & & & \\
CH_2 & CH_3 & & & & & \\
\end{array}$$

$$(1) \bigcirc O \bigcirc O \bigcirc CH_3$$

$$(2) \bigcirc O \bigcirc O$$

$$(3) \bigcirc (4) \bigcirc (4)$$

73. निम्न अभिक्रिया में :

$$\begin{array}{c}
Br \\
\hline
& conc. HNO_3 \\
\hline
& conc. H_2SO_4
\end{array}$$

$$A \xrightarrow{CH_3ONa} B \xrightarrow{HI} 3$$

मुख्य उत्पाद की संरचना होगी:

$$(3) \bigcirc OH$$

$$(4) \bigcirc NO_{2}$$

$$(4) \bigcirc NO_{2}$$

Most suitable method to prepare P-nitroanisol:

$$(1) \bigcirc \stackrel{OCH_3}{\longrightarrow} \xrightarrow{\text{conc. H}_2SO_4} \text{Product}$$

$$(2) \xrightarrow{\text{CH}_3\text{ONa}} \text{Product}$$

$$NO_2$$

(3)
$$OH \longrightarrow Product$$
NO,

(4)
$$\bigcirc$$
 + CH₃-Br \longrightarrow Product \bigcirc NO₂

The main product of following reaction will **75.**

$$\underbrace{\begin{array}{c} OH \\ \hline \end{array}}_{OH} \xrightarrow{conc. H_2SO_4} Products$$

पैरा-नाइट्रोएनीसोल को बनाने की सर्वाधिक उपयुक्त विधि है :

$$OCH_3$$

$$Conc. H_2SO_4 \longrightarrow 3$$
तपाद

$$(2) \bigcup_{NO_3}^{\text{Br}} \xrightarrow{\text{CH}_3\text{ONa}} \text{3}_{\text{CYIG}}$$

$$(3) \bigcirc \begin{matrix} OH \\ \hline \\ NO_3 \end{matrix} \xrightarrow{CH_3ONa} 3 \overline{C}$$

$$ONa$$
 ONa ONA

निम्न अभिक्रिया का मुख्य उत्पाद होगा: **75.**

$$\begin{array}{c}
OH & \xrightarrow{\text{conc. H}_2SO_4} 3 \text{ } \\
\hline
\Lambda
\end{array}$$

76. The structure of main product of following reaction will be:

$$\begin{array}{ccc} CH_3 & OH & O \\ I & I & II \\ CH_3 - CH - CH - CH_2 - C - H & \xrightarrow{\bar{O}H} & Product \end{array}$$

$$\begin{array}{ccc} CH_3 & O \\ I & II \end{array}$$
 (2) CH_3 – CH – CH = CH – C – H

77. Suppose following reaction:

The product A and B are respectively:

- (1) CH₃-CH=CH-CH₂-CH₂-C-H; CH₃-CH=CH-CH₂-CH₂-CH₂OH
- O || (2) CH₃-CH=CH-CH₂-CH₂-C-H :

- (3) $CH_3-CH=CH-CH_2-CH_2-C-H$; $CH_3-CH_2-CH_2-CH_2-CH_2-C=N$
- (4) Both A and B is CH₃-CH=CH-CH₂-CH₂-C-H

76. निम्न अभिक्रिया का मुख्य उत्पाद होगा :

$$\begin{array}{ccc} CH_3 & O \\ & \parallel \\ (1) & CH_3-C=CH-CH_2-C-H \end{array}$$

$$\begin{array}{ccc} CH_3 & O \\ I & II \\ (2) & CH_3-CH-CH=CH-C-H \end{array}$$

$$\begin{array}{ccc} CH_2 & O \\ \parallel & \parallel \\ (4) & CH_3-C-CH_2-CH_2-C-H \end{array}$$

77. निम्न अभिक्रिया में :

उत्पाद A व B है :

- O II (1) CH₃-CH=CH-CH₂-CH₂-C-H; CH₃-CH=CH-CH₂-CH₂-CH₂OH
- (2) CH₃-CH=CH-CH₂-CH₂-C-H;

- (3) $CH_3-CH=CH-CH_2-CH_2-CH_2$; $CH_3-CH_2-CH_2-CH_2-CH_2-C=N$
- O || (4) दोनों A और B CH₃-CH=CH-CH₂-CH₂-C-H

78. The main product of following reaction is:

$$\begin{array}{c}
O \\
C - OH \\
+ CH_3 - OH \xrightarrow{H^{\oplus}} A \xrightarrow{DIBAL-H} B(Product)
\end{array}$$

$$\begin{array}{c} O \\ C \\ C \\ \end{array}$$

$$(3) \bigcirc CH_{3}$$

$$CH_{2}O-CH_{3}$$

$$CH_{2}O-CH_{3}$$

$$CH_{3}$$

79. Suppose following reaction:

$$CH_{3} + CrO_{3} + (CH_{3}-C)_{2}O \xrightarrow{273^{\circ} K} A \xrightarrow{H_{3}O^{\oplus}} A$$

The structure of intermediate compound (A) is :

CH2-OH

$$(4) \bigcirc \bigcap_{\mathbb{C}} (A) \bigcirc \bigcirc \bigcap_{\mathbb{C}} (A) \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc (A) \bigcirc \bigcirc \bigcirc \bigcirc (A) \bigcirc \bigcirc \bigcirc (A) \bigcirc (A) \bigcirc \bigcirc (A) \bigcirc (A$$

78. निम्न अभिक्रिया का मुख्य उत्पाद है :

$$\begin{array}{c}
O \\
C-OH \\
+ CH_3-OH \xrightarrow{H^{\oplus}} A \xrightarrow{DIBAL-H} B(Product)
\end{array}$$

$$(3) \bigcirc CH_3$$

$$CH_2O-CH_3$$

$$CH_3$$

$$(4) \bigcirc$$

79. निम्न अभिक्रिया में :

$$CH_{3} + CrO_{3} + (CH_{3}-C)_{2}O \xrightarrow{273 \text{ K}} A \xrightarrow{H_{3}O^{\oplus}} C$$

मध्यावर्ती यौगिक (A) की संरचना है:

CH₂-OH

$$(4) \bigcirc \begin{matrix} O \\ HC \\ (C-CH_3)_2 \end{matrix}$$

LEADER TEST SERIES/JOINT PACKAGE COURSE/NEET-UG/17-11-2019

80. Which of the following reaction does not form benzaldehyde as major product:

(1)
$$\bigcirc$$
 $\xrightarrow{\text{CO/HCI}}$ Product

$$(2) \bigcap^{CH_3} \xrightarrow{\stackrel{(i)CrO_2Cl_2/CS_2}{(ii)H_3O^+}} Product$$

(3)
$$CH_3 \xrightarrow{CrO_3/(CH_3-C)_2O)} Product$$

$$(4) \bigcirc \qquad \xrightarrow{\text{LialH}_4} \text{Product}$$

81. Suppose the following reaction:

$$CH_{3}-MgCl + CH_{3}-C-Cl \longrightarrow A$$

$$CdCl_{2} \longrightarrow B \xrightarrow{CH_{3}-C-Cl} C$$

Product A and C are respectively:

(1)
$$CH_3$$
- C - CH_3 ; CH_3 - C - CH_3 CH_3

- O || (3) Both is CH₃-C-CH₃
- (4) Both is CH_3 –C– CH_3 CH_3

80. निम्न अभिक्रिया में किसमें बेन्जलिडहाइड मुख्य उत्पाद नहीं बनता है :

$$(1) \bigcirc \xrightarrow{\text{CO/HCI}} \text{उत्पाद}$$

$$(2) \bigcirc \xrightarrow{\text{(i)CrO}_2\text{Cl}_2/\text{CS}_2} \to \text{ उत्पाद}$$

(3)
$$CH_3 \longrightarrow CrO_3/(CH_3-C)_2O) \longrightarrow 3$$
त्पाद

$$(4)$$
 \longrightarrow \longrightarrow \longrightarrow उत्पाद

81. निम्न अभिक्रिया में :

$$CH_{3}-MgCl + CH_{3}-C-Cl \longrightarrow A$$

$$CdCl_{2} \longrightarrow B \xrightarrow{CH_{3}-C-Cl} C$$

उत्पाद A और C क्रमश: है:

$$\begin{array}{ccc} O & OH \\ II \\ CH_{3}-C-CH_{3} \end{array}; CH_{3}-C-CH_{3} \\ CH_{3} \end{array}$$

- (4) Both is CH_3 –C– CH_3 CH_3

82. Suppose following reaction:

The structure of main product will be:

(3)
$$OO_2$$
 OO_2 OO_2 OO_2 OO_2 OO_2

- **83.** Arrange the following in order of their boiling point :
 - (I) CH₃-CH₂-CH₂-CHO
 - (II) CH₃-CH₂-CH₂-CH₂-OH
 - (III) CH_3 - CH_2 -O- CH_2 - CH_3
 - (IV) $CH_3-CH_2-CH_2-CH_3$
 - (1) IV > III > II > I
- (2) II > I > III > IV
- (3) II > III > I > IV
- (4) II > I > IV > III
- **84.** The correct statement for carbonyl compound in follow are:
 - (A) Lower member of aldehyde and ketone are water soluble because they form H-bond with H₂O
 - (B) Carbonyl compound have in between boiling point to that of alcohol and ether of same molecular mass
 - (C) In nucleophilic addition reaction of carbonyl compound when new chiral center is generated the racemic mixture of product is form
 - (D) Formalin is aqueous solution of equimolar amount of formic and acetic acid
 - (1) A, B and C
- (2) A and C
- (3) A, B and D
- (4) A, B, C and D

82. निम्न अभिक्रिया में :

$$\overbrace{\bigcap_{H_3 O^{\oplus}}}^{CH_3} \xrightarrow[]{CrO_2Cl_2} A \xrightarrow[]{CrO_2Cl_2} A \xrightarrow[]{CrO_2Cl_2} A \xrightarrow[]{CrO_2Cl_2} A$$

मुख्य उत्पाद की संरचना है:

