

Table of Contents

QUADRATIC EQUATION

€>	Theory	2
\clubsuit	Solved examples	6
Ø	Exercise - 1 : Basic Objective Questions	12
¢	Exercise - 2 : Previous Year JEE Mains Questions	18
Ø	Exercise - 3 : Advanced Objective Questions	21
¢	Exercise - 4 : Previous Year JEE Advanced Questions	28
\clubsuit	Answer Key	33

QUADRATIC EQUATION

1. QUADRATIC EXPRESSION

The general form of a quadratic expression in x is,

 $f(\mathbf{x}) = \mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c}$, where $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbf{R}$ & $\mathbf{a} \neq \mathbf{0}$.

and general form of a quadratic equation in x is,

 $ax^2 + bx + c = 0$, where $a, b, c \in \mathbb{R}$ & $a \neq 0$.

2. ROOTS OF QUADRATIC EQUATION

(a) The solution of the quadratic equation,

$$ax^2 + bx + c = 0$$
 is given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

The expression $D = b^2 - 4ac$ is called the discriminant of the quadratic equation.

(b) If $\alpha \& \beta$ are the roots of the quadratic equation

 $ax^{2} + bx + c = 0$, then ;

(i)
$$\alpha + \beta = -b/a$$
 (ii) $\alpha \beta = c/a$

- (iii) $|\alpha \beta| = \frac{\sqrt{D}}{|a|}$.
- (c) A quadratic equation whose roots are $\alpha \& \beta$ is $(x \alpha) (x \beta) = 0$ i.e.

$$x^2 - (\alpha + \beta) x + \alpha \beta = 0$$
 i.e

 x^2 – (sum of roots) x + product of roots = 0.

Note...

$$y = (ax^{2} + bx + c) \equiv a(x - \alpha) (x - \beta)$$

 $=a\left(x+\frac{b}{2a}\right)^2-\frac{D}{4a}$

3. NATURE OF ROOTS

- (a) Consider the quadratic equation $ax^2 + bx + c = 0$ where a, b, c $\in \mathbb{R}$ & a $\neq 0$ then;
 - (i) $D > 0 \iff$ roots are real & distinct (unequal).
 - (ii) $D = 0 \iff$ roots are real & coincident (equal).
 - (iii) $D < 0 \iff$ roots are imaginary.
 - (iv) If p + i q is one root of a quadratic equation, then the other must be the conjugate p - i q &

vice versa. $(p, q \in R \& i = \sqrt{-1})$.

- (b) Consider the quadratic equation $ax^2 + bx + c = 0$ where a, b, c $\in Q$ & a $\neq 0$ then;
 - (i) If D > 0 & is a perfect square, then roots are rational & unequal.
 - (ii) If $\alpha = p + \sqrt{q}$ is one root in this case, (where p is rational & \sqrt{q} is a surd) then the other root must be the conjugate of it i.e. $\beta = p - \sqrt{q}$ & vice versa.

Note ...

Remember that a quadratic equation cannot have three different roots & if it has, it becomes an identity.

4. GRAPH OF QUADRATIC EXPRESSION

Consider the quadratic expression, $y = ax^2 + bx + c$, $a \neq 0$ & a, b, $c \in R$ then ;

- (i) The graph between x, y is always a parabola.
 If a > 0 then the shape of the parabola is concave upwards & if a < 0 then the shape of the parabola is concave downwards.
- (ii) $y > 0 \forall x \in R$, only if a > 0 & D < 0
- (iii) $y < 0 \forall x \in R$, only if a < 0 & D < 0

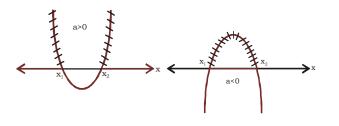
5. SOLUTION OF QUADRATIC INEQUALITIES

 $ax^{2} + bx + c > 0$ ($a \neq 0$).

(i) If D > 0, then the equation $ax^2 + bx + c = 0$ has two different roots $(x_1 < x_2)$.

Then $a > 0 \implies x \in (-\infty, x_1) \cup (x_2, \infty)$

$$a < 0 \implies x \in (x_1, x_2)$$



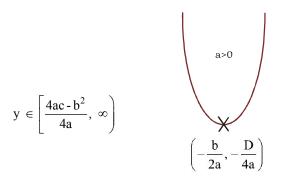
(ii) Inequalities of the form $\frac{P(x)}{Q(x)} \ge 0$ can be

quickly solved using the method of intervals (wavy curve).

6. MAX. & MIN. VALUE OF QUADRATIC EXPRESSION

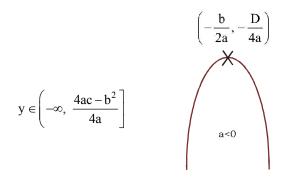
Maximum & Minimum Value of $y = ax^2 + bx + c$ occurs at x = -(b/2a) according as :

For a > 0, we have :



$$y_{\min} = \frac{-D}{4a}$$
 at $x = \frac{-b}{2a}$, and $y_{\max} \to \infty$

For a < 0, we have :



$$y_{max} = \frac{-D}{4a}$$
 at $x = \frac{-b}{2a}$, and $y_{min} \to -\infty$

If $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ are the roots of the nth degree polynomial equation :

$$f(\mathbf{x}) = \mathbf{a}_0 \mathbf{x}^n + \mathbf{a}_1 \mathbf{x}^{n-1} + \mathbf{a}_2 \mathbf{x}^{n-2} + \dots + \mathbf{a}_{n-1} \mathbf{x} + \mathbf{a}_n = 0$$

where a_0, a_1, \dots, a_n are all real & $a_0 \neq 0$,

Then,

 $\sum \alpha_1 = -\frac{a_1}{a_0};$

 $\sum \alpha_1 \ \alpha_2 = + \frac{a_2}{a_0};$

$$\sum \alpha_1 \ \alpha_2 \ \alpha_3 = -\frac{a_3}{a_0};$$

.

$$\alpha_1 \alpha_2 \alpha_3 \dots \alpha_n = (-1)^n \frac{a_n}{a_0}$$

8. LOCATION OF ROOTS

Let $f(\mathbf{x}) = a\mathbf{x}^2 + b\mathbf{x} + c$, where a > 0 & $a, b, c \in \mathbf{R}$.

(i) Conditions for both the roots of f(x) = 0 to be greater than a specified number 'k' are :

 $\mathbf{D} \geq \mathbf{0} \qquad \& \quad f(\mathbf{k}) \geq \mathbf{0} \qquad \& \quad (-\mathbf{b}/2\mathbf{a}) \geq \mathbf{k}.$

(ii) Conditions for both roots of f (x) = 0 to lie on either side of the number 'k' (in other words the number 'k' lies between the roots of f(x) = 0 is:

 $af(\mathbf{k}) < 0.$

- (iii) Conditions for exactly one root of f(x) = 0 to lie in the interval (k_1, k_2) i.e. $k_1 < x < k_2$ are : D > 0 & $f(k_1) \cdot f(k_2) < 0$.
- (iv) Conditions that both roots of f(x) = 0 to be confined between the numbers $k_1 \& k_2$ are $(k_1 < k_2)$:

 $D \ge 0 \& f(k_1) \ge 0 \& f(k_2) \ge 0 \& k_1 \le (-b/2a) \le k_2.$

Remainder Theorem : If f(x) is a polynomial, then f(h) is the remainder when f(x) is divided by x - h.

OUADRATIC EQUATION

Factor theorem : If x = h is a root of equation f(x) = 0, then x-h is a factor of f(x) and conversely.

9. MAX. & MIN. VALUES OF RATIONAL EXPRESSION

Here we shall find the values attained by a rational

expression of the form $\frac{a_1x^2 + b_1x + c_1}{a_2x^2 + b_2x + c_2}$ for real values

of x.

Example No. 4 will make the method clear.

10. COMMON ROOTS

(a) Only One Common Root

Let α be the common root of $ax^2 + bx + c = 0$ &

 $a'x^2 + b'x + c' = 0$, such that a, $a' \neq 0$ and $ab' \neq a'b$.

Then, the condition for one common root is :

 $(ca'-c'a)^2 = (ab'-a'b)(bc'-b'c).$

(b) Two Common Roots

Let α , β be the two common roots of

 $ax^{2} + bx + c = 0 \& a'x^{2} + b'x + c' = 0,$

such that a, $a' \neq 0$.

Then, the condition for two common roots is :

$$\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$$

11. RESOLUTION INTO TWO LINEAR FACTORS

The condition that a quadratic function

 $f(x, y) = ax^2 + 2 hxy + by^2 + 2 gx + 2 fy + c$

may be resolved into two linear factors is that ;

 $abc + 2fgh - af^2 - bg^2 - ch^2 = 0$

OR
$$\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0$$

12. FORMATION OF A POLYNOMIAL EQUATION

If $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ are the roots of the nth degree polynomial equation, then the equation is

 $x^{n} - S_{1}x^{n-1} + S_{2}x^{n-2} + S_{3}x^{n-3} + \dots + (-1)^{n}S_{n} = 0$

where S_k denotes the sum of the products of roots taken k at a time.

Particular Cases

(a) Quadratic Equation if α , β be the roots the quadratic equation, then the equation is :

 $x^{2}-S_{1}x+S_{2}=0$ *i.e.* $x^{2}-(\alpha + \beta)x+\alpha\beta=0$

(b) Cubic Equation if α , β , γ be the roots the cubic equation, then the equation is :

 $x^3 - S_1 x^2 + S_2 x - S_3 = 0$ *i.e.*

 $x^{3} - (\alpha + \beta + \gamma) x^{2} + (\alpha \beta + \beta \gamma + \gamma \alpha) x - \alpha \beta \gamma = 0$

- (i) If α is a root of equation f(x) = 0, the polynomial f(x) is exactly divisible by (x-α). In other words, (x α) is a factor of f(x) and conversely.
- (ii) Every equation of nth degree $(n \ge 1)$ has exactly n roots & if the equation has more than n roots, it is an identity.

- (iii) If there be any two real numbers 'a' & 'b' such that f (a) & f (b) are of opposite signs, then f(x) = 0 must have atleast one real root between 'a' and 'b'.
- (iv) Every equation f(x) = 0 of degree odd has at least one real root of a sign opposite to that of its last term.

13. TRANSFORMATION OF EQUATIONS

- To obtain an equation whose roots are reciprocals of the roots of a given equation, it is obtained by replacing x by 1/x in the given equation
- (ii) Transformation of an equation to another equation whose roots are negative of the roots of a given equation-replace x by x.
- (iii) Transformation of an equation to another equation whose roots are square of the roots of a given equation-replace x by \sqrt{x} .
- (iv) Transformation of an equation to another equation whose roots are cubes of the roots of a given equation–replace x by $x^{1/3}$.

SOLVED EXAMPLES

Example – 1

If the remainder on dividing $x^3 + 2x^2 + kx + 3$ by x - 3 is 21, find the quotient and the value of k. Hence find the zeros of the cubic polynomial $x^3 + 2x^2 + kx - 18$.

Sol. Let $p(x) = x^3 + 2x^2 + kx + 3$.

We are given that when p (x) is divided by the linear polynomial x - 3, the remainder is 21.

 \Rightarrow p(3)=21 (Remainder Theorem)

$$\Rightarrow 3^3 + 2 \times 3^2 + k \times 3 + 3 = 21$$

- $\Rightarrow 27+18+3k+3=21$
- \Rightarrow 3k=21-27-18-3
- \Rightarrow 3k=-27
- \Rightarrow k=-9

Hence, $p(x) = x^3 + 2x^2 - 9x + 3$.

