DPP No: 22

Maximum Time 50 Min

SYLLABUS: Solution

SYLI	LABUS : Solution									
1.	If P_0 and P are the vapour pressures of a solvent and its solution respectively and N_1 and N_2 are the mole fractions of the solvent and non-volatile solute respectively, then correct relation is :									
	$(A) P = P_0 N_2$	(B) $P = P_0 N_1$	(C) $P_0 = PN_1$	(D) $P = P_0(N_1/N_2)$						
2.	The vapour pressure lowering caused by the addition of 100 g of sucrose (molecular mass = 342) to 1000 g of water if the vapour pressure of pure water at 25°C is 23.8 mm Hg									
	(A) 1.25 mm Hg	(B) 0.125 mm Hg	(C) 1.15 mm Hg	(D) 00.12 mm Hg						
3.	Relative decrease in vapour pressure of an aqueous NaCl is 0.167. Number of moles of NaCl present in 180g of $\rm H_2O$ is :									
	(A) 2 mol	(B) 1 mol	(C) 3 mol	(D) 4 mol						
4.	In an experiment, 1g of a non-volatile solute was dissolved in 100g of acetone (mol. mass = 58) at 298K. The vapour pressure of the solution was found to be 192.5 mm Hg. The molecular weight of the solute is (vapour pressure of acetone = 195 mm Hg)									
	(A) 25.24	(B) 35.24	(C) 44.66	(D) 55.24						
5.	The vapour pressure of pure benzene, C ₆ H ₆ at 50°C is 268 Torr. How many moles volatile solute per mol of benzene is required to prepare a solution of benzene having a pressure of 167 Torr at 50°C?									
	(A) 0.377	(B) 0.605	(C) 0.623	(D) 0.395						
6.	The relative loweri	The relative lowering in vapour pressure is								
		1								
	(A) $\propto X_{\text{solute}}$	(B) $\propto \frac{1}{X_{\text{solute}}}$	$(C) = X_{solute}$	(D) ∞ m						
7.	At a constant temperature, ∆S will be maximum for which of the following processes :									
	(A) Vaporisation of a pure solvent									
	(B) Vaporisation of solvent from a solution containing nonvolatile and nonelectrolytic solute in it									
	(C) Vaporisation of solvent from a solution containing nonvolatile but electrolytic solute in it									
	(D) Entropy change will be same in all the above cases									
9.	The elevation of boiling point method is used for the determination of molecular weight of									
	(A) Non-volatile and soluble solute (B) Non-volatile and insoluble solute									
	(C) Volatile and soluble solute (D) Volatile and insoluble solute									
	Which statement is correct for the boiling point of solvent containing a dissolved solid substance									
	(A) Boiling point of	the liquid is depresse	ed							
	(B) Boiling point of	(B) Boiling point of the liquid is elevated								
	(C) There is no eff	(C) There is no effect on the boiling point								