- 83. निम्न को उनके क्वथनांक के क्रम में व्यवस्थित करें :
 - (I) CH₂-CH₂-CH₂-CHO
 - (II) CH₃-CH₂-CH₂-CH₂-OH
 - (III) CH₃-CH₂-O-CH₂-CH₃
 - (IV) $CH_3-CH_2-CH_2-CH_3$
 - (1) IV > III > II > I (2) II > I > III > IV
 - (3) II > III > I > IV (4) II : I > IV
 - (4) II > I > IV > III
- 84. कार्बोनिल यौगिकों के बारे में सही कथन है:
 - (A) एल्डीहाइड अथवा कीटोन के छोटे सदस्य जल में घुलनशील होते है क्योंकि ये H_2O के साथ H-बंध बनाते है।
 - (B) कार्बोनिल यौगिक का क्वथनांक समान अणुभार वाले एल्कोहल और ईथर के बीच का होता है।
 - (C) कार्बोनिल यौगिको की नाभिक स्नेही योगात्मक अभिक्रिया में जब नया किरेल केन्द्र बनता है तब उत्पाद रेसिमिक मिश्रण के रूप में बनता है।
 - (D) फार्मिलन, फार्मिक और एसिटिक अम्ल का सममोलर जलीय विलयन होता है
 - (1) A, B and C
- (2) A and C
- (3) A, B and D
- (4) A, B, C and D

85. Carbonyl compound have less hindard alkyl groups reacts with NaHSO₃ to form crystalline product which can be converted back to original carbonyl compound by acidic or alkaline hydrolysis. Thus provide a useful method for purification. The structure of crystalline product of addition is:

$$(2) \begin{array}{c} O \\ I \\ O \\ O \\ O \\ O \\ O \end{array}$$

$$(3) \sum_{\substack{C = 0 \\ C = 0 \\ OH}} C = 0$$

$$(4) \begin{array}{c} O \\ \parallel \\ S \\ O \\ ONa \end{array}$$

86. Arrange the following in order of their reactivity toward nucleophilic addition reaction :

$$(I) \left\langle \bigcirc \right\rangle - \begin{matrix} \bigcirc \\ I \\ I \end{matrix}$$

$$(II) \bigcirc C-H$$

- (1) I > IV > II > III
- (2) III > I > II > IV
- (3) III > II > I > IV
- (4) II > III > I > IV

85. कार्बोनिल यौगिक जिसमें कम त्रिविम वाधा वाले एल्किल समूह लगे होते है NaHSO3 से अभिक्रिया कर क्रिस्टलीय उत्पाद बनाता है, जिस पर अम्लीय अथवा क्षारीय जल अपघटन करा कर फिर से वही कार्बोनिल यौगिक प्राप्त किया जाता है। अत: यह कार्बोनिल यौगिक की शुद्धता के लिए एक महत्वपूर्ण विधि है। इस अभिक्रिया में बनने वाले क्रिस्टलीय उत्पाद की संरचना है:

$$(2) \sum_{O = S \atop ONa} C = 0$$

$$(4) \sum_{C} S_{ONa}$$

86. निम्न को उनके नाभिक स्नेही योगात्मक अभिक्रिया के प्रति सिक्रयता के क्रम में व्यवस्थित करें:

(II)
$$\left\langle \begin{array}{c} -C-H \\ O \end{array} \right\rangle$$

$$(IV)$$
 \bigcirc $C-CH_2$

- (1) I > IV > II > III
- (2) III > I > II > IV
- (3) III > II > I > IV
- (4) II > III > I > IV

TARGET: PRE-MEDICAL 2020/NEET-UG/17-11-2019

- **87.** Term BOD (Biological oxygen demand) is refer for :
 - (1) Amount of oxygen requires for microbes to decompose organic matter in polluted water.
 - (2) Bio-oxygen supply for combustion of petrole
 - (3) Use of Bio fuel in combustion engine
 - (4) Availability of oxygen in atmosphere for living to survive
- **88.** The main pollutant responsible for fading in shining of Taj Mahal is:
 - (1) Presence of CO₂ in atmosphere
 - (2) Acid rain
 - (3) Chlorofluorocarbon
 - (4) Water pollutant present in river Yamuna
- 89. Global warming is mainly caused due to:
 - (1) Atmospheric pollutant gases
 - (2) Water pollutant
 - (3) Soil pollutant
 - (4) Presence of excess of tree's
- 90. "Presence of excess nutrient (fertilizers) in water leads to excess growth of algae which cover the surface of water and reduce the oxygen content causing abnoxious decay and death of aquatic animal. Thus causing loss of biodiversity". This condition is known as:
 - (1) Ecological ending
 - (2) Eutrophication
 - (3) Chemical oxygen demand
 - (4) Inversion of Bio pyramide

- 87. BOD शब्द का अर्थ होता है -
 - (1) जल में सूक्ष्म जीवों के लिए कार्बनिक पदार्थों के विघटन के लिए आवश्यक ऑक्सीजन की मात्रा
 - (2) पेट्रोल के जलने के लिए प्रयुक्त जैव-ऑक्सीजन
 - (3) इंजन में जलने के लिए युक्त जैव ईंधन
 - (4) वायुमण्डल में जीवों के जीवन के लिए ऑक्सीजन की मात्रा
- 88. ताजमहल की चमक को क्षरित करने वाला मुख्य कारक है -
 - (1) वायुमण्डल में CO, की उपस्थिती
 - (2) अम्ल वर्षा
 - (3) क्लोरोफ्लोरोकार्बन
 - (4) यमुना नदी में उपस्थित जल प्रदूषक
- 89. गोलार्द्ध के गर्म होने का मुख्य कारक है -
 - (1) वायुमण्डलीय प्रदूषण कारी गैस
 - (2) जल प्रदूषक
 - (3) मृदा प्रदूषक
 - (4) अत्यधिक पेड़ों की उपस्थिति
- 90. जल में अत्यधिक उर्वरक (पोषक तत्व) के उपस्थित होने पर सतह पर कवकों की अधिक वृद्धि हो जाती हैं जिसके कारण जलीय जीवों के लिए ऑक्सीजन की कमी हो जाती है यह ऑक्सीजन की कमी जलीय जीवों के क्षरण और मृत्यु के कारण बनता है और यह जैव विविधता को नष्ट करता है'' इस प्रकार की परिस्थिति को जाना जाता है
 - (1) जैविक समाप्ति
 - (2) युट्रोफिकेशन
 - (3) रासायनिक ऑक्सीजन मांग
 - (4) जैव पिरामिड का उलटना

TOPIC: Ecology and environment & Demography, Organisms and environment, Ecosystem, Biodiversity and its conservation, Environmental issues

- **91.** The non-living components of the Environment including soil, air, water, nutrients etc are called:
 - (1) Biotic factors
- (2) Abiotic factors
- (3) Limiting Factors
- (4) Ecological factor
- **92.** Competition is most severe in :-
 - (1) Closely related species growing in the same area
 - (2) Closely related species growing in different area
 - (3) Distantly related species growing in the same habitat
 - (4) Distantly related species growing in the different habitat
- 93. Animal which occupy the same trophic level are:-
 - (1) Tiger and bees
 - (2) Deer and bees
 - (3) Snake and earthworm
 - (4) Crow and cow
- **94.** The quantity of inorganic materials like mineral present at any given time in ecosystem called :-
 - (1) Standing crop
 - (2) Standing state
 - (3) Food web
 - (4) Ecological crop/state
- 95. Peroxy acetyl nitrate (PAN):-
 - (1) increase the rate of photosynthesis
 - (2) Reduce the rate of photosynthesis
 - (3) Increase the rate of transpiration
 - (4) Reduce the rate of transpiration
- **96.** The equation, $\frac{K-N}{K}$ represents :-
 - (1) Carrying capacity
 - (2) Vital index
 - (3) Environmental resistance
 - (4) Crash Phase
- **97.** Carnivores plant catch the insect to ful fill their which requirement ?
 - (1) Oxygen
- (2) Nitrogen
- (3) Sulphur
- (4) Phosphorus

- 91. वातावरण के निर्जीव घटक जैसे मृदा वायु, जल, पोषक इत्यादि को सिम्मिलत रूप से कहा जाता है:-
 - (1) जैविक घटक
- (2) अजैविक घटक
- (3) सीमाकारी घटक
- (4) परिस्थितिकी घटक
- 92. प्रतिर्स्पधा सबसे गंभीर (कष्टमय) है :-
 - (1) समान क्षेत्र में वृद्धि करने वाली निकटतम संबंधित जातियों में
 - (2) असमान क्षेत्र में वृद्धि करने वाली निकटतम संबंधित जातियों में
 - (3) समान आवास में वृद्धि करने वाली असंबंधित जातियों में
 - (4) असमान आवास में वृद्धि करने वाली असंबंधित जातियों में
- 93. जन्तु जो समान पोषक स्तर पर है :-
 - (1) बाघ और मक्खियाँ
 - (2) हिरण और मिक्खयाँ
 - (3) सर्प और केंचुआ
 - (4) कौआ और गाय
- 94. परितंत्र में अकार्बनिक पदार्थ जैसे खनिज की मात्रा को कहा जाता है।
 - (1) खड़ी फसल
 - (2) खडी अवस्था
 - (3) खाद्य जाल
 - (4) परिस्थितिक फसल/अवस्था
- 95. परआक्सी एसीटाइल नाइट्रेट (PAN) :-
 - (1) प्रकाश संश्लेषण दर में वृद्धि
 - (2) प्रकाश संश्लेषण दर में कमी
 - (3) वाष्पोत्सर्जन दर में वृद्धि
 - (4) वाष्पोत्सर्जन दर में कमी
- $\mathbf{96.}$ समीकरण, $\frac{K-N}{K}$ प्रदर्शित करता है :-
 - (1) वहन क्षमता
 - (2) वाइटल इडेक्स
 - (3) वातावरणीय प्रतिरोध
 - (4) क्रेश फेज
- **97.** किस आवश्यकता की पूर्ति के लिए कीटभक्षी पादप कीटों को पकडते है ?
 - (1) आक्सीजन
- (2) नाइट्रोजन
- (3) सल्फर
- (4) फास्फोरस

- 98. The total interacting animals and plants in any well defined area is known as :-
 - (1) Biosphere
- (2) Biome
- (3) Community
- (4) Ecosystem
- 99. Species that occur's in different geographical regions separated by spatial barrier are :-
 - (1) Autogenic
- (2) Allogenic
- (3) Allopatric
- (4) Sympatric
- 100. Most diverse organism of an Ecosystem is :-
 - (1) Producer
- (2) Consumer
- (3) Decomposer
- (4) Carnivores
- 101. The study of inter-relationship between the species/ individual and its physical environment :-
 - (1) Autecology
 - (2) Synecology
 - (3) Species ecology
 - (4) Applied ecology
- 102. The represent of Age pyramid for Human population given here, show :-

- (1) Stable population
- (2) Increasing population
- (3) Fluctuating population
- (4) Decline population
- **103.** In a population unrestricted reproductive capacity is called :-
 - (1) Biotic potential
- (2) Fertility rate
- (3) Carrying capacity (4) Birth rate
- 104. The non obligatory mutually beneficial relationship is represented by :-
 - (1) Symbiosis
 - (2) Proto co-operation
 - (3) Commensalism
 - (4) Mimicry
- 105. The disorder Blue baby syndrome is caused due to:-
 - (1) Nitrate
- (2) Chloride
- (3) Cyanides
- (4) Methene pollution