To find the quotient obtained on dividing p(x) by x–3, we perform the following division :

$$\frac{x^{2} + 5x + 6}{x - 3)x^{3} + 2x^{2} - 9x + 3} \\
 x^{3} - 3x^{2} \\
 - + \\
 5x^{2} - 9x + 3 \\
 5x^{2} - 15x \\
 - + \\
 6x + 3 \\
 6x - 18 \\
 - + \\
 21$$

Hence, $p(x) = (x^2 + 5x + 6)(x-3) + 21$

(Divisor × Quotient + Remainder)

$$\Rightarrow x^{3}+2x^{2}-9x+3-21 = (x^{2}+5x+6)(x-3)$$

$$\Rightarrow x^{3}+2x^{2}-9x-18 = (x^{2}+3x+2x+6)(x-3)$$

 $\Rightarrow x^{3}+2x^{2}-9x-18 = (x+3)(x+2)(x-3)$ Hence, the zeros of $x^{3} + 2x^{2} - 5x - 18$ are given by x+3=0, x+2=0, x-3=0

$$\Rightarrow$$
 x=-3,-2,3

:. The zeros of $x^3 + 2x^2 - 9x - 18$ are -3, -2, 3.

Example -2

Find all the zeros of the polynomial $x^4 + x^3 - 9x^2 - 3x + 18$ if it is given that two of its zeros are $-\sqrt{3}$ and $\sqrt{3}$.

Sol. Given polynomial $f(x) = x^4 + x^3 - 9x^2 - 3x + 18$ has two of its zeros $-\sqrt{3}$ and $\sqrt{3}$.

$$\Rightarrow (x + \sqrt{3}) (x - \sqrt{3}) \text{ is a factor of } f(x),$$

i.e., $x^2 - 3$ is a factor of f(x).

Now, we apply the division algorithm to the given polynomial with x^2-3 .

$$x^{2} + x - 6$$

$$x^{2} - 3\overline{\smash{\big)}}x^{4} + x^{3} - 9x^{2} - 3x + 18$$

$$x^{4} - 3x^{2}$$

$$- +$$

$$x^{3} - 6x^{2} - 3x + 18$$

$$x^{3} - 3x$$

$$- +$$

$$-6x^{2} + 18$$

$$-6x^{2} + 18$$

$$+ -$$

$$0 = \text{Remainder}$$

Thus,
$$x^4 + x^3 - 9x^2 - 3x + 18$$

= $(x^2 - 3)(x^2 + x - 6)$
= $(x^2 - 3) \times \{x^2 + 3x - 2x - 6\}$
= $(x^2 - 3) \times \{x(x + 3) - 2(x + 3)\}$
= $(x^2 - 3) \times (x + 3)(x - 2)$
Putting $x + 3 = 0$ and $x - 2 = 0$

we get x = -3 and x = 2, i.e., -3 and 2 are the other two zeros of the given polynomial.

Hence $-\sqrt{3}, \sqrt{3}, -3, 2$ are the four zeros of the given polynomial.

Example – 3

If the polynomial $x^4 - 6x^3 + 16x^2 - 25x + 10$ is divided by another polynomial $x^2 - 2x + k$, the remainder comes out to be x + a, find k and a.

Sol. By division algorithm

$$x^{4}-6x^{3}+16x^{2}-25x+10=(x^{2}-2x+k)q(x)+(x+a)$$

where q(x) is the quotient.

As the degree on L.H.S. is 4; therefore, q(x) must be of degree 2.

Let $q(x) = lx^2 + mx + n, l \neq 0.$

Then $x^4 - 6x^3 + 16x^2 - 25x + 10 = (x^2 - 2x + k)(lx^2 + mx + n) + x + a$

 $\Rightarrow x^{4}-6x^{3}+16x^{2}-25x+10=lx^{4}+(m-2l)x^{3}+(n-2m+kl)x^{2}+(mk)x^{2}+$

Equating coefficients of like powers of x on the two sides,

we obtain

l = 1	(1)
-------	-----

$$m - 2l = -6$$
 ... (2)

$$n-2m+kl=16$$
 ... (3)

$$mk - 2n + l = -25$$
 ... (4)

and nk+a=10

From (2), $m = -6 + 2l = -6 + 2 \times 1 = -4$ and

then from (3),
$$n = 16 + 2m - kl = 16 + 2 \times (-4) - k \times 1$$

 $\Rightarrow n=8-k \qquad \dots (6)$

From (4) and (6), we get

(-4)k-2(8-k)+1=-25

 \Rightarrow -4k-16+2k=-25

 $\Rightarrow -2k = -25 + 16 - 1$

$$\Rightarrow -2k = -10 \Rightarrow k = 5$$

Substituting this value of k in (6), we have

$$n = 8 - 5 = 3$$
 and then from (5),

we get

 $a = 10 - nk = 10 - 3 \times 5 = -5.$

Example-4

Solve the inequality, $\frac{3x^2 - 7x + 8}{x^2 + 1} \le 2$

Sol. Domain : $x \in R$

Given inequality is equivalent to

$$\frac{3x^2 - 7x + 8}{x^2 + 1} - 2 \le 0$$

$$\Rightarrow \qquad \frac{3x^2 - 7x + 8 - 2x^2 - 2}{x^2 + 1} \le 0$$

$$\Rightarrow \qquad \frac{3x^2 - 7x + 6}{x^2 + 1} \le 0 \quad \Rightarrow \frac{(x - 1)(x - 6)}{x^2 + 1} \le 0$$

$$\Rightarrow$$
 x \in [1, 6]

Example – 5

...(5)

Solve the equation $25x^2 - 30x + 11 = 0$ by using the general expression for the roots of a quadratic equation.

Sol. Comparing the given equation with the general form of a quadratic equation $ax^2 + bx + c = 0$, we get

$$a = 25, b = -30 and c = 11.$$

Substituting these values in

$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \text{ and } \beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$\alpha = \frac{30 + \sqrt{900 - 1100}}{50} \text{ and } \beta = \frac{30 - \sqrt{900 - 1100}}{50}$$

$$\Rightarrow \quad \alpha = \frac{30 + \sqrt{-200}}{50} \text{ and } \beta = \frac{30 - \sqrt{-200}}{50}$$

$$\Rightarrow \quad \alpha = \frac{30 + 10i\sqrt{2}}{50} \text{ and } \beta = \frac{30 - 10i\sqrt{2}}{50}$$

$$\Rightarrow \quad \alpha = \frac{30 + 10i\sqrt{2}}{50} \text{ and } \beta = \frac{30 - 10i\sqrt{2}}{50}$$

$$\Rightarrow \quad \alpha = \frac{3}{5} + \frac{\sqrt{2}}{5}i \text{ and } \beta = \frac{3}{5} - \frac{\sqrt{2}}{5}i$$
Hence, the roots of the given equation are $\frac{3}{5} \pm \frac{\sqrt{2}}{5}i$

Solve the following quadratic equation by factorization method : $x^2-5ix-6=0$

N 911 0 0

Sol. The given equation is

$$x^2 - 5ix - 6 = 0$$

- \Rightarrow $x^2 5ix + 6i^2 = 0$
- \Rightarrow x²-3ix-2ix+6i²=0
- $\Rightarrow x(x-3i)-2i(x-3i)=0$
- \Rightarrow (x-3i)(x-2i)=0
- $\Rightarrow x-3i=0, x-2i=0$
- \Rightarrow x=3i, x=2i

Hence, the roots of the given equation are 3i and 2i.

Example – 7

Solve the equation (i) $15.2^{x+1} + 15.2^{2-x} = 135$. (ii) $3^{x-4} + 5^{x-4} = 34$ (iii) $5^x \sqrt[x]{8^{x-1}} = 500$

Sol. (i) The equation rewrite in the form

$$30.2^{x} + \frac{60}{2^{x}} = 135$$

then $30t^2 - 135t + 60 = 0$

Let $t=2^x$

- $6t^{2} 27t + 12 = 0$ $\Rightarrow 6t^{2} - 24t - 3t + 12 = 0$
- \Rightarrow (t-4)(6t-3)=0
- then $t_1 = 4$ and $t_2 = \frac{1}{2}$

thus given equation is equivalent to

$$2^{x} = 4$$
 and $2^{x} = \frac{1}{2}$

then x=2 and x=-1

Hence roots of the original equation are $x_1 = 2$ and $x_2 = -1$

Note. An equation of the form $\mathbf{a}^{f(\mathbf{x})} + \mathbf{b}^{f(\mathbf{x})} = \mathbf{c}$ where $a, b, c \in R$ and a, b, c satisfies the condition $a^2 + b^2 = c$ then solution of the equation is f(x) = 2 and no other solution of this equation. Here, $3^2 + 5^2 = 34$, then given equation has a solution (ii) x - 4 = 2x = 6 is a root of the original equation *.*.. Note. An equation of the form $\{f(\mathbf{x})\}^{g(\mathbf{x})}$ is equivalent to the equation ${f(x)}^{g(x)} = 10^{g(x)\log f(x)}$ where f(x) > 0(iii) We have $5^x \sqrt[x]{8^{x-1}} = 500$ $5^{x} \sqrt[x]{8^{x-1}} = 5^{3} \cdot 2^{2}$ \Rightarrow $5^{x}.8^{\left(\frac{x-1}{x}\right)} = 5^{3}.2^{2}$ \Rightarrow $5^{x}.2^{\frac{3x-3}{x}} = 5^{3}.2^{2}$ $5^{x-3} \cdot 2^{\left(\frac{x-3}{x}\right)} = 1$ \Rightarrow $(5.2^{1/x})^{(x-3)} = 1$ \Rightarrow is equivalent to the equation $10^{(x-3)\log(5.2^{1/x})} = 1$ $(x-3)\log(5.2^{1/x})=0$ \Rightarrow Thus original equation is equivalent to the collection of equations $x-3=0, \log(5.2^{1/x})=0$ $x = 3, 5.2^{1/x} = 1$ *.*.. $2^{1/x} = (1/5)$ \Rightarrow $x = -\log_{5} 2$ *.*.. Hence roots of the original equation are x = 3 and $x = -\log_{5} 2$

QUADRATIC EQUATION

Example-8

Form an equation whose roots are cubes of the roots of equation $ax^3 + bx^2 + cx + d = 0$

Sol. Replacing x by $x^{1/3}$ in the given equation, we get

$$a (x^{1/3})^3 + b (x^{1/3})^2 + c (x^{1/3}) + d = 0$$

$$\Rightarrow ax + d = -(bx^{2/3} + cx^{1/3})$$
(i)

- \Rightarrow $(ax + d)^3 = -(bx^{2/3} + cx^{1/3})^3$
- $\Rightarrow \quad a^3x^3 + 3a^2dx^2 + 3ad^2x + d^3$

$$= - [b^{3}x^{2} + c^{3}x + 3bcx (bx^{2/3} + cx^{1/3})]$$

 $\Rightarrow \quad a^3x^3 + 3a^2dx^2 + 3ad^2x + d^3$

 $[-b^{3}x^{2}-c^{3}x+3bcx(ax+d)]$ [From Eq. (i)]

 $\Rightarrow a^3x^3 + x^2 (3a^2d - 3abc + b^3)$

 $+x(3ad^2-3bcd+c^3)+d^3=0$

This is the requied equation.