(D) The change depends upon the polarity of the liquid

20.	The osmotic pressure of 1 m solution at 27°C is								
	(A) 0.3	(B) 0.2	(C) 0.1	(D) 0.4					
13.	Osmotic pressure of blood is 7.40 atm at 27°C. Number of moles of glucose to be used per for an intravenous injection that is to have the same osmotic pressure as blood is:								
19.	, 2 0	0 1 2	L 1 0						
	10 g sucrose (P ₃) are dissolved in 250 mL of water is : (A) P ₁ > P ₂ > P ₃ (B) P ₃ > P ₁ > P ₂ (C) P ₂ > P ₁ > P ₃ (D) P ₂ > P ₃ > P ₁								
18. The relationship between osmotic pressure at 273 K when 10 g glucose (P ₁) ,10 g									
	(C) 0.5 M BaCl ₂ solu	ution	(D) 0.5 M solution benzoic acid in benzene						
	(A) 0.5 M NaCl solut	ion	(B) 0.5 M sugar solution						
17. 0.5 M solution of urea is isotonic with									
	(D) None is correct s								
	(C) Both are correct								
		ea-water is done by re							
		ed by semipermeable	membrane.						
16.	Select correct staten	nent :							
	(A) 0.186	(B) 0.512	(C) $\frac{0.512}{1.86}$	(D) 0.0512					
15.	An aqueous solution freezes at - 0.186° C (k_f = 1.86° ; k_b = 0.512). What is the elevation boiling point								
	(A) -1.86°C	(B) -0.93°C	(C) -0.093°C	(D) 0.93°C					
14.	Molal depression connon-electrolyte in wa		6°C. The freezing poin	t of a 0.05 molal solution of a					
	(D) 0.075 M CuSO ₄	> 0.05 M NaNO ₃ > 0.1	40 M sucrose > 0.04 N	∕I BaCl₂					
	KNO ₃								
	J								
	(A) 0.05 M KNO ₃ > 0.04 M CaCl ₂ > 0.140 M sugar > 0.075 M CuSO ₄ (B) 0.04 M BaCl ₂ > 0.140 M sucrose > 0.075 M CuSO ₄ > 0.05 M KNO ₃								
13.	Which of the following has been arranged in order of decreasing freezing point?								
40	(C) Reducing specifi		(D) Lowering in freezing point						
	(A) Lowering in boiling		(B) Reducing viscosity						
12.	results in	NEW COMMAND	dded to water in the radiators of cars during winters. It						
	(C) Urea		(D) Glucose						
	(A) Potassium sulph	ate	(B) Sodium chloride						
11.	Which of the following 0.1 M aqueous solutions will have the lowest freezing point								
	(A) K ₃ [Fe(CN) ₆]	$(K_b = 0.52^{\circ} \text{ mol}^{-1} \text{ kg}) :$ (B) Fe(CN) ₂	(C) K ₄ [Fe(CN) ₆]	(D) Fe(CN).					

A complex of iron and cyanide ions is 100% ionised at 1m (molal). If its elevation in b.p. is 2.08.

10.

21.	Assuming each salt to be 90% dissociated which of the following will have highest osmotic pressure-													
	(A) Decinormal $Al_2(SO_4)_3$													
	(B) Decinormal BaCl ₂													
	(C) Decinormal Na ₂ SO ₄													
	(D) A solution obtained by mixing equal volumes of (2) and (3) and filtering													
22.	triphe	The amount of benzene that will separate out (in grams) if a solution containing 7.32 g of triphenylmethane in 1000 g of benzene is cooled to a temperature which is 0.2°C below the freezing point of benzene?												
	(K _f = 5.12 K-Kg/mol)													
23. If relative decrease in vapour pressure is 0.4 for a solution containing 1 mol NaCl in 3 NaCl is % ionised.									Cl in 3 m	ol H ₂ O,				
	(A) 60%			(B) 50	(B) 50%		(C) 10	(C) 100%		(D) 40	(D) 40%			
24. A solute'S' undergoes a reversible trimerization when dissolved in a certain solvent. The box point elevation of its 0.1 molal solution was found to be identical to the boiling point elevation case of a 0.08 molal solution of a solute which neither undergoes association nor dissociate To what percent had the solute 'S' undergone trimerization?									ation in					
	(A) 30%			(B) 40%		(C) 50	(C) 50%		(D) 60%					
25.	A solution of x moles of sucrose in 100 grams of water freezes at -0.2° C. As ice separates the freezing point goes down to -0.25° C. How many grams of ice would have separated?													
	(A) 18 grams			(B) 20	(B) 20 grams		(C) 2	(C) 25 grams		(D) 23 grams				
						ANSW	ER KE	Y						
						ANSW	ER KE	Y						
1.	(B)	2.	(B)	3.	(B)	4.	(C)	5.	(B)	6.	(C)	7.	(A)	
8.	(A)	9.	(B)	10.	(A)	11.	(A)	12.	(D)	13.	(A)	14.	(C)	
15.	(D)	16.	(C)	1/. 24	(R)	18. 25	(C)	19.	(A)	20.	(R)	21.	(A)	
22.	232	2 3.	(0)	24.	(A)	2 5.	(D)							