- किसी परिभाषित क्षेत्र में कल पारस्परिक संबंधित पादप और जन्त को कहा जाता है :-
 - (1) जैवमण्डल
- (2) जीवोम
- (3) समुदाय
- (4) परितंत्र
- जाति जो भिन्न भुगोलिक क्षेत्र में पाई जाती है एवं स्थानिक 99. अवरोध से विभाजित है :-
 - (1) ऑटोजैनिक
- (2) एलोजेनिक
- (3) एलोपेट्रिक
- (4) सिमपेट्क
- 100. परितंत्र में सबसे विविध जीव है:-
 - (1) उत्पादक
- (2) उपभोक्ता
- (3) अपघटनकर्ता
- (4) मांसाहारी
- 101. जीव की भौतिक वातावरण के साथ पारस्परिक अंतक्रिया के अध्ययन को कहा जाता है :-
 - (1) स्वपरिस्थितिकी
 - (2) संपरिस्थितिकी
 - (3) जाति परिस्थितिकी
 - (4) परिस्थितिकी व्यावहारिक
- 102. मानव जनसंख्या का पिरामिड प्रदर्शित किया गया है। जो बताता है :-

- (1) स्थायी जनसंख्या
- (2) बढती जनसंख्या
- (3) अस्थिर जनसंख्या
- (4) घटती जनसंख्या
- 103. जनसंख्या में अप्रतिबंधित प्रजनन क्षमता को कहा जाता है :-
 - (1) जैविक विभव
- (2) प्रजनन द**र**
- (3) वहन क्षमता
- (4) जन्म दर
- 104. गैर अनिवार्य परिस्परिक रूप से लाभकारी संबंध प्रदर्शित करता है
 - (1) सहजीवन
 - (2) प्राक्सहयोगिता
 - (3) सहभोजिता
 - (4) नकल
- 105. ब्लू बेबी सिन्ड्रोम विकार का कारण है:-
 - (1) नाइट्रेट
- (2) क्लोराइड
- (3) सायनाइड
- (4) मीथेन प्रदुषण

- 106. Biomass of producers with in specified area will | 106. किस विशिष्ट क्षेत्र में उत्पादक का जैवभार अधिकतम होगा :be maximum:-
 - (1) Forest ecosystem
 - (2) Pond ecosystem
 - (3) Grassland ecosystem
 - (4) Lake ecosystem
- **107.** If a population of 50 *Paramoecium* present in a pool increase to 150 after an hour, what would be the growth rate of population?
 - (1) 50 per hours
- (2) 200 per hour
- (3) 5 per hour
- (4) 100 per hour
- 108. Geometric representation of age structure is a characteristic of :-
 - (1) Biotic community (2) Land scape
 - (3) Population
- (4) Ecosystem
- **109.** The graph show two type of population growth curve A and B :-

Which one of the following growth model considered as more realistic one?

- (1) Exponential growth curve
- (2) Logistic growth curve
- (3) Z-Shaped growth curve
- (4) J-Shaped growth curve
- 110. The presence of diversity at junction of territories of two different habitat is known as :-
 - (1) Edge Effect
- (2) Junction effect
- (3) Pasteur effect
- (4) Botteleneck effect

- (1) वन परितंत्र
 - (2) तालाब परितंत्र
 - (3) घास मैदान परितंत्र
 - (4) झील परितंत्र
- 107. यदि एक छोटे तालाब में पेरामेशियम की संख्या 50 है। एक घण्टे के समय अंतराल पर संख्या बढ़कर 150 हो जाती है। जनसंख्या की वृद्धि दर क्या है ?
 - (1) 50 प्रति घंटा
- (2) 200 प्रति घंटा
- (3) 5 प्रति घंटा
- (4) 100 प्रति घंटा
- 108. आयु संरचना का ज्यामितिय प्रर्दशन किसका लक्षण है:-
 - (1) जैविक समुदाय
- (2) भूमि के टुकडे
- (3) समष्टि
- (4) परितंत्र
- 109. दिये गये ग्राफ में दो प्रकार के जनसंख्या वृद्धि वक्र A और B का प्रदर्शन किया गया है।

निम्न में से कौनसा एक वृद्धि प्रारूप यर्थाथवादी है माना गया है:-

- (1) चरघातांकी वृद्धि वक्र
- (2) संभार वृद्धि वक्र
- (3) Z-आकार वृद्धि वक्र
- (4) J-आकार वृद्धि वक्र
- 110. दो भिन्न आवासों के मध्य संयोजन क्षेत्र में उपस्थित विविधता को जाना जाता है :-
 - (1) ऐज प्रभाव
- (2) संयोजन प्रभाव
- (3) पाश्चर प्रभाव
- (4) बोटल नेक प्रभाव

		ALI	LEN		
111.	Species diversity is ve	ery high in which of the	111.	निम्न में से किस परितंत्र में जा	ति विविधता अधिकतम है?
	following type of Ecos	ystem :-		(1) कोरल रीफ	
	(1) Coral reef			(2) गहरे समुद्री क्षेत्र	
	(2) Deep sea region			(3) उष्णकटिबंधिय वर्षा वन	
	(3) Tropical rain fores	t		(-)	
	(4) Savana grass land			(4) सवाना घास क्षेत्र	()))
112.			112.	जनसंख्या वृद्धि का सबसे महत	चपूर्ण पैरामीटर है :-
	population growth is :-			(1) स्तरीकरण	(2) वाइटल इन्डेक्स
	(1) Strafification	(2) Vital index		(3) जनसंख्या आकार	(४) घनत्व स्थिगंक
112	-	(4) Density coefficient	112		
113.	sand is known as :-	sional stage that occur on	113.	रत पर अनुक्रमण का अवर	थाओ (क्रम) को जाना जाता
	(1) Xerosere			ः- (1) शुष्क क्षेत्र पर अनुक्रमण	
	(2) Lithosere			(2) चट्टानों पर अनुक्रमण	
	(3) Hydrosere			(3) स्वच्छ जल पर अनुक्रमण	
	(4) Psammosere			(4) रेत पर अनुक्रमण	
114.	` '	g inter-action both partners	114.		क्रया जिसमें दो सहभागी पर विपरीत
	are adversely affected			प्रभाव पड़ता है ?	, ,
	(1) Predation	(2) Competition		(1) परभक्षण	(2) प्रतिर्स्पधा
	(3) Mutualism	(4) Parasitism		(3) सह जीविता	(4) परजीविता
115.	The population limited t	o a particular geographical	115.	समाष्टि जो जैव भूगोलिक	क्षैत्र तक सीमित है कहा जाता
	area is called :-			है :-	
	(1) Alien	(2) Natural		(1) एलियन	(2) प्राकृतिक
	(3) Endemic	(4) Geometric		(3) स्थानिक	(4) ज्यामिति
116.	6. Which one of the following always have steeper slope?		116.		॥ स्टीपर स्लोप(खड़ी ढ़लान)
				होगा ?	
	(1) Pyramid of biomass	S		(1) जैवभार का पैरामिड	
	(2) Pyramid of Energy			(2) ऊर्जा का पैरामिड	
	(3) Pyramid of Number	r		(3) संख्या का पैरामिड	
44-	(4) Both (2) and (3)		44=	(4) दोनों (2) और (3) विकर	
117.	• Among the following biogeochemical cycles which one does not have losses due to respiration:-		117.	निम्न जब भू-रसायन चक्र स ए होती है :-	एक में श्वसन के कारण क्षति नहीं
		=		हाता ह :- (1) कार्बन	(2) सल्फर
	(1) Carbon	(2) Sulphur (4) Roth (2) and (3)		(1) काषन(3) फॉस्फोरस	(4) दोनों (2) और (3)
110	(3) Phosphorus	(4) Both (2) and (3)	110		में से किसका पुन: चक्रण नहीं
110.	8. Which of the following can not be recycled in an		110.	होता :-	ा रा विराचन युवाः अश्राम विष
	Ecosystem ?	(2) E			(2) f
	(1) Water	(2) Energy		(1) जल का	(2) ऊर्जा का
440	(3) Oxygen	(4) Nitrogen		(3) ऑक्सीजन का	(4) नाइट्रोजन का
119.	According Robert consta	anza, less than 10% of the	119.	राबटे कॉन्सटजा के अनुसार कु	ल लागत का 10% परितंत्र सर्विस

के लिए है :-

(1) मृदा निर्माण

(3) वन्यजीव नियमन

(2) पुन: निर्माण

(4) आवास नियमन

(1) Soil Formation

total cost for Ecosystem services goes to :-

(3) Wild life Regulation(4) Habitat regulation

(2) Recreation

- 120. गहरे समुद्र के पानी में रहने वाले अधिकांश जन्तु है :-**120.** Most animals that live in deep oceanic waters are:-(1) अपरदाहारी (1) Detritivores (2) प्राथमिक उपभोक्ता (2) Primary consumers (3) ततीयक उपभोक्ता (3) Tertiary consumers (4) द्वितीयक उपभोक्ता (4) Secondary consumers 121. परिस्थितिकी तंत्र जो आसानी से क्षितिग्रस्त हो सकता है। लेकिन 121. An Ecosystem which can be Easily damaged but can recover after some time if damaging effect हो :stop will be having :-(1) उच्च स्थिरता और निम्न प्रतिरोध क्षमता (1) High stability and Low resilience (2) निम्न स्थिरता और निम्न प्रतिरोध क्षमता (2) Low stability and Low resilience (3) उच्च स्थिरता और उच्च प्रतिरोध क्षमता (3) High stability and High resilience (4) निम्न स्थिरता और उच्च प्रतिरोध क्षमता (4) Low stability and High resilience 122. इडेफिक कारक संदर्भित करता है :-122. Edaphic factor refers to :-(1) मृदा (1) Soil (2) Water (3) सापेक्ष आद्रता (4) ताप (3) Relative humidity (4) Temperature 123. परितंत्र में सामान्य अपरदभोजी है:-123. Common detritivores in our Ecosystem are :-(1) किट और पक्षी (1) Insect and bird (2) शैवाल और कवक (2) Algae and Fungi (3) जीवाणु और पादप (3) Bacteria and plant (4) केचुंआ और घोंघा (4) Earthworm and Snail 124. निम्नलिखित में से कौन परितंत्र में जैव भुरसायन चक्र के नियमन 124. Which of the following play an important role in the maintenance of the biogeochemical cycle in (रखरखाव) में महत्वपूर्ण भूमिका अदा करता है :ecosystem? (1) उत्पादक (2) शाकाहारी (1) Producer (2) Herbivores (3) उपभोक्ता (4) अपमार्जक (4) Decomposer (3) Consumer 125. पादपों के मृदा भाग अवशेप जैसे पत्ती, छाल, पुष्प और मृत जन्त 125. Dead plant remains such as leaves, bark, flowers and dead Remains of animals, including fecal अवशेष, विष्ठा सहित बनाते हैं :matter constitutes :-(1) अपरद को (2) अंशिक पचित अपरद को (1) Detritus (2) Duff (3) ह्यूमस को (4) लिटर को (3) Humus (4) Litter 126. प्राकृतिक वृद्धि दर की आंतरिक गणना के लिए निम्नलिखित 126. For calculating the "intrinsic rate of natural increase". Which of the following parameters are मापदन्डों में से आपेक्षित है :required :-(1) जन्मदर और मृत्युदर (1) Birth Rate and death rate (2) जन्मदर और वहन क्षमता
 - (2) Natality and carrying capacity
 - (3) Population density and death rate
 - (4) Carrying capacity
- 127. Very small organism are rare in polar areas due to their large surface area relative to their volume, these organisms are :-
 - (1) Regulators
- (2) Partial conformers
- (3) Migratory
- (4) Conformers