Example-9

If α , β , γ be the roots of the equation $x(1+x^2)+x^2(6+x)+2=0$, then the value of $\alpha^{-1}+\beta^{-1}+\gamma^{-1}$ is (a) -3 (b) $\frac{1}{2}$ (c) $-\frac{1}{2}$ (d) None of these

Sol. $2x^3 + 6x^2 + x + 2 = 0$ has roots α , β , γ . So, $2x^3 + x^2 + 6x + 2 = 0$ has roots α^{-1} , β^{-1} , γ^{-1}

(writing coefficients in revers order, since roots are reciprocal)

Hence, Sum of the roots = $-\frac{(\text{Coefficient of } x^2)}{(\text{Coefficient of } x^3)}$

 $\therefore \qquad \alpha^{-1} + \beta^{-1} + \gamma^{-1} = -\frac{1}{2}$

Hence, (c) is the correct answer.

Example – 10

If P (x) =
$$ax^2 + bx + c$$
 and Q (x) = $-ax^2 + bx + c$,
where $ac \neq 0$, show that the equation

 $P(x) \cdot Q(x) = 0$ has at least two real roots.

Sol. Roots of the equation P(x)Q(x) = 0

i.e.,
$$(ax^2 + bx + c)(-ax^2 + bx + c) = 0$$
 will be

roots of the equations

$$ax^2 + bx + c = 0$$
(i)

and
$$-ax^2 + bx + c = 0$$
 (ii)

If D_1 and D_2 be discriminants of (i) and (ii) then

$$D_1 = b^2 - 4ac$$
 and $D_2 = b^2 + 4ac$

Now
$$D_1 + D_2 = 2b^2 \ge 0$$

(since, b may be zero)

i.e.,
$$D_1 + D_2 \ge 0$$

Hence, at least one of D_1 and $D_2 \ge 0$

i.e., at least one of the equations (i) and (ii) has real roots and therefore, equation P(x) Q(x) = 0 has at least two real roots.

Alternative Sol.

Since, $ac \neq 0$

$$\therefore$$
 ac < 0 or ac > 0

Case I :

If $ac < 0 \implies -ac > 0$

then $D_1 = b^2 - 4ac > 0$

Case II :

If ac > 0

then $D_2 = b^2 + 4ac > 0$

So, at least one of D_1 and $D_2 > 0$.

Hence, at least one of the equations (i) and (ii) has real roots. Hence, equation $P(x) \cdot Q(x) = 0$ has at least two real roots.

Example – 11

If $x^2 - ax + b = 0$ and $x^2 - px + q = 0$ have a root in common and the second equation has equal roots.

show that $b + q = \frac{ap}{2}$.

Sol. Given equations are $x^2 - ax + b = 0$

and $x^2 - px + q = 0$...(ii)

Let α be the common root. Then roots of Eq. (ii) will be α and α . Let β be the other root of Eq. (i). Thus roots of Eq. (i) are α , β and those of Eq. (ii). are α , α

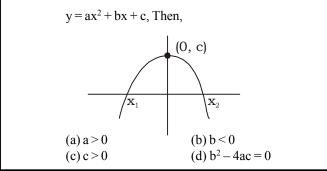
$\alpha + \beta = a$	(iii)
$\alpha\beta = b$	(iv)
$2\alpha = p$	(v)
$\alpha^2 = q$	(vi)
LHS = b + q = $\alpha\beta$ + α^2 = $\alpha(\alpha + \beta)$	(vii)
and RHS = $\frac{ap}{2} = \frac{(\alpha + \beta)2\alpha}{2} = \alpha(\alpha + \beta)$	(viii)

and RHS =
$$\frac{1}{2} = \frac{1}{2} = \alpha(\alpha + \beta)$$

From Eqs. (vii) and (viii), LHS = RHS

Example – 12

The diagram shows the graph of



- Sol. As it is clear from the figure that it is a parabola opens downwards i.e. a < 0.
- $\Rightarrow It is y = ax^2 + bx + c \quad i.e. \text{ degree two polynomial}$ Now, if $ax^2 + bx + c = 0$
- \Rightarrow it has two roots x_1 and x_2 as it cuts the axis at two distinct point x_1 and x_2 .

Now from the figure it is also clear that $x_1 + x_2 < 0$ (i.e. sum of roots are negative)

$$\Rightarrow \quad \frac{-b}{a} < 0 \quad \Rightarrow \frac{b}{a} > 0$$

 $\Rightarrow b < 0 (:: a < 0) (b) \text{ is correct.}$ As the graph of y = f(x) cuts the + y-axis at (0, c) where $c > 0 \Rightarrow (c)$ is correct.

Example – 13

...(i)

Find all roots of the equation $x^4 + 2x^3 - 16x^2 - 22x + 7 = 0$ if one root is $2 + \sqrt{3}$.

Sol. All coefficients are real, irrational roots will occur in conjugate pairs.

Hence another roots is $2-\sqrt{3}$.

 \therefore Product of these roots = $(x - 2 - \sqrt{3})(x - 2 + \sqrt{3})$

$$= (x-2)^{2} - 3$$
$$= x^{2} - 4x + 1$$

Dividing $x^4 + 2x^3 - 16x^2 - 22x + 7$ by $x^2 - 4x + 1$ then the other quadratic factor is $x^2 + 6x + 7$

then the given equation reduce in the form

$$(x2-4x+1)(x2+6x+7)=0$$

x²+6x+7=0

then
$$x = \frac{-6 \pm \sqrt{36 - 28}}{2}$$

$$= -3 \pm \sqrt{2}$$

÷.

Hence roots $2 \pm \sqrt{3}, -3 \pm \sqrt{2}$

Example - 14

If x is real, then prove that the values of
$$\frac{x^2 - 3x + 4}{x^2 + 3x + 4}$$
 lies

between
$$\frac{1}{7}$$
 and 7.

Sol. Let
$$y = \frac{x^2 - 3x + 4}{x^2 + 3x + 4}$$
. Then,
 $x^2 (y-1) + 3x (y+1) + 4 (y-1) = 0$
∴ for $x \in \text{real}$, $D \ge 0$
 $\Rightarrow 9 (y+1)^2 - 16 (y-1)^2 \ge 0$
 $\Rightarrow -7y^2 + 50y - 7 \ge 0$
 $\Rightarrow (7y-1) (y-7) \le 0$

Hence, the given expression lies between $\frac{1}{7}$ and 7.

Example – 15

a, b, $c \in R$, $a \neq 0$ and the quadratic equation $ax^2 + bx + c = 0$ has no real roots, then,

(a) a + b + c > 0 (b) a (a + b + c) > 0(c) b (a + b + c) > 0 (d) c (a + b + c) > 0

- Sol. Let $f(x) = ax^2 + bx + c$. It is given that f(x) = 0 has no real roots. So, either f(x) > 0 for all $x \in R$ or f(x) < 0 for all $x \in R$ i.e. f(x) has same sign for all values of x.
- $\therefore \quad f(0) \, \mathbf{f}(1) > 0$
- $\Rightarrow c(a+b+c) > 0$ Also, af(1) > 0
- $\Rightarrow a(a+b+c)>0.$

Example – 16

Find the values of a for which the inequality (x - 3a) (x - a - 3) < 0 is satisfied for all x such that $1 \le x \le 3$.

Sol. (x-3a)(x-a-3) < 0

Case I :

Let $3a < a + 3 \implies a < 3/2$...(i)

Solution set of given inequality is $x \in (3a, a+3)$

Now for given inequality to be true for all $x \in [1, 3]$, set [1, 3] should be the subset of (3a, a+3) i.e. 1 and 3 lie inside 3a and a+3 on number line.

So we can take, 3a < 1 and a + 3 > 3 ...(ii)

Combining (i) and (ii), we get :

 \Rightarrow a \in (0, 1/3)

Case II :

Let $3a > a + 3 \implies a > 3/2$

Solution set of given inequality is

 $x \in (a+3, 3a)$

As in Case I, [1, 3] should be the subset of

$$(a+3, 3a)$$

i.e., a + 3 < 1 and 3a > 3 ...(iv)

Combining (iii) and (iv), we get :

 $a \in \phi$ i.e. No solution ...(v)

Combining both cases, we get : $a \in (0, 1/3)$

Alternate Sol.

Let f(x) = (x-3a)(x-a-3)

for given equality to be true for all values of $x \in [1, 3]$, 1 and 3 should lie between the roots of f(x)=0.

$$\Rightarrow f(1) < 0 \text{ and } f(3) < 0$$

Consider $f(1) < 0$:

 \Rightarrow (1-3a)(1-a-3) < 0

 \Rightarrow (3a-1)(a+2)<0

$$\Rightarrow a \in (-2, 1/3) \qquad \dots (i)$$

Consider f(3) < 0:

$$\Rightarrow (3-3a)(3-a-3) < 0$$

$$\Rightarrow$$
 $(a-1)(a) < 0$

 $\Rightarrow a \in (0, 1) \qquad ...(ii)$ Combining (i) and (ii), we get : $a \in (0, 1/3)$

Example – 17

=

If $ax^2 - bx + 5 = 0$ does not have two distinct real roots, then find the minimum value of 5a + b.

Sol. Let $f(x) = ax^2 - bx + 5$

Since, f(x) = 0 does not have two distinct real roots, we have either

 $f(x) \ge 0 \forall x \in R \text{ or } f(x) \le 0 \forall x \in R$

But f(0) = 5 > 0, so $f(x) \ge 0 \forall x \in R$

In particular $f(-5) \ge 0 \Longrightarrow 5a + b \ge -1$

Hence, the least value of 5a + b is -1.

...(iii)

et :

EXERCISE - 1 : BASIC OBJECTIVE QUESTIONS

Basics, Sum & Product of Roots			
1.	Roots of the equation $x^2 + x (2 - p^2) - 2p^2 = 0$ are		
	(a) $- p^2$ and $- 2$	(b) p^2 and -2	
	(c) – p^2 and 2	(d) p^2 and 2	
2.	If $\sqrt{x+1} - \sqrt{x-1} = 1$, t	hen x is equal to	
	(a) 2/3	(b) 3/5	
	(c) 5/4	(d) 4/5	
3.		+y=10, then the value of xy will	
	be		
	(a) 36	(b) 24	
	(c) 16	(d) 9	
4.	$\frac{8x^2 + 16x - 51}{(2x - 3)(x + 4)} > 3 $ if x is	such that	
	(a) $x < -4$	(b) $-3 < x < 3/2$	
	(c) $x > 5/2$	(d) all these true	
5.	The sum of all real roots of	of the equation	
	$ x-2 ^2 + x-2 - 2 = 0$, is		
	(a) 0	(b) 8	
	(c) 4	(d) none of these	
6.	The equation $x^2-3 x +2 =$	= 0 has	
	(a) no real roots	(b) one real root	
	(c) two real roots	(d) four real roots	
7.	The sum of the real roots of	of the equation $x^2 + x - 6 = 0$ is	
	(a) 4	(b) 0	
	(c) - 1	(d) none of these	
8.	The product of the real ro		
	$ 2x+3 ^2 - 3 2x+3 + 2 = 0,$		
	(a) 5/4	(b) 5/2	
	(c) 5	(d) 2	
9.	The roots of the equation	$ x^2 - x - 6 = x + 2$ are	
	(a) -2, 1, 4	(b) 0, 2, 4	
	(c) 0, 1, 4	(d) -2, 2, 4	

10. If $\sqrt{9x^2 + 6x + 1} < (2 - x)$, then

(a)
$$x \in \left(-\frac{3}{2}, \frac{1}{4}\right)$$
 (b) $x \in \left(-\frac{3}{2}, \frac{1}{4}\right)$
(c) $x \in \left[-\frac{3}{2}, \frac{1}{4}\right)$ (d) $x < \frac{1}{4}$

If α and β are the roots of $ax^2 + bx + c = 0$ then the value 11. of $(a\alpha+b)^{-2}+(a\beta+b)^{-2}$ is equal to

(a)
$$\frac{b^2 - 2ac}{a^2c^2}$$
 (b) $\frac{c^2 - 2ab}{a^2b^2}$

(c)
$$\frac{a^2 - 2bc}{b^2c^2}$$
 (d) None

If α and β are the roots of $4x^2 + 3x + 7 = 0$, then the 12.

value of
$$\frac{1}{\alpha^3} + \frac{1}{\beta^3}$$
 is

(a)
$$-\frac{27}{64}$$
 (b) $\frac{63}{16}$

(c)
$$\frac{225}{343}$$
 (d) None of these

13. If
$$\alpha$$
 and β are the roots of the equation
 $x^{2} + px + p^{2} + q = 0$, then the value of
 $\alpha^{2} + \alpha\beta + \beta^{2} + q =$
(a) 0 (b) 1
(c) q (d) 2q
14. If α, β are the roots of the equation $8x^{2} - 3x + 27 = 0$,

then the value of $\left(\frac{\alpha^2}{\beta}\right)^{1/3} + \left(\frac{\beta^2}{\alpha}\right)^{1/3}$ is (a) 1/4 (b) 1/3 (c) 7/2 (d)4

-	(b) (1, -2) (d) (-1, -2) f the equation	25.	$(\alpha + (a) \alpha$ $(c) \beta$ If α value
(c) $(-1, 2)$ The product of the roots of $mx^2 + 6x + (2m - 1) = 0$ is (a) 1 (c) -1 If one root of the equation ax ²	 (d) (-1, -2) f the equation -1. Then m is equal to (b) 1/3 	25.	(c) If a
The product of the roots of $mx^{2} + 6x + (2m-1) = 0$ is (a) 1 (c) -1 If one root of the equation ax ²	f the equation -1. Then m is equal to (b) 1/3	25.	If α
$mx^{2} + 6x + (2m - 1) = 0$ is (a) 1 (c) -1 If one root of the equation ax ²	-1. Then m is equal to(b) 1/3	25.	
(a) 1 (c) –1 If one root of the equation ax	(b) 1/3		valı
(c) - 1 If one root of the equation ax			vuit
If one root of the equation ax	(d) - 1/3		
-			(a) 2
of the other, then	$a^2 + bx + c = 0, a \neq 0$, is reciprocal	24	(c)-
(a) $\mathbf{b} = \mathbf{c}$	(b) $a = c$	26.	If or is e
(c) $a = 0$	(d) b = 0		
			(a) (c)
(a) $-\frac{2}{3}$	(b) -3	27.	The
5			(a ² -
	2		is a
			(a)
(a) 1	(b) 2		(c)]
(c)-1	(d) 3	28.	If p
If the roots of $px^2 + qx + 2 =$ then	0 are reciprocals of each other,		x, th (a) 2
(a) p = 0	(b) $p = -2$		(c) (
(c) $p = \pm 2$	(d) p = 2	29.	If th
	·		$x^{2}+$ (a) a
(a) 1, 3	(b) 3, 3/2		(c) a
(c) 2, 3/2	(d) 3/2, 1	30.	Ifro
If $\sin \theta$ and $\cos \theta$ are the ro	oots of the equation		2:3
$lx^2 + mx + n = 0$, then			(a)
(a) $l^2 - m^2 + 2ln = 0$	(b) $l^2 + m^2 + 2ln = 0$		
(c) $l^2 - m^2 - 2ln = 0$	(d) $l^2 + m^2 - 2ln = 0$		(c) -
	quation $x^2 + px + q = 0$ are	31.	If th are
	(b) $p + q = -1$		(a) 2
			(c) 9
	equal to their product, then (a) $-\frac{2}{3}$ (c) 4 If the product of the roo $mx^2 - 2x + (2m - 1) = 0$ is 3 (a) 1 (c) -1 If the roots of $px^2 + qx + 2 =$ then (a) $p = 0$ (c) $p = \pm 2$ If the equation $(k - 2) x^2 - (k$ roots as 3 then the value of (a) 1, 3 (c) 2, 3/2 If sin θ and cos θ are the roo $lx^2 + mx + n = 0$, then (a) $l^2 - m^2 + 2ln = 0$ (c) $l^2 - m^2 - 2ln = 0$ The roots of the equation the roots of the r	(c) 4 (d) $-\frac{1}{2}$ If the product of the roots of the quadratic equation $mx^2 - 2x + (2m - 1) = 0$ is 3 then the value of m (a) 1 (b) 2 (c) -1 (d) 3 If the roots of $px^2 + qx + 2 = 0$ are reciprocals of each other, then (a) $p = 0$ (b) $p = -2$ (c) $p = \pm 2$ (d) $p = 2$ If the equation $(k - 2) x^2 - (k - 4) x - 2 = 0$ has difference of roots as 3 then the value of k is (a) 1, 3 (b) 3, 3/2 (c) 2, 3/2 (d) 3/2, 1 If sin θ and cos θ are the roots of the equation $lx^2 + mx + n = 0$, then (a) $l^2 - m^2 + 2ln = 0$ (b) $l^2 + m^2 + 2ln = 0$ (c) $l^2 - m^2 - 2ln = 0$ (d) $l^2 + m^2 - 2ln = 0$ The roots of the equation $x^2 + px + q = 0$ are tan 22° and tan 23° then (a) $p + q = 1$ (b) $p + q = -1$	equal to their product, then value of a is (a) $-\frac{2}{3}$ (b) -3 (c) 4 (d) $-\frac{1}{2}$ If the product of the roots of the quadratic equation $mx^2 - 2x + (2m - 1) = 0$ is 3 then the value of m (a) 1 (b) 2 (c) -1 (d) 3 If the roots of $px^2 + qx + 2 = 0$ are reciprocals of each other, then (a) $p = 0$ (b) $p = -2$ (c) $p = \pm 2$ (d) $p = 2$ If the equation $(k - 2) x^2 - (k - 4) x - 2 = 0$ has difference of roots as 3 then the value of k is (a) $1, 3$ (b) $3, 3/2$ (c) $2, 3/2$ (d) $3/2, 1$ If sin θ and cos θ are the roots of the equation $lx^2 + mx + n = 0$, then (a) $l^2 - m^2 + 2ln = 0$ (b) $l^2 + m^2 + 2ln = 0$ (c) $l^2 - m^2 - 2ln = 0$ (d) $l^2 + m^2 - 2ln = 0$ The roots of the equation $x^2 + px + q = 0$ are tan 22° and tan 23° then (a) $p + q = 1$ (b) $p + q = -1$ 31.

24.	If α , β are the roots of the equation $x^2 - p(x+1) - c = 0$, then $(\alpha + 1)(\beta + 1) =$	
	(a) c	(b) c-1
	(c) 1–c	(d) none of these
25.	If α and β are the roots of	$x^{2} - p(x+1) - c = 0$, then the
	value of $\frac{\alpha^2 + 2\alpha + 1}{\alpha^2 + 2\alpha + c} + \frac{\beta^2}{\beta^2}$	$\frac{+2\beta+1}{+2\beta+c}$ is
	(a) 2	(b) 1
	(c)-1	(d) 0
26.	If one root of $x^2 - x - k = 0$ is equal to	0 be square of the other, then k
	(a) $2 \pm \sqrt{3}$	(b) $3 \pm \sqrt{2}$
	(c) $2 \pm \sqrt{5}$	(d) $5 \pm \sqrt{2}$
27.	The number of values of a	for which
	$(a^2-3a+2)x^2+(a^2-5a+6)$	$(5) x + a^2 - 4 = 0$
	is an identity in x, is	
	(a) 0	(b) 2
	(c) 1	(d) 3
28.	If $p(x+1)^2 + q(x^2 - 3x - 3x - 3x)^2$	2) + x + 1 = 0 be an identity in
	x, then p, q are	
	(a) 2, -2	(b) 1,-1
	(c) 0, 0	(d) none
29.	If the difference between t $x^2 + bx + a = 0$ is same and	he roots of $x^2 + ax + b = 0$ and $a \neq b$, then
	(a) $a + b + 4 = 0$	(b) $a + b - 4 = 0$
	(c) $a - b - 4 = 0$	(d) $a - b + 4 = 0$
30.	If roots of the equation $x^2 - 2 : 3$ then the value of a is	ax + 25 = 0 are in the ratio of
	(a) $\frac{\pm 5}{\sqrt{6}}$	(b) $\frac{\pm 25}{\sqrt{6}}$
	(c) $\frac{\pm 5}{6}$	(d) none of these
31.	If the roots of the equations are in the same ratio then the	$x^{2}+3x+2=0 & x^{2}-x+\lambda=0$ he value of λ is given by
	(a) 2/7	(b) 2/9
	(c) 9/2	(d) 7/2

32. If α , β are roots of the equation $x^2 - 5x + 6 = 0$ then the equation whose roots are $\alpha + 3$ and $\beta + 3$ is

(a) $x^2 - 11x + 30 = 0$	(b) $(x-3)^2 - 5(x-3) + 6 = 0$
(c) Both (a) and (b)	(d) None of these

40.

33. If α , β are roots of $Ax^2 + Bx + C = 0$ and α^2 , β^2 are roots of $x^2 + px + q = 0$, then p is equal to

(a)
$$(B^2 - 2AC)/A^2$$
 (b) $(2AC - B^2)/A^2$
(c) $(B^2 - 4AC)/A^2$ (d) $(4AC - B^2)A^2$

34. If α, β are roots of the equation

$ax^2 + 3x + 2 = 0$	$(a < 0)$, then $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ is greater than
(a) 0	(b) 1
(c) 2	(d) none of these
In a quadratic eq	uation with leading coefficient 1, a student

35. In a quadratic equation with leading coefficient 1, a student reads the coefficient 16 of x wrongly as 19 and obtain the roots as -15 and -4. The correct roots are

(a) 6, 10	(b)-6,-10
(u) 0, 10	(0) 0, 10

(c)-7,-9	(d) none of these
----------	-------------------

Cubic, Biquadratic, Nature of Roots

- 36. If α, β and γ are the roots of the cubic equation (x-1)(x²+x+3)=0, then the value of α+β+γ is equal to
 (a)-1
 (b) 0
 (c) 2
 (d) 3
- 37. If one root of equation $x^2 + ax + 12 = 0$ is 4 while the equation $x^2 + ax + b = 0$ has equal roots, then the value of b is

(a)	$\frac{4}{49}$	(b)	$\frac{49}{4}$
(c)	$\frac{7}{4}$	(d)	$\frac{4}{7}$

38. If α , β , γ are the roots of the equation $2x^3 - 3x^2 + 6x + 1 = 0$, then $\alpha^2 + \beta^2 + \gamma^2$ is equal to