कुछ समय बाद ठीक हो सकता है यदि हानिकारक प्रभाव रोका गया

- - (3) जनसंख्या घनत्व और मृत्यु दर
 - (4) वहन क्षमता
- 127. अति छोटे जीव ध्रुवीय क्षेत्रों में दुर्लभ है। क्योंकि इनका सतीय क्षेत्रफल आयतन के सापेक्ष बडा है। ये जीव है:-
 - (1) नियामक
- (2) आंशिक संरूपी
- (3) प्रवासी
- (4) संरूपी

TARGET: PRE-MEDICAL 2020/NEET-UG/17-11-2019

128.	In particular climatic co	ndition decomposition rate	LEN 128.	एक निश्चित वातावरणीय दश	ा में अपरदन की दर धीमी होती है	
	is slower if detritus is	-		यदि अपरद है :-		
	(1) Nitrogen			(1) नाइट्रोजन		
	(2) Humus			(2) ह्यूमस		
	(3) Lignin and chitin			(3) लिग्निन और काइटीन		
	(4) Water soluble subs	tance		(4) जल में विलेय पदार्थ		
129.		different species occupying	129.			
		c community is known as:-		के वितरण को जाना जाता है :-		
	(1) Pyramid	(2) Convergence		(1) पिरामिड	(2) अभिसारित	
	(3) Zonation	(4) Stratification		(3) क्षेत्रण	(4) स्तरविन्यास	
130.		grow in abundance in :-	130.	झील में पादप प्लवको की ब	हुतायत वृद्धि होगी :-	
		(2) Limnetic zone		(1) लिटोरल क्षेत्र	-	
	(3) Profundal zone	(4) Benthic zone		(3) प्रोफंडल क्षेत्र	(4) प्रस्तर क्षेत्र	
131.	The biomass energy ava	ailable for consumption to	131.	जैव ऊर्जा जो शाकाहारी जीवं	ों के उपयोग के लिए उपलब्ध है	
	herbivores is called :-	•		कहलाती है :-		
	(1) Secondary product	ivity		(1) द्वितीयक उत्पादकता		
	(2) Net primary productivity			(2) शुद्ध प्राथमिक उत्पादकता		
	(3) Standing crop			(3) खड़ी फसल		
	(4) Gross primary prod	ductivity		(4) कुल प्राथमिक उत्पादकत	Π	
132. The Animal species controlling the Ecosystem		132.	132. जन्तु प्रजाति जो परितंत्र के कार्यो का नियमन करती है :-			
	Functioning is known	as :-		(1) पुरोगामी प्रजाति	(2) कुंजशिला प्रजाति	
	(1) Pioneer species	(2) Key stone species		(1) 3(1.11.11 × 411.11	(८) गुजाराता प्रजाता	
	(3) Taxonomic species	(4) Edge species		(3) वर्गिकी प्रजाति	(4) ऐज प्रजाति	
133.	Maximum contribution	of O ₂ in the Environment	133.	पर्यावरण में आक्सीजन का अ	धिकतम योगदान आता है:-	
	comes from :-			(1) सागर/महासागर से	(2) वन से	
	(1) Ocean	(2) Forest			· /	
	(3) Grassland	(4) Lake		(3) घास मैदान से	` , .	
134.	In an Ecosystem, bacte	eria are considered as :-	134.	परितंत्र में जीवाणुओं को मान	ा गया है :-	
	(1) Microconsumer			(1) लघु उपभोक्ता		
	(2) Macro consumer			(2) दीर्घ उपभोक्ता		
	(3) Primary consumer			(3) प्राथमिक उपभोक्ता		
	(4) Secondary consumer			(4) द्वितीयक उपभोक्ता		
135.	Ecological Pyramid are	e also called :-	135.	परिस्थितिकी पिरामिड को भी	ो कहा जाता है :-	
	(1) Pyramids on Numb	per		(1) संख्या का पिरैमिड		
		II.		C 2/C		

- (2) Eltonian Pyramid
- (3) Tilmen Pyramid
- (4) Charl's Pyramid
- 136. Which of the following are called key industry animals?
 - (1) Autotrophs
- (2) Decomposers
- (3) Herbivores
- (4) Top carnivores

- गें

- (2) इलटन का पिरैमिड
- (3) टिलमेन का पिरैमिड
- (4) चार्ल्स का पिरैमिड
- 136. निम्नलिखित में से किसे कुंजी जन्तु कहाँ जाता है ?
 - (1) उपभोक्ता
- (2) अपघटनकर्ता
- (3) शाकाहारी
- (4) उच्च मांसाहारी

137.	The given pyramid of biomass represented by ecosystem :-	137.	दिया गया जैवभार का पिरैमिड परितंत्र को प्रदर्शित करता है :-
	PC 21		PC 21
	PP 04		PP 04
	(1) Pond (2) Forest		(1) নালান (2) जल
	(3) Tree (4) Grassland		(3) वृक्ष (4) घास मैदान
138.	If producer is a large tree that support a number	138.	यदि उत्पादक एक बडा वृक्ष है। यह शाकाहारी जीवो की एक संख्या
	of herbivores animal which further attacked by		को सर्मथन करता है, जिस पर बाह्रय परजीवी भविष्य में आक्रमण
	ectoparasite the pyramid of number shell be :-		करते है का संख्या का पिरैमिड होगा :-
	(1) Inverted (2) Upright		(1) उल्टा (2) सीधा
	(3) Irregular (4) Spindle		(3) अनियमित (4) धुरी आकार
139.	Amount of biogenetic nutrients present in the	139.	विशिष्ट समय पर अजैविक वातावरण में प्रति ईकाई क्षेत्र में उपस्थित
	abiotic environment per unit area at any time is		बायोजेनेटिक पोषक तत्वों की मात्रा को कहा जाता है?
	called ?		(1) खड़ी गुणवत्ता
	(1) Standing quality		(2) खड़ी फसल
	(2) Standing crop		(3) एन.पी.पी.
	(3) NPP		
	(4) Nutrients immobilization		(4) अचल पोषक
140.	Cattele and goats not browsing on calotropis	140.	कैलोट्रोपिस एक विषेला पादप है इस कारण से पशु या बकरी इसका
	bacques it has poisonous due to:	l	नामा दर कार्वकारिक :

because it has poisonous due to :-

- (1) Cardiac glucosinolates
- (2) Hepatic glucosinolates
- (3) Cardiac glycosides
- (4) Cyanoalanin
- 141. During secondary treatment of sewage, the effluent is passed into settling tank where the flocs are allowed to sediment which is called :-
 - (1) Primary sludge
 - (2) Activated sludge
 - (3) Primary effluent
 - (4) Purified flocs
- 142. Productivity contributed by ocean is _____ but area covered is comparatively____:-
 - (1) High, less
- (2) Low, more
- (3) 10%, 71%
- (4) 50%, 71%
- 143. Insectivores plant can occupy more than one trophic level :-
 - $(1) T_1, T_4$
- (2) T_2 , T_1
- $(3) T_3, T_1$
- $(4) T_1, T_5$

- - (1) हृदय ग्लुकोसिनोलेट
 - (2) हेपेटिक ग्लूकोसिनोलेट
 - (3) हृदय ग्लुकोसाइट
 - (4) सायनोएलीनीन
- 141. द्वितीयक उपचार के दौरान बहि: स्त्राव को नि:सादन सैटलिंग टैंक में भेजते है जहाँ जीवाणु झुंड (फ्लाक्स) उसे अवसाद में परिवर्तित करते है उसे कहते है :-
 - (1) प्राथमिक आंपक
 - (2) सक्रियत आंपक
 - (3) प्राथमिक बहिस्त्राव
 - (4) शुद्ध फ्लॉक्स
- 142. उत्पादकता में समुद्र का योगदान _____ है लेकिन तुलनात्मक रूप कवर (घेरा) किया गया क्षेत्र___ है:-
 - (1) उच्च, निम्न
- (2) निम्न, अधिक
- (3) 10%, 71%
- (4) 50%, 71%
- 143. किटभक्षी पादप एक से अधिक पोषक स्तरों पर रखें जा सकते है :-
 - $(1) T_1, T_4$
- $(2) T_2, T_1$
- $(3) T_3, T_1$
- $(4) T_1, T_5$