(a) $-\frac{15}{4}$	(b) $\frac{15}{4}$
(c) $\frac{9}{4}$	(d) 4

39. The value of m for which the equation

 $x^{3} - mx^{2} + 3x - 2 = 0$ has two roots equal in magnitude but opposite in sign, is (a) 1/2 (b) 2/3

(c) 3/4 (d) 4/5
------------	-------

Learn LIVE On **QUADRATIC EQUATIC** If α, β, γ are the roots of the equation

40.	If α, β, γ are the roots of the equation		
	$x^{3} + px^{2} + qx + r = 0$, then		
	$(1-\alpha^2)(1-\beta^2)(1-\gamma^2)$ is equal to		
	(a) $(1+q)^2 - (p+r)^2$	(b) $(1+q)^2 + (p+r)^2$	
	(c) $(1-q)^2 + (p-r)^2$	(d) none of these	
41.	If $(x^2 - 3x + 2)$ is a factor of $x^4 - px^2 + q = 0$, then the values of p and q are		
	(a)-5,4	(b) 5, 4	
	(c) 5,-4	(d)-5,-4	
42.	The least integral value of equation $x^2 + 5x + k = 0$ ima	k which makes the roots of the ginary is	
	(a) 4	(b) 5	
	(c) 6	(d) 7	
43.	The roots of the quadratic e	equation $7x^2 - 9x + 2 = 0$ are	
	(a) Rational and different		
	(c) Irrational and different	(d) Imaginary and different	
44.	The roots of the equation	$x^2 - 2\sqrt{2}x + 1 = 0$ are	
	(a) Real and different	(b) Imaginary and different	
	(c) Real and equal	(d) Rational and different	
45.			
	$(b+c) x^2 - (a+b+c) x + a$	=0 are	
	(a) Real	(b) Real and Rational	
	(c) Non real and different	(d) Real and equal	
46.	If <i>l</i> , m, n are real, $l \neq m$, (<i>l</i> -m) x ² -5 (<i>l</i> +m) x-2 (<i>l</i>	then the roots of the equation $-m = 0$ are	
	(a) real and equal	(b) Non real	
	(c) real and unequal	(d) none of these	
47.	If a,b,c are distinct real	numbers then the equation	
	$(b-c) x^{2} + (c-a) x + (a-b) x + $	(b) = 0 has	
	(a) equal roots	(b) irrational roots	
	(c) rational roots	(d) none of these	
48.	If a,b,c are distinct rational	numbers then roots of equation	
	$(b+c-2a) x^2 + (c+a-2b) x^2 + (c+a$	(a+b-2c) = 0 are	
	(a) rational	(b) irrational	
	(c) non-real	(d) equal	

15	5				QUADRATIC EQUATION
49.	If a,b,c are distinct ration the roots of the equation	tal numbers and $a + b + c = 0$, then		mon Root	
	$(c^2 - ab) x^2 - 2 (a^2 - bc)$	(b) $x + (b^2 - ac) = 0$ are	57.	If the equations $x^2 + 2x = 2x^2 + 2x = 0$, here $x = 2x^2 + 2x = 52$, $x = 0$, here $x = 1$.	$+3\lambda = 0$ and a non-zero common root, then
	(a) imaginary	(b) real and equal		$\lambda = \lambda = 0$ have a	a non-zero common root, then
	(c) real and unequal	(d) none of these		(a) 1	(b)-1
50.	If a,b,c are distinct ration the roots of the equation	al numbers and $a + b + c = 0$, then n	58.	(c) 3 The value of a so that the	(d) None
	$(b+c-a) x^2 + (c+a-b) x^2 + $	b) $x + (a + b - c) = 0$ are		$(2a-5) x^2 - 4x - 15 = 0$	-
	(a) imaginary	(b) real and equal			
	(c) real and unequal	(d) none of these		$(3a-8) x^2 - 5x - 21 = 0$	have a common root, is
51.	If $a \in Z$ and the equation roots, then the values of	(x-a)(x-10)+1=0 has integral		(a) 4, 8	(b) 3, 6
	(a) 8, 10	(b) 10, 12		(c) 1, 2	(d) None
	(c) 12, 8	(d) none	59.	If a,b,c \in R, the equation	$ax^{2} + bx + c = 0$ (a, $c \neq 0$) and
52.	The quadratic equation	with rational coefficients whose		$x^2 + 2x + 3 = 0$ have a common root, then a : b : c =	
	one root is $2 + \sqrt{3}$ is			(a) 1 : 2 : 3	(b) 1 : 3 : 4
	(a) $x^2 - 4x + 1 = 0$	(b) $x^2 + 4x + 1 = 0$		(c) 2 : 4 : 5	(d) None
	(c) $x^2 + 4x - 1 = 0$	$(d) x^2 + 2x + 1 = 0$	60.	If the equations $k(6x^2 + $	$(3) + rx + 2x^2 - 1 = 0$ and
53.	The quadratic equation	with real coefficients whose one			
	root is $2 - i \sqrt{3}$ is			$6k (2x^2 + 1) + px + 4x^2 - $	2 = 0 have both roots common,
	(a) $x^2 - 4x + 7 = 0$	(b) $x^2 + 4x - 7 = 0$		then the value of $(2r - p)$	
	(c) $x^2 - 4x - 7 = 0$	(d) none of these		(a) 0	(b) 1/2
54.	The equation of the small having $1 + i$ as one of the small having $1 + i$ as one of the small have been structured.	llest degree with real coefficients e roots is	(c) 1 (d) None of these Range of Rational Expression		(d) None of these
	(a) $x^2 + x + 1 = 0$				
			61.	If x is real, then $\frac{x^2 - 2x}{x^2 + 2x}$	$\frac{4}{4}$ takes values in the interval
	(c) $x^2 + 2x + 2 = 0$	(d) $x^2 + 2x - 2 = 0$		A + 2A	
55.	the equation whose r	addratic equation $x^2 - 3x + 5 = 0$ then roots are $(\alpha^2 - 3\alpha + 7)$ and		(a) $\left[\frac{1}{3},3\right]$	(b) $\left(\frac{1}{3},3\right)$
	$(\beta^2 - 3\beta + 7)$ is				

(a) $x^2 + 4x + 1 = 0$	(b) $x^2 - 4x + 4 = 0$
(c) $x^2 - 4x - 1 = 0$	(d) $x^2 + 2x + 3 = 0$

If the roots of $a_1 x^2 + b_1 x + c_1 = 0$ are α_1 , β_1 and those of $a_2 x^2 + b_2 x + c_2 = 0$ are $\alpha_2 \beta_2$ such that $\alpha_1 \alpha_2 = \beta_1 \beta_2 = 1$, then 56.

(a) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	(b) $\frac{a_1}{c_2} = \frac{b_1}{b_2} = \frac{c_1}{a_2}$
(c) $a_1 a_2 = b_1 b_2 = c_1 c_2$	(d) none of these

c)
$$a_1 a_2 = b_1 b_2 = c_1 c_2$$
 (d) none of these

 $\frac{x^2 + 14x + 9}{x^2 + 2x + 3}$ If x is real then the value of the expression 62.

(d) $\left(-\frac{1}{3},3\right)$

lies between

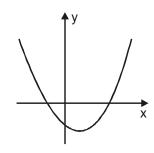
(c) (3,3)

(a) -3 and 3(b) –4 and 5 (d) –5 and 4 (c) -4 and 4

Graph of Quadratic Expression

If a, b \in R & the quadratic equation $ax^2 - bx + 1 = 0$ has 63. imaginary roots then a + b + 1 is

- (a) positive
- (b) negative
- (c) zero
- (d) depends on the sign of b
- 64. If a, b, $c \in R$, the graph of the quadratic polynomial; $y = ax^2 + bx + c$ is as shown in the figure. Then

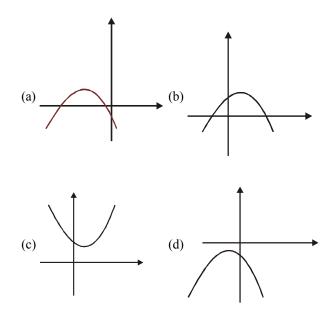


(a) $b^2 - 4ac > 0$	(b) $b < 0$
(c) $a > 0$	(d) $c < 0$

65. If a, b, $c \in R$, Which of the following graph represents, $f(x) = ax^2 + bx + c$ when a > 0, b < 0 and c < 0?



If a, b, $c \in R$, for which of the following graphs of 66. $y = ax^2 + bx + c$, the product a b c is negative.



67. The integer k for which the inequality $x^2-2(4k-1)x+15k^2-2k-7>0$ is valid for any x, is (a) 2 (b) 3

(c)4

68.

(d) none of these

If $a \in R$ and $x^2 + 2ax + 10 - 3a > 0$ for all $x \in R$, then

(a) - 5 < a < 2	(b) a < -5
(c) $a > 5$	(d) $2 < a < 5$

69. The real values of 'a' for which $(a^2-1)x^2+2(a-1)x+2$ is positive for any x, are

(a)
$$a \ge 1$$
(b) $a \le 1$ (c) $a > -3$ (d) $a < -3$ or $a \ge 1$

70. The real value of a for which the sum of the squares of the roots of the equation $x^2 - (a - 2)x - a - 1 = 0$ assumes the least value, is

(a) 0	(b) 1

(d) 3 (c) 2

71. If a, b, $c \in R$. Both roots of the equation

(x-b)(x-c)+(x-c)	c) $(x-a) + (x-a)(x-b) = 0$ are
(a) positive	(b) negative
(c) real	(d) imaginary

16

72.	If $a < b < c < d$, then roots	of	76.	The value of 'a' for which	the equation
	(x-a) (x-c) + 2 (x-b) (x (a) real and equal (c) imaginary	 - d) = 0 are (b) real and unequal (d) rational 		$x^{2} - 2(a - 1)x + (2a + 1) =$ positive is (a) $a > 0$	= 0 has both roots (b) $0 < a < 4$
Loca	tion of Roots			(a) $a \ge 0$ (c) $a \ge 4$	(d) None of these
73.	The value of k for which t	the equation		(c) $a \ge 4$	(d) None of these
	$3x^2+2x(k^2+1)+k^2-3k+$	2=0	77.	If the equation $x^2 + 2$	(a+1) x + 9a - 5 = 0 has only
	has roots of opposite sign	s, lies in the interval		negative roots, then	
	(a) $(-\infty, 0)$ (c)(1,2)	(b) $(-\infty, -1)$ (d) $(3/2, 2)$		(a) $a \in (-\infty, 6)$	(b) $a \in \left(\frac{5}{9}, 1\right] \cup (6, \infty)$
74.	The value of a for which t	he equation		(c) $a \in (0, 6)$	(d) $a \ge 0$
	$2x^2 - 2(2a+1)x + a(a-$	1) = 0 has roots, α and β such	78.	The value of k for w	hich both the roots of the
	that $\alpha < a < \beta$ is			equation $4x^2 - 20kx + ($	$25k^2 + 15k - 66) = 0$ are less
	(a) $a \ge 0$	(b) $a < 0$		then 2, lies in	
	(c) $-3 < a < 0$	(d) None of these		(a) $(4/5, 2)$	(b)(2,0)
75.	The value of λ for which			(c) (-1, -4/5)	(d) (-∞,-1)
	$2x^2 - 2(2\lambda + 1)x + \lambda(\lambda -$	(+1) = 0 may have one root less	79.	If the roots of $x^2 + x + a =$	= 0 exceed a, then
	than λ and other root grea	ter than λ are given by		(a) $2 < a < 3$	(b) $a > 3$
	(a) $1 > \lambda > 0$	(b) $-1 < \lambda < 0$		(c) -3 < a < 3	(d) $a < -2$
	(c) $\lambda \ge 0$	(d) $\lambda > 0$ or $\lambda < -1$	80.	The range of values of m	for which the equation
					+m+10=0 has real roots of
				the same sign, is given by	

(a) m > 10

(c) m < -10, 5 < m ≤ 6

(b) - 5 < m < 5

(d) None of these

EXERCISE - 2 : PREVIOUS YEAR JEE MAINS QUESTIONS

ledantu

18

1.	•	and $\beta^2 = 5\beta - 3$ then the equation	9.	If $(1-p)$ is a root of quits roots are	adratic equation $x^2 + px + (1-p) = 0$, then (2004)
2	× /	(b) $x^2 + 5x - 3 = 0$ (d) $3x^2 - 19x + 3 = 0$	10.	(a) 0, -1 (c) 0, 1 If one root of the equ	(b)-1, 1 (d)-1, 2 uation $x^2 + px + 12 = 0$ is 4, while the
2.		the corresponding roots of $x + a = 0$ is same and $a \neq b$, then (2002)		equation $x^2 + px + q$ then the value of q i	= 0 has equal roots, is (2004)
3.	(a) $a+b+4=0$ (c) $a-b-4=0$ Product of real roots of $x^2 + x + 9 = 0$ (a) is always positive	•	11.		(b) 12 (d) 4 which the sum of the squares of the $a^2 - (a - 2)x - a - 1 = 0$ assume the (2005) (b) 1
4. 5.	(a) $p = 1$, $q = -2$ (c) $p = -2$, $q = 0$	(d) none of the above (d) none of the above (2002) (b) $p = 0$, $q = 1$ (d) $p = -2$, $q = 1$ al numbers and $a^2 + b^2 + c^2 = 1$,	12.	 (c) 2 If the roots of the consecutive integers (a) 3 (c) 1 	(d) 3 equation $x^2 - bx + c = 0$ be two s, then $b^2 - 4c$ equals (2005) (b) -2 (d) 2
6.	then ab + bc + ca is (a) less than 1 (c) greater than 1 The value of a for which a	(2002) (b) equal to 1 (d) any real no one root of the quadratic equation (x + 2 = 0) is twice as large as the	13.	$x^{2}-2kx+k^{2}+k-5$ then k lies in the interval (a) (6, ∞)	
	(a) $-2/3$ (c) $-\frac{1}{3}$	(2003) (b) $1/3$ (d) $\frac{2}{3}$	14.	1	(d) $(-\infty, 4)$ nadratic equations $x^2 + px + q = 0$ are spectively, then the value of $2 + q - p$ is (2006) (b) 3
7. 8.	(a) 4 (c) 3 Let two numbers have arith	n of the equations $x^2 - 3 x + 2 = 0$ is (2003) (b) 1 (d) 2 hmetic mean 9 and geometric mean the roots of the quadratic equation	15.		(d) 1 for which both roots of the equation 0 are greater than -2 but less than 4, (2006) (b) m > 3 (d) 1 < m < 4
	(a) $x^2 + 18x - 16 = 0$ (c) $x^2 + 18x + 16 = 0$	(2004) (b) $x^2 - 18x + 16 = 0$ (d) $x^2 - 18x - 16 = 0$.	16.	If the difference b	between the roots of the equation ess than $\sqrt{5}$, then the set of possible (2007) (b) $(-\infty, -3)$ (d) $(-3, \infty)$

and

17.	The quadratic equations
	$x^2 - 6x + a = 0$

$x^{2}-$	cx +	6 = 0
Λ	UA '	0 0

have one root in common. The other roots of the first and second equations are integers in the ratio 4 : 3. Then the common root is (2008) (a) 2 (b) 1

(u) <u>-</u>	(0)1
(c) 4	(d) 3

18. If the roots of the equation $bx^2 + cx + a = 0$ be imaginary, then for all real values of x, the expression $3b^2x^2 + 6bcx + 2c^2$ is (2009) (a) greater than 4ab (b) less than 4ab

(c) greater than -4ab (d) less than -4ab

19. If α and β are the roots of the equation $x^2 - x + 1 = 0$, then $\alpha^{2009} + \beta^{2009}$ is equal to (2010)

(a) - 2	(b)-1
(c) 1	(d) 2

Sachin and Rahul attempted to solve a quadratic equation.
 Sachin made a mistake in writing down the constant term and ended up in roots (4, 3). Rahul made a mistake in writing down coefficient of x to get roots (3, 2). The correct roots of equation are (2011)

(a)-4,-3	(b) 6, 1
(c) 4, 3	(d)-6,-1
	ain a ain a 0.1

21. The equation $e^{\sin x} - e^{-\sin x} - 4 = 0$ has (2012) (a) infinite number of real roots

(b) no real roots

- (c) exactly one real root
- (d) exactly four real roots
- 22. Let α and β be the roots of equation $px^2 + qx + r = 0, p \neq 0$. If p, q, r are in A.P. and $\frac{1}{\alpha} + \frac{1}{\beta} = 4$, then the value of $|\alpha - \beta|$ is : (2014)
 - (a) $\frac{2\sqrt{13}}{9}$ (b) $\frac{\sqrt{61}}{9}$

(c)
$$\frac{2\sqrt{17}}{9}$$
 (d) $\frac{\sqrt{3^2}}{9}$

QUADRATIC EQUATION If $a \in R$ and the equation $-3(x - [x])^2 + 2(x - [x]) + a^2 = 0$ (where [x] denotes the greatest integer $\le x$) has no integral solution, then all possible values of a lie in the interval:

(2014)

(a)
$$(-\infty, -2) \cup (2, \infty)$$
 (b) $(-1, 0) \cup (0, 1)$
(c) $(1, 2)$ (d) $(-2, -1)$

23.

24. If equations $ax^2 + bx + c = 0$, $(a, b \in R, a \neq 0)$ and $2x^2 + 3x + 4 = 0$ have a common root then a : b : c equals:

(2014/Online Set-1)

(a)
$$1:2:3$$
(b) $2:3:4$ (c) $4:3:2$ (d) $3:2:1$

25. If $\frac{1}{\sqrt{\alpha}}$ and $\frac{1}{\sqrt{\beta}}$ are the roots of the equation, ax²+bx+1=0

 $(a \neq 0, a, b \in R)$, then the equation, $x(x+b^3)+(a^3-3abx)=0$ has roots:

(2014/Online Set-1)

(a)
$$\alpha^{3/2}$$
 and $\beta^{3/2}$ (b) $\alpha\beta^{1/2}$ and $\alpha^{1/2}\beta$
(c) $\sqrt{\alpha\beta}$ and $\alpha\beta$ (d) $\alpha^{-3/2}$ and $\beta^{-3/2}$

26. If α and β are roots of the equation, $x^2 - 4\sqrt{2} kx + 2e^{4 \ln k} - 1 = 0$ for some k, and $\alpha^2 + \beta^2 = 66$ then $\alpha^3 + \beta^3$ is equal to: (2014/Online Set-2)

- (a) $248\sqrt{2}$ (b) $280\sqrt{2}$
- (c) $-32\sqrt{2}$ (d) $-280\sqrt{2}$

27. The sum of the roots of the equation, $x^2 + |2x - 3| - 4 = 0$, is (2014/Online Set-3)

> (a) 2 (b) -2 (c) $\sqrt{2}$ (d) $-\sqrt{2}$

28. The equation $\sqrt{3x^2 + x + 5} = x - 3$, where x is real, has:

(2014/Online Set-4)

- (a) no solution
- (b) exactly one solution
- (c) exactly two solutions
- (d) exactly four solutions

29.	Let α and β be the roots of equation $x^2 - 6 x - 2 = 0$.	
	If $a_n = \alpha^n - \beta^n$, for $n \ge 1$, then the value of $\frac{a_{10} - 2a_8}{2a_9}$ is	
	equal to: (2015)	
	(a) 3 (b) -3	
	(c) 6 (d) -6	
30.	If $2 + 3i$ is one of the roots of the equation $2x^3 - 9x^2 + kx - 13 = 0, k \in \mathbb{R}$, then the real root of this equation (2015/Online Set-1) (a) exists and is equal to 1	
	(a) exists and is equal to 1	

(b) exists and is equal to $-\frac{1}{2}$

(c) exists and is equal to $\frac{1}{2}$ (d) does not exist

31. A value of b for which the equations $x^2 + bx - 1 = 0$, $x^2 + x + b = 0$, have one root in common is (2015/Online Set-2)

(a) $-\sqrt{2}$		(b) –	i√3
(c) i√5		(d) 🗸	2
	0 11		

32. The sum of all real values of x satisfying the equation

$$(x^2 - 5x + 5)^{x^2 + 4x - 60} = 1$$
 is : (2016)
(a) -4 (b) 6
(c) 5 (d) 3

33. If $b \in C$ and the equations $x^2 + bx - 1 = 0$ and $x^2 + x + b = 0$ have a common root different from -1, then |b| is equal to : (2016/Online Set-1) (a) $\sqrt{2}$ (b) 2

(c) 3 (d) $\sqrt{3}$

If x is a solution of the equation, $\sqrt{2x+1}$ 34.

$$-\sqrt{2x-1} = 1, \left(x \ge \frac{1}{2}\right), \text{ then } \sqrt{4x^2 - 1} \text{ is equal to :}$$
(2016/Online Set-2)

(a)
$$\frac{-}{4}$$
 (b) $\frac{-}{2}$
(c) 2 (d) $2\sqrt{2}$

35. If, for a positive integer n, the quadratic equation, $x(x+1)+(x+1)(x+2)+...+(x+\overline{n-1})(x+n)=10n$ has two consecutive integral solutions, then n is equal (2017)to: (b)9 (a) 12 (c) 10(d)11

36. Let p(x) be a quadratic polynomial such that p(0) = 1. If p(x) leaves remainder 4 when divided by x "1 and it leaves remainder 6 when divided by x + 1; then : (2017/Online Set-1)

(a) p(2) = 11(b) p(2) = 19(d) p(-2) = 11(c) p(-2) = 19

- 37. The number of of λ for which the system of linear equation
 - $2x+4y-\lambda z=0$ $4x + \lambda y + 2z = 0$ $\lambda x + 2y + 2z = 0$ has infinitely many solutions, is (2017/Online Set-1) (a) 0 (b) 1 (c)2(d) 3

38. The sum of all the real values of x satisfying the equation $2^{(x-1)(x^2+5x-50)} = 1$ is: (2017/Online Set-2)

- (b) 14 (a) 16 (c)-4(d) - 5
- 39. If $\lambda \in \mathbb{R}$ is such that the sum of the cubes of the roots of the equation, $x^2 + (2-\lambda)x + (10-\lambda) = 0$ is minimum, then the magnitude of the difference of the roots of this

(2018/Online Set-1) equation is :

(a) $4\sqrt{2}$ (b) $2\sqrt{5}$

(c) $2\sqrt{7}$ (d) 20

40. If f(x) is a quadratic expression such that f(1) + f(2) = 0, and -1 is a root of f(x) = 0, then the other root of f(x) = 0 is : (2018/Online Set-2)

(a) $-\frac{5}{8}$	(b) $-\frac{8}{5}$
(c) $\frac{5}{8}$	(d) $\frac{8}{5}$

Let p, q and r be real numbers $(p \neq q, r \neq 0)$, such that the 41.