				u	
A	L	L	E	N	

		ALLEN		
For which of the following	owing ecosystem	pyramid 144.		
of number can be both s	spindle shape and	inverted:		किते है :-
(1) Grassland ecosyste	em(2) Pond ecosy	ystem	` '	(2) तालाब परितंत्र
(3) Lake ecosystem	(4) Tree ecosys		` ' '	(4) वृक्ष परितंत्र
Natural scavengers are	:-	145.	प्राकृतिक अपमार्जक है :-	
(1) Phytoplankton, Zo-	oplankton		(1) पादप प्लवक, जन्तु प्ल	वक
(2) Insect, Birds			(2) किट, पक्षी	
(3) Bacteria, Fungi			(3) जीवाणु, कवक	
(4) Lion, Tiger			* * *	
Ten Percent law of Ener	rgy transfer in a fe	ood chain 146.	खाद्य श्रृंखला में 10% ऊर्जा	प्रवाह का नियम किसके द्वारा दिया
was given by :-			गया था :-	
(1) Haeckel	(2) Lindeman		(1) हेकल	(2) लिण्डमैन
(3) Elton	(4) Hillman		(3) इल्टन	. ,
In a new habitat which is	s just being coloni	sed which 147.	अगर आवास की बस्ती	अभी बनी है। तो कौन सबसे
will play significant role	in population grov	wth :-	अधिक जनसंख्या वृद्धि में म	ाहत्वपूर्ण है :-
(1) Birth rate	(2) Emigration		(1) जन्म दर	(2) उत्प्रवासन
(3) Migration	(4) Immigration		(3) प्रवासन	(4) आप्रवसान
Humus Formation occi	urs in of	soil :- 148.	ह्यूमस का निर्माण	में होता है :-
(1) A-Horizon	(2) B-Horizon		(1) A-स्तर	(2) B-स्तर
(3) O-Horizon	(4) C-Horizon		(3) O-स्तर	(4) C-स्तर
Resource partitioning is	s an important m	echanism 149.	संसाधन विभाजन एक महत्व	त्रपूर्ण क्रिया विधि है जो बढ़ावा देती
which promote :-			है :-	
(1) Competitive release	e		(1) स्पर्धी मोचन	
(2) Co-Existence			(2) सह अस्तित्व	
(3) Competitive exclus	sion		(3) स्पर्धी अपवर्जन	
(4) Antibiosis			(4) एंटीबायोसिस	
In hydrach successio	on, reed swamp	stage is 150.	स्वच्छ जल अनुक्रमण में जड	ड़ अनूप अवस्था आगे बढ़ाती है :-
preceded by :-			(1) वन समुदाय	
(1) Forest community			(2) गुल्म अवस्था	
_				
	age		* *	
		151		
				<u>। निगेशी</u>
		on		
_		1	* *	•
-			• • • • • • • • • • • • • • • • • • • •	
-				
	_		•	
=		_		
to survive under unfa		ons, and	है:-	८०५० च्याच्याच सम्बद्धाः स्था अश
those con be cotecanie		1	< ·	
these can be categorise			(1) प्रवास करना	(2) निलंबित
these can be categorise (1) Migrate (3) Regulate	(2) Suspend (4) Conform		(1) प्रवास करना(3) नियामक	(2) निलंबित (4) संरूपी
	of number can be both at (1) Grassland ecosystem (3) Lake ecosystem Natural scavengers are (1) Phytoplankton, Zo (2) Insect, Birds (3) Bacteria, Fungi (4) Lion, Tiger Ten Percent law of Enerwas given by:- (1) Haeckel (3) Elton In a new habitat which is will play significant role (1) Birth rate (3) Migration Humus Formation occi (1) A-Horizon (3) O-Horizon Resource partitioning is which promote:- (1) Competitive release (2) Co-Existence (3) Competitive excluse (4) Antibiosis In hydrach succession preceded by:- (1) Forest community (2) Scrub stage (3) Sedage meadow stem (4) Floating stage Nutrient immobilisation (1) Highly resistance to (2) Increase leaching of (3) Is incorporation of (4) Is covalent linking In bacteria, Fungi and of thick walled spores at to survive under unfared.	of number can be both spindle shape and (1) Grassland ecosystem(2) Pond ecosy (3) Lake ecosystem (4) Tree ecosys Natural scavengers are :- (1) Phytoplankton, Zooplankton (2) Insect, Birds (3) Bacteria, Fungi (4) Lion, Tiger Ten Percent law of Energy transfer in a fewas given by :- (1) Haeckel (2) Lindeman (3) Elton (4) Hillman In a new habitat which is just being colonic will play significant role in population grow (1) Birth rate (2) Emigration (3) Migration (4) Immigration Humus Formation occurs in of (1) A-Horizon (2) B-Horizon (3) O-Horizon (4) C-Horizon Resource partitioning is an important mount which promote :- (1) Competitive release (2) Co-Existence (3) Competitive exclusion (4) Antibiosis In hydrach succession, reed swamp preceded by :- (1) Forest community (2) Scrub stage (3) Sedage meadow stage (4) Floating stage Nutrient immobilisation :- (1) Highly resistance to microbial action (2) Increase leaching of nutrients (3) Is incorporation of nutrients in mic (4) Is covalent linking of nutriens with In bacteria, Fungi and lower plants, var of thick walled spores are formed which It to survive under unfavourable conditions (3) Elton (4) Hillman (4) Immigration in the service of the survive under unfavourable conditions (4) Immigration in the service of the survive under unfavourable conditions (5) Increase Incorporation of nutrients with (6) Increase Incorporation of nutrients in mic (7) Increase Incorporation of nutrients with (8) Incorporation of nutrients in mic (9) Increase Incorporation of nutrients with (9) Increase Incorporation of nutrients in mic (9) Increase Incorporation of nutrients with (9) Increase Incorporation of nutrients in mic (9) Increase Incorporation of nutrients with (9) Increase Incorporation of nutrients with (9) Increase Incorporation of nutrients (9) Increase Incorporation of nutrients (9) Increase Incorporation of nutrients (9) Increase	of number can be both spindle shape and inverted: (1) Grassland ecosystem(2) Pond ecosystem (3) Lake ecosystem (4) Tree ecosystem Natural scavengers are:- (1) Phytoplankton, Zooplankton (2) Insect, Birds (3) Bacteria, Fungi (4) Lion, Tiger Ten Percent law of Energy transfer in a food chain was given by:- (1) Haeckel (2) Lindeman (3) Elton (4) Hillman In a new habitat which is just being colonised which will play significant role in population growth:- (1) Birth rate (2) Emigration (3) Migration (4) Immigration Humus Formation occurs in of soil:- (1) A-Horizon (2) B-Horizon (3) O-Horizon (4) C-Horizon Resource partitioning is an important mechanism which promote:- (1) Competitive release (2) Co-Existence (3) Competitive exclusion (4) Antibiosis In hydrach succession, reed swamp stage is preceded by:- (1) Forest community (2) Scrub stage (3) Sedage meadow stage (4) Floating stage Nutrient immobilisation:- (1) Highly resistance to microbial action (2) Increase leaching of nutrients (3) Is incorporation of nutrients in microbe (4) Is covalent linking of nutriens with one other In bacteria, Fungi and lower plants, various kind of thick walled spores are formed which help them to survive under unfavourable conditions, and	For which of the following ecosystem pyramid of number can be both spindle shape and inverted: (1) Grassland ecosystem(2) Pond ecosystem (3) Lake ecosystem (4) Tree ecosystem Natural scavengers are :- (1) Phytoplankton, Zooplankton (2) Insect, Birds (3) Bacteria, Fungi (4) Lion, Tiger Ten Percent law of Energy transfer in a food chain was given by :- (1) Haeckel (2) Lindeman (3) Elton (4) Hillman In a new habitat which is just being colonised which will play significant role in population growth :- (1) Birth rate (2) Emigration (3) Migration (4) Immigration Humus Formation occurs in of soil :- (1) A-Horizon (2) B-Horizon (3) O-Horizon (4) C-Horizon Resource partitioning is an important mechanism which promote :- (1) Competitive release (2) Co-Existence (3) Competitive exclusion (4) Antibiosis In hydrach succession, reed swamp stage is preceded by :- (1) Forest community (2) Scrub stage (3) Sedage meadow stage (4) Floating stage Nutrient immobilisation :- (1) Highly resistance to microbial action (2) Increase leaching of nutrients (3) Is incorporation of nutrients in microbe (4) Is covalent linking of nutrients with one other In bacteria, Fungi and lower plants, various kind of thick walled spores are formed which help them to survive under unfavourable conditions, and

153.	Choose the correct cl		LEN 153.	परिस्थितिक अ	ननुक्रमण के द <u>ौ</u>	ोरान हुए सही परि	रेवर्तन का चयन
	succession :-			करे :-		· ·	
	(1) Total biomass decr	eases		(1) कुल जैवभ	गार में कमी		
	(2) Decomposer also c	hange		(2) अपघटनक	र्ता में परिवर्तन		
	(3) Low degree of dive	ersity		(3) निम्न विवि	त्रंधता		
	(4) Humus content cor	estant		(4) ह्यूमस मात्र	न्ना स्थिर		
154.	Ecology is basically co	oncerned with how many	154.	मूलरूप से पी	रेस्थितिकी जी	वीय संगठन के	कितने स्तरों से
	levels of organisation :			संबंधित है :-			
	(1) Three (2) Two	(3) Four (4) Eight		(1) तीन	(2) दो	(3) चार	(4) आठ
155.	Perma forest condition is	characteristic feature of :-	155.	स्थायी तुषार व	न स्थिति किस	का लक्षण है :-	
	(1) Hot desert biome			(1) गर्म मरूख	यल जीवोम		
	(2) Cold desert biome			(2) ठंडा मरूर	थल जीवोम		
	(3) Savanna biome			(3) सवाना जी	वोम		
	(4) Chaparral biome			(4) चेपरल जी	वोम		
156.	During the past century	, the temperature of earth	156.	पिछली शतार्ब्द	ो के दौरान पृथ्व	त्री के तापमान में व	वृद्धि हुई है :-
	has increased up to :-			(1) 15°C		(2) 33°C	
	(1) 15°C (2) 33°C	(3) 1.6°C (4) 0.6°C		(3) 1.6°C		(4) 0.6°C	
157.	Most hazardous pollutant	of automobile Exhaust is:-	157.	वाहनों के निर्वा	त में सबसे आ	धेक खतरनाक प्रव	रूषक है :-
	(1) Mercury	(2) Copper		(1) पारा		(2) कॉपर	
	(3) Arsenic	(4) Lead		(3) अर्सिनेक		(4) सीसा	
158.	An orchid growing as an	Epiphytes on mango branch	158.	<i>अर्किड</i> जो अधि	ापादप के रूप में	आम की शाखाओं प	पर वृद्धि करती है।
	show what kind of popul	ation interaction ?		किस प्रकार की	समष्टि पारस्परि	क क्रिया का प्रदर्श	न करती है ?
	(1) Amensalism	(2) Commensalism		(1) एमेन्सेलिज	म	(2) सहभोजिता	
	(3) Mutualism	(4) Predation		(3) सहोपकरि	ता	(4) परभक्षण	
159.	Recognizing the dele	terious effect of ozone	159.	ओजोन अवक्षय	ा के हानिकारक	प्रभाव को देखते हु	हुए में एक
	depletion an internation	nal treaty known as		अंतर्रराष्ट्रीय सं	धि पर हस्ताक्षर	हुए जिसे	कहा जाता

्र (1) कनाडा, मॉट्रियल प्रोटोकॉल

(2) ब्रॉजील, क्योटो प्रोटोकॉल

(3) पृथ्वी सम्मेलन, माट्रियल

(4) दक्षिण अफ्रिका, विश्व सम्मेलन

160. मानव द्वारा प्रशांत उष्ण कटिबंधिय द्वीपों पर अवासीय बस्तियाँ बनाने से वहाँ के मूल पक्षियों की _____ से अधिक जातियाँ विलुप्त हो गई है:-

(1) 2000 (2) 7000 (3) 784 (4) 105

TARGET: PRE-MEDICAL 2020/NEET-UG/17-11-2019

(4) 105

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

(1) 2000

was signed at _____ :-

(2) Kyoto protocol, Brazil

(3) Earth summit, Montreal

species of native birds :-

(4) World summit, South Africa

160. Colonisation of tropical pacific Island by humans

have resulted in Extinction of more than ___

(2) 7000 (3) 784

(1) Montreal protocol, canada

- **161.** The Evil Quartet represents the major cause of :-
 - (1) Soil pollution
 - (2) Co-Extinctions
 - (3) Habitat loss and Fragmentation
 - (4) Over Exploitation
- 162. Prime contaminates leading to cultural or accelerated Eutrophication are :-
 - (1) Facal Matter and Paper Fibers
 - (2) Sand and Clay
 - (3) Phosphate and nitrate
 - (4) Nitrate and sulphate
- 163. B.O.D. is connected with
 - (1) Organic matter
- (2) Microbes
- (3) Both
- (4) None
- **164.** In the absence of green house effect the average temperature at Earth's surface would have been :-
 - $(1) -18^{\circ}C$ $(2) 15^{\circ}C$ $(3) 0.6^{\circ}C$ $(4) 1-2^{\circ}C$

- 165. Birds of pond and Birds of Agriculture are area of the same grassland area it belong to which diversity:-
 - (1) α-diversity
 - (2) β- diversity
 - (3) γ-diversity
 - (4) Ecosystem diversity
- 166. Reduction in soil Fertility due to erosion is an example of :-
 - (1) Positive pollution
 - (2) Negative pollution
 - (3) Third pollution
 - (4) Land scape pollution
- **167.** Threat to the indigenous cat fishes in our rivers due to introduction of :-
 - (1) Nile perch
 - (2) Clarias gariepinus
 - (3) Lantana
 - (4) Water hyacinth

- किया गया है।
 - (1) मृदा प्रदूषण
 - (2) सह विलुप्ता
 - (3) आवासीय क्षति तथा विखंडन
 - (4) अतिदोहन
- 162. संवर्ध या त्वरित सुपोषण में मुख्य संदूषक है :-
 - (1) विष्ठा, और पेपर तन्तु
 - (2) रेत और चिकनी मिट्टी
 - (3) फॉस्फोरस और नाइट्रेट
 - (4) नाइट्रेट और सल्फेट
- **163.** B.O.D का सम्बन्ध किससे है :
 - (1) कार्बनिक पदार्थ
- (2) सूक्ष्म जीवाणु
- (3) दोनों
- (4) किसी से भी नहीं
- 164. ग्रीन हाउस प्रभाव की अनुपस्थिति में पृथ्वी का औसतन तापमान हो गया होता :-
 - $(1) -18^{\circ}C$ $(2) 15^{\circ}C$ $(3) 0.6^{\circ}C$ $(4) 1-2^{\circ}C$
- 165. समान क्षेत्र के घास मैदान में तालाब में पक्षी और कृषि क्षेत्र के पक्षी की संख्या किस विविधता को प्रदर्शित करती है:-
 - (1) अल्फा- विविधता का
 - (2) बीटा- विविधता का
 - (3) गामा- विविधता का
 - (4) परितंत्र सेवा का
- 166. मृदा की उर्वरता में अपरदन के कारण कमी उदाहरण है:-
 - (1) धनात्मक प्रदूषण का
 - (2) ऋणात्मक प्रदूषण का
 - (3) तृतीयक प्रदूषण का
 - (4) भूमि के प्रदूषण का
- 167. हमारी नदियों की मूल केटफिश मछली प्रजातियों पर किसके आक्रमण से खतरा उत्पन्न हो गया है :-
 - (1) नाइल पर्च
 - (2) कलैरियस गैरीपाइनस
 - (3) लैटाना
 - (4) जल हायसिंथ

168.	India covers the wor	ALI ld land area of and	. EN 168.	भारत का भुमिक्षेत्र विश्व का वं	हेवल प्रतिशत है । और इसकी
	contributes the global			वैश्विक जातीय विविधता _	
169. 170. 171.	(1) 4%, 8%	(2) 2.4%, 8.1%		(1) 4%, 8%	
	(3) 8.1%, 2.4%	(4) 8%, 4%		(3) 8.1%, 2.4%	(4) 8%, 4%
169.	More solar energy ava	ilable in the tropics, which	169.	उष्ण कटिबंध क्षेत्रों में अधिव	n सौर उर्जा उपलब्ध है, जो
	contributes to pro	oductivity :-		उत्पादन में योगदान देती है :-	
	(1) Lower	(2) Higher		(1) निम्न	(2) उच्च
	(3) Moderate	(4) Constant		(3) मध्य	(4) स्थिर
170.	A renewable Exhausti	ble resource is :-	170.	समाप्य नवीनीकरण संसाधन	है :-
	(1) Mineral	(2) Coal		(1) खनिज	(2) कोयला
	(3) Petroleum			(3) पेट्रोलियम	(4) वन्य जीव
171.		onal education and gene	171.	वन्य जीव पारंपरिक शिक्षा अं	ौर जीन स्त्रोत का संरक्षण है :-
	resources are protected	d in :-		(1) राष्ट्रीय उद्यान	(2) कोर क्षेत्र
	(1) National park	(2) Core zone		•	
	(3) Protected biospher	re (4) Sanctuary		(3) बायोस्फीयर रिजर्व	(4) अभ्यारण
172.	Successful Estabilishme	ent of a species in new area	172.	नये क्षेत्र में जाति का सफल	स्थापित होना कहलाता है:-
	is called as :-			(1) प्रवास	(2) प्रतिक्रिया
	(1) Migration	(2) Reaction		(1) प्रवास	(<i>2)</i> शाताश्रमा
	(3) Ecesis	(4) Germination		(3) आस्थापन	(4) अंकुरण
173.	Which problems that	have come in the wake of	173.	निम्न में से कौन सी कठिनाई	हरित क्रांति के कारण सक्रिय हुई
	green revolution ?			है ?	_
	(1) Waterlogging	(2) Soil salinity		(1) जलाक्रांति	(2) मृदा लवणता
	(3) Irrigation	(4) Both (1) and (2)		(3) सिंचाई	(4) दोनों (1) और (2)
174.	Which of the following	is a secondary pollutant?	174.	निम्नलिखित में से द्वितीयक !	प्रदूषक है ?
	(1) CO	(2) PAN		(1) CO	(2) PAN
	(3) Aerosol	(4) CO, CO, and N ₂ O		(3) एयरोसोल	(4) CO, CO ₂ और N ₂ O
175.		te of Indiahas also	175.	भारत के उत्तर पूर्वी राज्यों में _	का भी वनोन्मूलन में योगदान
	contributed to defores			है :-	•

TARGET: PRE-MEDICAL 2020/NEET-UG/17-11-2019

(1) स्लैश एवं बर्न कृषि

(4) दोनों (1) और (2)

(2) झूम खेती

(3) जे.एफ.एम.

(3) JFM

(1) Slash and burn agriculture

(2) Jhum cultivation

(4) Both (1) and (2)

ALLEN

- **176.** The Most common indicator organism that represent polluted water:-
 - (1) C. Vibrio
 - (2) E. Coli
 - (3) P. typhi
 - (4) Entamoeba histolytica
- 177. Ozone layer located at the height of :-
 - (1) 16-25 k.m.
- (2) 25-50 k.m.
- (3) 5-10 k.m.
- (4) 10-15 k.m.
- **178.** How many bio-geographical regions are present in india:-
 - (1) 10
- (2) 3
- (3) 7
- (4) 14
- **179.** Hot spots could reduce the ongoing mass extinction by almost :-
 - (1) 20%
- (2) 25%
- (3) 35%
- (4) 30%
- **180.** The E-waste represent :-
 - (1) Municipal solid
 - (2) Is produced in developed countries and exported to developing countries
 - (3) Are buried in land fils or incinerated
 - (4) Does not involve recycling

- 176. सबसे समान्य सूचक जीव जो प्रदूषित जल में उपस्थित है:-
 - (1) सी. विव्रियो
 - (2) ई. कोलाई
 - (3) पी. टाइफी
 - (4) एटामोइबा हिस्टोलिटिका
- 177. ओजोन परत कितनी ऊँचाई पर स्थित है :-
 - (1) 16-25 k.m.
- (2) 25-50 k.m.
- (3) 5-10 k.m.
- (4) 10-15 k.m.
- 178. भारत में कितने जैव भूगोलिक क्षेत्र है :-
 - (1) 10
- (2) 3

(3) 7

- (4) 14
- 179. हाट स्पॉट की विशेष सुरक्षा द्वारा करीब करीब सामूहिक विलोपन को कम किया जा सकता है:-
 - (1) 20%
- (2) 25%
- (3) 35%
- (4) 30%
- 180. ई-वेस्टस प्रदर्शित करते है:-
 - (1) नगर पालिका के ठोस अपशिष्ट
 - (2) विकसित देशों में उत्पादित और विकासशील देशों में निर्यात
 - (3) लैंडफिल्स में गाड़ दिया जाता है या जलाकर भस्म कर दिया जाता है
 - (4) पुन: चक्रण में शामिल नहीं है

Distance Learning Programmes (Session-2019-20) ALL INDIA TEST SERIES

ABOUT FEEDBACK SYSTEM

Dear Student,

We request you to provide feedback for the test series till you have appeared. Kindly answer the questions provided on the reverse of paper with honesty and sincerely.

Although our test series questions are extremely well designed and are able to improve speed, accuracy & developing examination temperament, yet we are always open to improvements.

If you have not prepared well for today's test and if you are not feeling good today, then do not blame test series for it.

We strive to prepare you for all kinds of situations and facing variations in paper, as this can also happen in Main exam. It is important for you to concentrate on your rank.