> roots of the equation $\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$ are equal in magnitude but opposite in sign, then the sum of squares (2018/Online Set-3) of these roots is equal to :

(a)
$$\frac{p^2 + q^2}{2}$$

(b) $p^{2+} q^2$
(c) $2(p^{2+} q^2)$
(d) $p^{2+} q^{2+r^2}$

OUADRATIC

1.

(a) 0

(c) 3

EXERCISE - 3 : ADVANCED OBJECTIVE QUESTIONS

7.

2. $\cos \alpha$ is a root of the equation $25x^2 + 5x - 12 = 0, -1 < x < 0$, 8. then the value of $\sin 2\alpha$ is (a) 24/25(b) - 12/25(c) - 24/25(d) 20/25Set of all values of x satisfying the inequality 3. $\sqrt{x^2 - 7x + 6} > x + 2$ is (a) $x \in \left(-\infty, \frac{2}{11}\right)$ (b) $x \in \left(\frac{2}{11}, \infty\right)$ 9. (c) $x \in (-\infty, 1] \cup [6, \infty)$ (d) $x \in [6, \infty)$ 4. If the product of the roots of the quadratic equation $mx^2 - 2x + (2m - 1) = 0$ is 3 then the value of m (a) 1 (b) 2 (c) - 1(d) 3 If $\frac{(x+1)}{(2x-1)(3x+1)} = \frac{A}{(2x-1)} + \frac{B}{(3x+1)}$, then 16A+9B is 5. 10. equal to (a)4 (b) 5 (c)6 (d) 8 If a, b, c \in R. For the equation $\frac{1}{x+a} - \frac{1}{x+b} = \frac{1}{x+c}$, 6. 11. if the product of roots is zero, then the sum of roots if $b + c \neq 0$ is

The number of real values of the triplet (a, b, c) for which

(b) 2

(d) infinite

 $a\cos 2x + b\sin^2 x + c = 0$ is satisfied by all real x, is

(a) 0 (b)
$$\frac{2ab}{b+c}$$

(c)
$$\frac{2bc}{b+c}$$
 (d) $\frac{-2bc}{b+c}$

 $\frac{8x^2 + 16x - 51}{(2x - 3)(x + 4)} > 3 \text{ if } x \text{ is such that}$

(a) $x < -4$	(b) $-3 < x < 3/2$
(c) $x > 5/2$	(d) all these true

Let α , β be the roots of $ax^2 + bx + c = 0$ and γ , δ be the roots of $px^2 + qx + r = 0$; and D_1 , D_2 the respective Discriminants of these equations. If α , β , γ , δ , are in A.P., then $D_1 : D_2$

(a)
$$\frac{a^2}{p^2}$$
 (b) $\frac{a^2}{b^2}$

(c)
$$\frac{b^2}{q^2}$$
 (d) $\frac{c^2}{r^2}$

If $0 \le x \le \pi$, then the solution of the equation $16^{\sin^2 x} + 16^{\cos^2 x} = 10$ is given by x equal to

(a)
$$\frac{\pi}{6}, \frac{\pi}{3}$$
 (b) $\frac{\pi}{3}, \frac{\pi}{2}$

- (c) $\frac{\pi}{6}$, $\frac{\pi}{2}$ (d) none of these
- 10. Two real numbers α and β are such that $\alpha + \beta = 3$ and $|\alpha \beta| = 4$, then α and β are the roots of the quadratic equation

(a)
$$4x^2 - 12x - 7 = 0$$
 (b) $4x^2 - 12x + 7 = 0$
(c) $4x^2 - 12x + 25 = 0$ (d) none of these

11. If $(x + 1)^2$ is greater then 5x - 1 and less than 7x - 3 then the integral value of x is equal to

d)4
(

- 12. The value of m for which one of the roots of $x^2 3x + 2m = 0$ is double of one of the roots of $x^2 x + m = 0$ is
 - (a) 0, 2 (b) 0, -2

(c) 2, -2 (d) none of these

	Learn LIVE Online				
22	}				QUADRATIC EQUATION
13.		s of the equation, $x^3 - x - 1 = 0$	21.		e equation $ax^2 + bx + c = 0$ and
	then, $\frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta} + \frac{1+\gamma}{1-\gamma}$	has the value equal to		$S_n = \alpha^n + \beta^n$, then a $S_{n+1} + \beta^n$	
	$1-\alpha$ $1-\beta$ $1-\gamma$, ,		(a) b S_n	(b) $b^2 S_n$
	(a) zero	(b)-1		(c) $2bS_n$	$(d) - bS_n$
	(c)-7	(d) 1	22.	-	+ $bx + ac = 0$ are α , β and roots oc = 0 are α , γ then the value of
14.		ions, $3x^2 + ax + 1 = 0$ and		α , β , γ respectively	be of the or, f then the value of
	$2x^2 + bx + 1 = 0$ have a con expression $5ab - 2a^2 - 3b^2$	mmon root, then the value of the 2 is		(a) a, b, c	(b) b, c, a
	(a) 0	(b) 1		(c) c, a, b	(d) none of these
	(c) -1	(d) none	23.	If the roots of the equation	$x^{3} + Px^{2} + Qx - 19 = 0$ are each
15.		eal numbers, the two equations,		=	roots of the equation,
	$2a^2x^2 - 2abx + b^2 = 0$ and	-			B, C, P and Q are constants then
	(a) no common root			the value of $A + B + C =$	(1) 10
	(b) one common root if 2	$a^2 + b^2 = p^2 + q^2$		(a) 18	(b) 19
	(c) two common roots if 3	3 pq = 2 ab	24	(c) 20	(d) none
	(d) two common roots if 3	3 qb = 2 ap	24.	· •	equation $ax^2 + bx + c = 0$, then $1) + c (x - 1)^2 = 0$ has roots
16.	If $\frac{6x^2 - 5x - 3}{x^2 - 2x + 6} \le 4$, the 1 4 x ² are	east and the highest values of		(a) $\frac{\alpha}{1-\alpha}, \frac{\beta}{1-\beta}$	(b) $\alpha - 1, \beta - 1$
	(a) 0 and 81	(b) 9 and 81		α β	$1-\alpha$ $1-\beta$
	(c) 36 and 81	(d) none of these		(c) $\frac{\alpha}{\alpha+1}, \frac{\beta}{\beta+1}$	(d) $\frac{1-\alpha}{\alpha}, \frac{1-\beta}{\beta}$
17.		puttion $x^2 - 2x + A = 0$ and r & s - 18 x + B = 0 if p < q < r < s be	25.	root of above equation is	
	(a) - 3,77	(b) 3, 77		(a) - d/a	(b) d/a
	(c) $3, -77$	(d) none of these		(c) $(b-a)/a$	(d) $(a - b)/a$
18.		ation $ax^2 + 3x + 2 = 0$ (a < 0), then	26.	If $a, b \in \mathbb{R}$, $a \neq b$. The root	ots of the quadratic equation,
	$\alpha^2 / \beta + \beta^2 / \alpha$ is greater that			$x^{2}-2(a+b)x+2(a^{2}+b^{2})$	=0 are
	(a) 0	(b) 1		(a) Rational and different	(b) Rational and equal
10	(c) 2	(d) none of these		(c) Irrational and different	(d) Imaginary and different
19.		$x - q = 0$ and γ , δ be the roots of	27.		ons $ax^2 + 2cx + b = 0$ and
	$x^2 + px + r = 0$ then $\frac{(\alpha - \gamma)}{(\beta - \gamma)}$	$\frac{(\alpha - \delta)}{(\beta - \delta)} =$		a + 4b + 4c is equal to	c) have a common root, then
	(a) 1	(b) q		(a)-2	(b)-1
	(c) r	(d) q + r		(c) 0	(d) 1
20.	× /	$+1 = 0$ and γ , δ are the roots of	28.	-	- a and $x^2 - 14x + 2a$ must have a then the common factor is
	$x^2 + qx + 1 = 0 \text{ then } (\alpha - \gamma)$				then, the common factor is $(b)(x = 6)$
	(a) $p^2 + q^2$	(b) $p^2 - q^2$		(a) $(x-3)$ (c) $(x-8)$	(b) (x-6)(d) none of these
	(c) $q^2 - p^2$	(d) none of these		(v) (x=0)	(a) none of mese

ledantu

29.	Let $a > 0$, $b > 0$ and $c > equation ax^2 + bx + c = 0$	0. Then both the roots of the	37.	The x ³ + 73
	(a) are real and negative	(b) have negative real parts		root o
	(c) are rational numbers	(d) none of these		respec
30.	If r and s are positive,	then roots of the equation		(a) (-5
	$x^2 - rx - s = 0$ are			(c)(-1
	(a) imaginary		38.	$If(2x^2)$
	(b) real and both positive			(a) for
	(c) real and of opposite si	gns		(b) two
	(d) real and both negative			(c) all
31.	If a, b, $c \in R$ and roots of the real and different, then roots	the equation $ax^2 + 2bx + c = 0$ are ots of the equation	39.	(d) no If(x+
	$(a^2+2b^2-ac)x^2+2b(a+b)$	c) $x + (2b^2 + c^2 - ac) = 0$ are		(a) no
	(a) real and equal	(b) real and unequal		(c) ca
	(c) imaginary	(d) none of these		(0) 04
32.	If $p,q,r,s, \in R$ and α,β	are roots of the equation	40.	If 'x' i
	$x^2 + px + q = 0$ and α^4 and β	b^4 are roots of $x^2 - rx + s = 0$, then		.1
	the roots of $x^2 - 4qx + 2q^2$	-r=0 are		then
	(a) both real	(b) both positive		(a) x e
	(c) both negative	(d) none of these		
33.	If the roots of the quadratic real, then the least value of	c equation $x^2 - 4x - log_3 a = 0$ are of a is		(b) x e
	(a) 81	(b) 1/81		(c) X 6
	(c) 1/64	(d) none of these		(0)
34.		f the equation, $x^4 - Kx^3 + Kx^2 +$ nd M are real numbers then the		(d) x e
	minimum value of $\alpha^2 + \beta^2 + \beta^2$	$+\gamma^2 + \delta^2$ is	41.	The se
	(a) 0	(b)-1		(a) [0,
	(c) 1	(d) 2		(c)[-1
35.		h the sum of the squares of the	42.	Ifone
	roots of the equation $x^2 - e^{-1}$ least value is	(a-2) x - a - 1 = 0 assume the		root is
	(a) 0	(b) 1		(a) 2α
	(c) 2	(d) 3		$(c) 4\alpha$
36.		$x^{3} - px^{2} + qx - r = 0$ are	43.	If α,
	equal in magnitude but or			$\alpha^2 + 2$
	(a) $pr = q$	(b) $qr = p$		$\alpha^2 + 2$
	(c) $pq = r$	(d) none		(a) 0
				(c) 2
				· /