Go through the feedback form thoroughly and answer with complete loyalty. Darken your response (2, 1, 0) in OMR sheet corresponding to :

OMF	sheet corresponding to :		
		Questions	
1.	How convenient it was for you to enrol	l in our Distance Learning Course throug	h online mode?
	[2] Very Convenient	[1] Average	[0] Difficult
2.	How do you find location of Test Center	?	
	[2] Approachable from all part of city	[1] Average Approachable	[0] Difficult to reach
3.	Test Timing:		
	[2] Comfortable	[1] Average	[0] Need to be change
4.	Do you feel Test starts on time :		
	[2] Yes Always	[1] Some time delayed	[0] Always delay
5.	The level of test paper [meet all the re	equirement of competitive examination]	
	[2] Good standard	[1] Average	[0] Below average
6.	Number of mistake in test papers :		
	[2] Negligible	[1] Are very less	[0] Too High
7.	Are you satisfied with result analysis $\ref{eq:condition}$		
	[2] Outstanding	[1] Average	[0] Below average
8.	Do you feel our Test Series is able to imp	prove speed, accuracy & developing exan	nination temperament?
	[2] Yes I feel	[1] Partly	[0] Not at all
9.	Response from Allen on email / teleph	onically	
	[2] Always good and prompt	[1] Some time delay	[0] Not satisfactory
10.	Response at test center		
	[2] Satisfactory	[1] Partly Satisfactory	[0] Not Good

LEADER TEST SERIES/JOINT PACKAGE COURSE/NEET-UG/17-11-2019

Read carefully the following instructions:

- 1. Each candidate must show on demand his/her Allen ID Card to the Invigilator.
- 2. No candidate, without special permission of the Invigilator, would leave his/her seat.
- 3. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty.
- 4. Use of Electronic/Manual Calculator is prohibited.
- 5. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
- 6. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 7. The candidates will write the Correct Name and Form No. in the Test Booklet/Answer Sheet.

निम्नलिखित निर्देश ध्यान से पढें :

- 1. पूछे जाने पर प्रत्येक परीक्षार्थी, निरीक्षक को अपना एलन पहचान पत्र दिखाए।
- 2. निरीक्षक की विशेष अनुमित के बिना कोई परीक्षार्थी अपना स्थान न छोड़े।
- 3. कार्यरत निरीक्षक को अपना उत्तर-पत्र दिए बिना कोई परीक्षार्थी परीक्षा हॉल नहीं छोड़े।
- 4. इलेक्ट्रॉनिक/हस्तचिलत परिकलक का उपयोग वर्जित है।
- 5. परीक्षा हॉल में आचरण के लिए परीक्षार्थी परीक्षा के सभी नियमों एवं विनियमों द्वारा नियमित है। अनुचित साधन के सभी मामलों का फैसला परीक्षा के नियमों एवं विनियमों के अनुसार होगा।
- 6. किसी हालत में परीक्षा पुस्तिका और उत्तर-पत्र का कोई भाग अलग न करें।
- 7. परीक्षा पुस्तिका/उत्तर-पत्र में परीक्षार्थी अपना सही नाम व फॉर्म नम्बर लिखें।

Corporate Office: ALLEN CAREER INSTITUTE, "SANKALP", CP-6, Indra Vihar, Kota (Rajasthan)-324005

+91-744-2757575

dlp@allen.ac.in www.dlp.allen.ac.in, dsat.allen.ac.in

TARGET: PRE-MEDICAL 2020/NEET-UG/17-11-2019

LTS / Page 44/44 0999DMD310319012

DISTANCE LEARNING PROGRAMME

(Academic Session: 2019 - 2020)

NEET(UG) MINOR TEST # 11 17-11-2019

PRE-MEDICAL: LEADER TEST SERIES / JOINT PACKAGE COURSE

Test Type : Unit Test # 09

ANSWER KEY																				
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	3	3	2	3	4	2	4	3	2	1	2	1	3	3	1	3	3	1	4	1
Que.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	3	1	1	1	2	2	2	2	4	1	2	2	4	3	4	3	3	2	3	1
Que.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	1	4	4	3	3	4	3	4	4	1	4	2	2	4	2	3	2	2	4	2
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	1	2	2	3	3	2	3	1	3	2	1	1	3	4	2	2	4	2	3	4
Que.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	2	2	2	1	1	3	1	2	1	2	2	1	2	2	2	3	2	3	3	3
Que.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans.	1	2	1	2	1	1	4	3	2	1	3	3	4	2	3	2	4	2	2	1
Que.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
Ans.	4	1	4	4	1	1	4	3	4	2	2	2	2	1	2	3	1	1	1	3
Que.	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
Ans.	2	2	3	4	2	2	4	1	2	4	3	2	2	3	2	4	4	2	1	1
Que.	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans.	3	3	3	1	2	2	2	2	2	4	3	3	4	2	4	2	1	1	4	2

HINT - SHEET

1. Energy is released in a process when total binding energy (BE) of the nucleus is increased or we can say when total BE of products is more than the reactants. By calculation we can see that only in case of option (3), this happens.

Given, $W \rightarrow 2Y$

BE of reactants = $120 \times 7.5 = 900 \text{ MeV}$ and BE of products = $90 \times 8 + 60 \times 8.5 = 1230 \text{ MeV}$ i.e., Be of products > BE of reactants.

2. $v_0 = 4 \times 10^{15}$

$$\lambda_0 = \frac{c}{v_0} = \frac{3 \times 10^8}{4 \times 10^{15}} \text{m} = 750 \text{Å}$$

$$\phi = \frac{12400}{\lambda_0} eV = 16.5 eV$$

3. $E_{total} = 160 J$,

$$P.E._{max} = E_{total} = 160 J$$

$$KE_{max} = \frac{1}{2}Ka^2 = \frac{1}{2} \times 2 \times 10^6 \times (0.01)^2 = 100 \text{ J}$$

- 4. $2\pi r = n\lambda \Rightarrow n = \frac{2\pi r}{\lambda} = \frac{2 \times 3.14 \times 5.3 \times 10^{-11}}{1.1 \times 10^{-10}} = 3$
- 5. Minimum wavelength of continuous X-ray spectrum is

 λ_{min} (Å) = $\frac{12375}{E(eV)} = \frac{12375}{80 \times 10^3} \approx 0.155$

here energy of the incident electrons 80 KeV is more than ionization energy of k-shell electrons is 72.5 KeV. So characteristics X-ray spectrum will also be obtained because energy of incident electron is enough to knock out the electron from K or L shells.

6. Activity of a radioactive substance,

$$R = \lambda N :: \lambda = \frac{R}{N}$$

Here $R = N_2$ particles per second, $N = N_1$

$$\therefore \quad \lambda = \frac{N_2}{N_1}$$

7.
$$\frac{hc}{\lambda} = W_0 + \frac{1}{2}mv_{\text{max}}^2$$

Assuming W_0 to be negligible in comparison to $\frac{hc}{\lambda}$

i.e.
$$mv_{max}^2 \propto \frac{1}{\lambda} \implies v_{max} \propto \frac{1}{\sqrt{\lambda}}$$

$$F_R = \sqrt{3} F = \sqrt{3} \left[\frac{GM^2}{(2R)^2} \right] = \frac{\sqrt{3} GM^2}{4R^2}$$

9.
$$\Delta \phi = 10\pi t + \frac{\pi}{3} - \left(8\pi t + \frac{\pi}{4}\right) = 2\pi t + \frac{\pi}{12}$$

 $t = 0.5 \implies \Delta \phi = \pi + \frac{\pi}{12} = \frac{13}{12}\pi$

10. Let the nucleus is
$$_{z}X^{A}$$
. $_{b}$ decay is represented as $_{z}X^{A} \rightarrow _{z-1}X^{A} + _{1}e^{o} + n + Q_{2}$
∴ $Q_{2} = [m_{n}(_{z}X^{A})] - m_{n} (_{z-1}y^{A}) - m_{e}]c^{2}$
 $= [m_{n}(_{z}X^{A}) - zm_{e} - m_{n} (_{z-1}Y^{A}) - (z-1) me - 2m_{e}]c^{2}$
 $= [m(_{z}X^{A}) - m(_{z-1}Y^{A}) - 2m_{e}]c^{2} = (M_{x} - M_{y} - 2m_{e})c^{2}$
β- decay is represented as $= _{z}X^{A} \rightarrow _{z+1}A^{Y} + _{-1}e^{0} + _{v}^{-} + α_{1}$
 $Q_{1} = [m_{n}(_{z}X^{A})] - m_{n} (_{z+1}Y^{A}) - m_{e}]c^{2}$
 $= [m_{n}(_{z}X^{A}) - zm_{e} - m_{n} (_{z+1}Y^{A}) - (z+1) me]c^{2}$

11.
$$\vec{F}_{R} = \frac{Gm^{2}}{\left(\frac{a}{2}\right)^{2}}\hat{i} + \frac{Gm^{2}}{(2a)^{2}}\hat{j}$$
 $m + (0, 2a)$

$$= \frac{Gm^{2}}{a^{2}}\left(4\hat{i} + \frac{1}{4}\hat{j}\right) \quad (0, 0)$$

= $[m(_{z}X^{A}) - m(_{z-1}Y^{A})]c^{2} = (M_{x}-M_{y})c^{2}$

12.
$$\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_3^3} \right)$$

$$\Rightarrow \frac{1}{6561} = R(1)^2 \left[\frac{1}{2^2} - \frac{1}{3^2} \right] \text{ and } \frac{1}{\lambda} = R(2)^2 \left[\frac{1}{2^2} - \frac{1}{4^2} \right]$$
Therefore $\lambda = 1215\text{\AA}$

13.
$$eV_{0_1} = \frac{hc}{\lambda_1} - \phi \implies 3eV_{0_1} = \frac{hc}{\lambda_2} - \phi$$

$$\frac{3}{1} = \frac{\frac{hc}{\lambda_2} - \phi}{\frac{hc}{\lambda_1} - \phi} \qquad \Rightarrow \quad \frac{3hc}{\lambda_1} - 3\phi = \frac{hc}{\lambda_2} - \phi$$

$$\frac{3hc}{\lambda_1} - \frac{hc}{\lambda_2} = 2\phi \quad \Rightarrow \quad \phi = \frac{hc}{2\lambda_1\lambda_2} (3\lambda_2 - \lambda_1)$$

14.
$$\frac{}{m}$$
 $\frac{}{d}$ $\frac{}{m}$ 50% mass transfer $F = \frac{Gm^2}{d^2}$ $\frac{}{m} - \frac{m}{2}$ $d + \frac{d}{2}$ $m + \frac{m}{2}$ $\frac{m}{2}$ $\frac{3m}{2}$

$$F' = \frac{G\left(\frac{m}{2}\right)\!\!\left(\frac{3m}{2}\right)}{\left(\frac{3}{2}d\right)^2} \Rightarrow F' = \frac{F}{3}$$

16.
$$x = a \sin^3 \omega t$$

$$= a \left[\frac{3}{4} \sin \omega t - \frac{\sin 3\omega t}{4} \right]$$

$$x = \frac{3a}{4} \sin \omega t - \frac{a}{4} \sin 3\omega t$$
So periodic but no SHM

17. Number of lines in absorption spectrum

$$= (n-1) \implies 5 = n-1 \implies n = 6$$

... Number of bright lines in the emission spectrum

$$=\frac{n(n-1)}{2}=\frac{6(6-1)}{2}=15$$

- 18. ${}_{92}X^{235} \xrightarrow{\alpha} {}_{90}X^{231} \xrightarrow{\beta^-} {}_{91}X^{231}$ Therefore, one alpha and one electron are emitted.
- 19. K = 2

$$T = 2\pi\sqrt{\frac{m}{K}} \implies T = 2\pi\sqrt{\frac{2}{2}} \implies T = 2\pi$$

20. Active fraction

(No. of active + No. of decay) nuclei
$$\frac{1}{2^{1/\text{Th}}} = \frac{1}{1+7} = \frac{1}{8} = \frac{1}{2^3}$$
t = 3 Th = 3 × 1.4 × 9 yr = 4.2 × 10⁹ yr

No. of active nuclei

21. By Moseley's low
$$\sqrt{v} = a (Z - b)$$
 comparing with eqn of parabola, $y^2 = 4ax$

22. By using $\lambda = \frac{h}{\sqrt{2mE}}$ $E = 10^{-32} \text{ J} = \text{constant for both particles}.$ Hence $\lambda \propto \frac{1}{\sqrt{m}}$

Since $m_p > m_e$ so $\lambda_p < \lambda_e$

23. Potential due to ring at its axis point

$$\bigcap_{X}^{M,R}$$
 Total potential at P

$$V_{P} = -\frac{GM}{\sqrt{R^{2} + x^{2}}} V = \frac{-GM}{\sqrt{R^{2} + R^{2}}} + \frac{-G(2M)}{\sqrt{4R^{2} + R^{2}}}$$
$$= \frac{-GM}{\sqrt{2}R} - \frac{G(2M)}{\sqrt{5}R}$$
$$= -\frac{GM}{R} \left(\frac{1}{\sqrt{2}} + \frac{2}{\sqrt{5}}\right)$$

24.
$$\lambda_{\text{neutron}} \propto \frac{1}{\sqrt{T}} \Rightarrow \frac{\lambda_1}{\lambda_2} = \sqrt{\frac{T_2}{T_1}}$$

$$\Rightarrow \frac{\lambda}{\lambda_2} = \sqrt{\frac{(273 + 927)}{(273 + 27)}} = \sqrt{\frac{1200}{300}} = 2 \Rightarrow \lambda_2 = \frac{\lambda}{2}$$

26. The electrostatic P.E. is zero when the electron and proton are far apart from each other. Work done in pulling electronand proton far away from each other

$$W = E_f - E_i = 0 - E_i = -\left(-\frac{13.6}{n^2}eV\right)$$
$$\Rightarrow W = \frac{13.6}{(2)^2} \times 1.6 \times 10^{-19} \text{ J} = 3.4 \times 1.6 \times 10^{-19} \text{ J}$$

- 27. β -particle carries one unit of negative charge and α -particle carries 2 units of positive charge and γ -photon carries no charge, therefore electronic energy levels of the atom changes for α and β decay, but not for γ -decay.
- **28.** On applying constant force there is no changing in time period force can change MP only
- 29. After removing one electron from helium atom it will become hydrogen like atom.

$$\therefore$$
 E = 24.6 + (13.6) (2)² = 79 eV

30. K.E acquired by the electron $K = eV = 20 \times 10^3 eV$ & the energy of photon $E = eV = 0.05 \times 20 \times 10^3 eV = 10^3 eV$

thus,
$$\frac{hc}{\lambda} = 10^3 \text{ eV}$$

$$\lambda = \frac{hc}{10^3 \text{ eV}} = \frac{1240}{10^3} \text{ nm} = 1.24 \text{ nm}$$

31. Energy of the skylab in the first orbit is

$$-\frac{GMm}{2(2R)} = -\frac{GMm}{4R}$$

Total energy required to place the skylab into the orbit of radius 2R from the surface of earth is

$$-\frac{GMm}{4R} - \left(-\frac{GMm}{R}\right) = \frac{3GMm}{4R}$$

$$= \frac{3gR^2m}{4R} = \frac{3}{4}mgR$$

Energy of the skylab in the second orbit = -(GMm)/6R. Energy needed to shift the skylab from the first orbit to the second orbit is

$$-\frac{GMm}{4R} - \frac{GMm}{6R} = \frac{GMm}{R} \times \frac{2}{24} = \frac{mgR}{12}$$

32. Stopping potential equals to maximum kinetic energy. Since stopping potential is varying linearly with the frequency. Therefore max. KE for both the metals also vary linearly with frequency.

33. Energy =
$$\frac{1}{2}KA^2 = \frac{1}{2}m\omega^2A^2$$

$$=\frac{1}{2}m\left\{\sqrt{\frac{g}{L}}\right\}^2A^2$$

$$\left\{ \omega = \frac{2\pi}{T} = \frac{2\pi}{2\pi\sqrt{\frac{L}{g}}} = \sqrt{\frac{g}{L}} \right\}$$

Energy =
$$\frac{\text{mgA}^2}{2\text{L}}$$
 = E

(a)
$$E' = \frac{mgA^2}{2(2L)} = \frac{E}{2}$$

(b)
$$E' = \frac{mg(2A)^2}{2L} = 4\left[\frac{mgA^2}{2L}\right] = 4E$$

35. By conservation of momentum both particles must have same magnetic of momentum and

$$\therefore \ \lambda_{\rm D} = \frac{\rm h}{\rm P} \ \text{so same } \lambda_{\rm D}$$

 V_{at} Surface = V_{due} to point mass + V_{due} to shell

$$V_{\text{surface}} = \left(\frac{-Gm}{R}\right) + \left(\frac{-G3m}{R}\right) = \frac{-4Gm}{R}$$

37.
$$1 - Df = 0.9 = e^{-\lambda(5)}$$
 (1)

$$1 - \frac{19}{100} = 0.81 = e^{-\lambda(t)}$$

or $e^{-\lambda t} = 0.81 = (0.9)^2$ (2)
from eqn. (1) and eqn. (2)

from eqn. (1) and eqn. (
$$e^{-\lambda t} = (e^{-5\lambda})^2 = e^{-10\lambda}$$

$$-\lambda t = -10\lambda$$

$$t = 10$$
 year

38.
$$E = \frac{1240}{71 \times 10^{-3}} \frac{\text{eVnm}}{\text{nm}} = 17.5 \text{ keV}$$

$$E_{K} - E_{L} = 17.5 \text{ keV}$$

 $E_{L} = E_{K} - 17.5 \text{ keV}$
 $= 23.32 - 17.5 \text{ keV} = 5.82 \text{ keV}$

39.
$$V = \frac{50}{100} V_e = \frac{1}{2} \sqrt{\frac{2GM}{R}}$$

Apply energy conservation

$$\Rightarrow -\frac{GMm}{R} + \frac{1}{2}mV^2 = -\frac{GMm}{(R+h)}$$

$$v^2 = \frac{2GM}{R} - \frac{2GM}{R+h}$$

$$\frac{1}{4} \cdot \frac{2GM}{R} = 2GM \left(\frac{1}{R} - \frac{1}{R+h} \right)$$

$$\therefore \quad \frac{1}{4R} = \frac{h}{R(R+h)} \quad \therefore \quad R+h = 4h \implies h = \frac{R}{3}$$

40. The work function has no effect on current so long as $hv > V_0$. The photoelectric current is proportional to the intensity of light. Since there is no change in the intensity of light, therefore $I_1 = I_2$.

41.
$$E(t) = \frac{1}{2}kA^2e^{-bt/m}$$

$$\frac{1}{2} \times \frac{1}{2} kA^2 = \frac{1}{2} kA^2 e^{-bt/m}$$

$$\frac{1}{2} = e^{-bt/m}$$

$$e^{bt/m} = 2$$

$$\frac{bt}{m} = \ln 2$$

$$\frac{bt}{m} = 2.303 \log_{10} 2$$

$$\frac{40}{200}$$
t = 0.693 \Rightarrow t = 0.693 × 5 = 3.46s

42. Minimum $\lambda \Rightarrow$ series limit

Lyman
$$\Rightarrow \frac{1}{\lambda_1} = R\left(1 - \frac{1}{\infty}\right) \& \frac{1}{\lambda_2} = R\left(\frac{1}{4} - \frac{1}{\infty}\right)$$

$$\frac{\lambda_1}{\lambda_2} = \frac{1}{4}$$

- Q = (1.002 + 1.004 1.001 1.003) (931.5) MeV= 1.863 MeV
- 44. Factual theory based Q.
- 45. From the given figure, it is clear that slope of curve A is greater than that of curve B. So rate of decay is faster for A than that of B.

We know that $\left(\frac{dN}{dt}\right) \propto \lambda$, at any instant of time

hence we can say that $\lambda_A > \lambda_B$. At point P shown in the diagram the two curve intersect. Hence at point P, rate of decay for both A and B is the same.

- 91. NCERT Pg. # 221, Para-13.2
- NCERT Pg. # 234 92.
- 102. NCERT Pg. # 227
- 103. NCERT Pg. # 231
- 107. NCERT Pg. # 227, Para-13.2
- **109.** NCERT Pg. # 230
- **111.** NCERT Pg. # 261, Para-15.1.2
- 114. NCERT Pg. # 232, table- 13.1
- 115. NCERT Pg. # 266
- 117. NCERT Pg. # 254, Para-14.7.1-14.7.2
- 119. NCERT Pg. # 255
- 121. NCERT Pg. # 263
- 125. NCERT Pg. # 243, Para-14.3
- 128. NCERT Pg. # 244
- 129. NCERT Pg. # 242, Para-14.1
- 130. NCERT Pg. # 243, Para-14.2
- **137.** NCERT Pg. # 248 **140.** NCERT Pg. # 234
- 144. NCERT Pg. # 249
- 147. NCERT Pg. # 229
- 149. NCERT Pg. # 235
- 150. NCERT Pg. # 252
- **152.** NCERT Pg. # 225
- **154.** NCERT Pg. # 220
- 156. NCERT Pg. # 281
- **159.** NCERT Pg. # 283
- **160.** NCERT Pg. # 263
- **161.** NCERT Pg. # 264
- **162.** NCERT Pg. # 277
- **164.** NCERT Pg. # 281 168. NCERT Pg. # 261
- **169.** NCERT Pg. # 262
- 173. NCERT Pg. # 279
- 175. NCERT Pg. # 283 179. NCERT Pg. # 266
- **180.** NCERT Pg. # 279