37.	$x^3 + 7x^2 + px + r = 0$ have root of each equation	$5x^2 + px + q = 0$ and two roots in common. If the third is represented by x_1 and x_2		
		espectively, then the ordered pair (x_1, x_2) is		
	(a) $(-5, -7)$	(b)(1,-1)		
20	(c)(-1,1)	(d)(5,7)		
38.		$(+1) = 9x^2$, then equation has		
	(a) four real roots			
	(b) two real and two imag	ginary roots		
	(c) all imaginary			
	(d) none of the above			
39.	If(x+2)(x+3)(x+8)(x+8)(x+8)(x+8)(x+8)(x+8)(x+8)(x+8	+12) = 4x ² , then equation has		
	(a) no real roots	(b) all real roots		
	(c) can't be discussed	(d) none of these		
40.	If 'x' is real and satisfying	g the inequality, $ x < \frac{a}{x} (a \in R)$,		
	then			
	(a) $x \in (0, \sqrt{a})$ for $a > 0$)		
	(b) $x \in (-\sqrt{a}, 0)$ for $a < $	< 0		
	(c) $x \in (-\sqrt{-a}, 0)$ for a	< 0		
	(d) $x \in (-\sqrt{a}, \sqrt{a})$ for a	>0		
41.	The set of real 'x' satisfyi	ng, $ x-1 -1 \le 1$ is		
	(a) [0,2]	(b) [-1, 3]		
	(c)[-1,1]	(d) [1, 3]		
42.	If one root of the equation root is	$4x^2 + 2x - 1 = 0$ is α , then other		
	(a) 2α	(b) $4\alpha^3 - 3\alpha$		
	(c) $4\alpha^3 + 3\alpha$	(d) none of these		
43.		$f x^2 - p (x + 1) - c = 0$ then		
	$\frac{\alpha^2 + 2\alpha + 1}{\alpha^2 + 2\alpha + c} + \frac{\beta^2 + 2\beta + \alpha}{\beta^2 + 2\beta + \alpha}$	$\frac{1}{c}$ is equal to		
	(a) 0	(b) 1		
	(c) 2	(d) none of these		
1				

24	1		
44.	If the equation $(k-2) x^2 - c$ roots as 3 then the value of	(k-4)x-2=0 has difference of of k is	53.
	(a) 1, 3	(b) 3, 3/2	
	(c) 2, 3/2	(d) 3/2, 1	
45.	If the equation $\sin^4 x - (k + 2) \sin^2 x - (k + 3) = 0$ has a solution then k must lie in the interval		
	(a) (-4, -2)	(b) [-3, 2)	
	(c)(-4,-3)	(d)[-3,-2]	
46.	The equation, $\pi^x = -2x^2 +$	6x – 9 has	54.
	(a) no solution	(b) one solution	
	(c) two solutions	(d) infinite solutions	
47.	If both roots of the quadrat p where $p \in R$ then p mus	tic equation $x^2 + x + p = 0$ exceed st lie in the interval	55.
	(a) (-∞, 1)	(b) (-∞, -2)	
	(c) $(-\infty, -2) \cup (0, 1/4)$	(d)(-2,1)	
48.	If both roots of the quadrat distinct and positive then	ic equation $(2-x)(x+1) = p$ are p must lie in the interval	56.
	(a) $p > 2$	(b) 2	
	(c) $p < -2$	$(d) - \infty$	
49.	The quadratic equation, as imaginary root if	$x^2 + bx + c = 0$ will always have	57.
	(a) $a < -1, 0 < c < 1, b > 0$		
	(b) $a < -1, -1 < c < 0, 0 < t$	y <1	
	(c) $a < -1$, $c < 0$, $b > 1$		58.
	(d) $a < -1$, $c < -1$, $1 < b < 2$	2	
50.	If $b > a$ and the equation (x then	(x-a)(x-b)+1=0 has real roots	
	(a) both roots in (a, b)		
	(b) both roots in $(-\infty, a)$		-
	(c) both roots in (b, ∞)		59.
	(d) one root in $(-\infty, a)$ and	l other in (b, ∞)	
51.	•	equation, $x^2 - 2mx + m^2 - 1 = 0$ f m for which α , $\beta \in (-2, 4)$ is	
	(a)(-1,3)	(b)(1,3)	60.
	(c) $(\infty, -1) \cup (3, \infty)$	(d) none	
52.	$x^2 - 2p(x-4) - 15 = 0$ the	of the quadratic equation, n the set of values of p for which he other root is greater than 2 is	
	(a) $(7/3, \infty)$	(b) $(-\infty, 7/3)$	
	(c) $x \in R$	(d) none	

53.	If $b < 0$, then the roots x_1 and x_2 of the equation		
	$2x^2 + 6x + b = 0$, satisfy the condition $\left(\frac{x_1}{x_2}\right) + \left(\frac{x_2}{x_1}\right) < k$		
	where k is equal to		
	(a) - 3	(b) - 5	
	(c) - 6	(d) - 2	
54.	Consider $y = \frac{2x}{1+x^2}$, the	en the range of expression,	
	$y^2 + y - 2$ is		
	(a) [-1, 1]	(b) [0, 1]	
	(c) [-9/4, 0]	(d) [-9/4, 1]	
55.	The least value of expressi	on, $x^2 + 2xy + 2y^2 + 4y + 7$ is	
	(a)-1	(b) 1	
	(c) 3	(d) 7	
56.	If the graph of $ y = f(x)$, wh a $\neq 0$, has the maximum ve	here $f(x) = ax^2 + bx + c, b, c \in \mathbb{R}$, rtical height 4, then	
	(a) $a > 0$	(b) $a < 0$	
	(c) $(b^2 - 4ac)$ is negative	(d) Nothing can be said	
57.	Set of all possible real value $(x-(a-1))(x-(a^2+2)) < 0$	ues of a such that the inequality 0 holds for all $x \in (-1, 3)$ is	
	(a) (1,∞)	(b) (-∞,-1]	
	(c) (-∞, -1)	(d) (0, 1)	
58.	If $a(p + q)^2 + 2bpq + c = c$ ($a \neq 0$) then	0 and $a(p + r)^2 + 2bpr + c = 0$,	
	(a) $qr = p^2 + \frac{c}{a}$	(b) $qr = p^2$	
	(c) $qr = -p^2$	(d) None of these	
59.		$q(x) = lx^2 + mx + n$ with = 1 and $p(3) - q(3) = 4$, then	
	(a) 0	(b) 5	
	(c) 6	(d) 9	
60.	If $x \in R$, then the maximum	n value of	
	$y=2(a-x)\left(x+\sqrt{x^2+b^2}\right)$) is	
	(a) $a^2 + b^2$	(b) $a^2 - b^2$	
	(c) $a^2 + 2b^2$	(d) none of these	

QUADRATIC EQUATION

- 61. If a, b, $c \in R$, a > 0 and $c \neq 0$ Let α and β be the real and distinct roots of the equation $ax^2 + bx + c = |c|$ and p, q be the real and distinct roots of the equation $ax^2 + bx + c = 0$. Then
 - (a) p and q lie between α and β
 - (b) p and q do not lie between α and β
 - (c) Only p lies between α and β
 - (d) Only q lies between α and β
- 62. Let $f(x) = ax^2 + bx + c$; a, b, $c \in \mathbb{R}$. If f(x) takes real values for real values of x and non-real values for non-real values of x, then a satisifes.
 - (a) a > 0 (b) a = 0(c) a < 0 (d) $a \in R$
- 63. The value of a for which the equations $x^3 + ax + 1 = 0$ and $x^4 + ax^2 + 1 = 0$ have a common root is

(a) –2	(b)-1
(c) 1	(d) 2

64. The equation
$$x^{\left[(\log_3 x)^2 - (9/2)\log_3 x + 5\right]} = 3\sqrt{3}$$
 has

- (a) at least one real solution
- (b) exactly three real solutions
- (c) exactly one irrational solution
- (d) non real roots

(

65. For a > 0, the roots of the equation

$log_{ax} a + log_{x} a^{2} +$	$\log_{a^2x} a^3 = 0$, are given by
(a) $a^{-4/3}$	(b) $a^{-3/4}$
(c) $a^{-1/2}$	$(d) a^{-1}$

66. The roots of the equation, $(x^2 + 1)^2 = x(3x^2 + 4x + 3)$, are given by

(a)
$$2 - \sqrt{3}$$
 (b) $(-1 + i\sqrt{3})/2$, $i = \sqrt{-1}$
(c) $2 + \sqrt{3}$ (d) $(-1 - i\sqrt{3})/2$, $i = \sqrt{-1}$

- 67. If 0 < a < b < c, and the roots α , β of the equation $ax^2 + bx + c = 0$ are non real complex roots, then (a) $|\alpha| = |\beta|$ (b) $|\alpha| > 1$
 - (c) $|\beta| < 1$ (d) none of these

68. Let a, b, $c \in R$. If $ax^2 + bx + c = 0$ has two real roots A and B where $A \le -1$ and $B \ge 1$, then

(a)
$$1 + \left| \frac{b}{a} \right| + \frac{c}{a} < 0$$
 (b) $1 - \left| \frac{b}{a} \right| + \frac{c}{a} < 0$

(c)
$$|c| < |a|$$
 (d) $|c| < |a| - |b|$

69.
$$5^{x} + (2\sqrt{3})^{2x} - 169 \le 0$$
 is true in the interval.

(a)
$$(-\infty, 2)$$
(b) $(0, 2)$ (c) $(2, \infty)$ (d) $(0, 4)$

- 70. If a < b < c < d, then for any positive λ , the quadratic equation $(x-a)(x-c) + \lambda(x-b)(x-d) = 0$ has
 - (a) non-real roots
 - (b) one real root between a and c
 - (c) one real root between b and d
 - (d) irrational roots

71. Equation
$$\frac{\pi^{e}}{x-e} + \frac{e^{\pi}}{x-\pi} + \frac{\pi^{\pi} + e^{e}}{x-\pi-e} = 0$$
 has

- (a) one real root in (e,π) and other in $(\pi e,e)$
- (b) one real root in (e,π) and other in $(\pi, \pi + e)$
- (c) two real roots in $(\pi e, \pi + e)$
- (d) No real root
- 72. If a < 0, then root of the equation $x^2 2a |x a| 3a^2 = 0$ is

(a)
$$a(-1-\sqrt{6})$$
 (b) $a(1-\sqrt{2})$
(c) $a(-1+\sqrt{6})$ (d) $a(1+\sqrt{2})$

73. If a, b, c \in R and α is a real root of the equation $ax^2 + bx + c = 0$, and β is the real root of the equation

$$-ax^2 + bx + c = 0$$
, then the equation $\frac{a}{2}x^2 + bx + c = 0$ has

- (a) real roots
- (b) none- real roots
- (c) has a root lying between α and β
- (d) None of these

Assertion Reason

- (A) If both ASSERTION and REASON are true and reason is the correct explanation of the assertion.
- (B) If both ASSERTION and REASON are true but reason is not the correct explanation of the assertion.
- (C) If ASSERTION is true but REASON is false.
- (D) If both ASSERTION and REASON are false.
- (E) If ASSERTION is false but REASON is true.

(E)	If ASSERTION is false but REASON is true.	
74.	Assertion	: If roots of the equation $x^2 - bx + c = 0$ are two consecutive integers, then $b^2 - 4c = 1$.
	Reason	 If a, b, c are odd integer then the roots of the equation 4abc x² + (b² - 4ac) x - b = 0 are real and distinct.
	(a) A	(b) B
	(c) C	(d) D
	(e)E	
75.	Assertion	: If one roots is $\sqrt{5} - \sqrt{2}$ is then the
		equation of lowest degree with rational coefficient is $x^4 - 14x^2 + 9 = 0$.
	Reason	: For a polynomial equation with rational co-efficient irrational roots occurs in pairs.
	(a) A	(b) B
	(c) C	(d) D
	(e) E	
76.	Assertion	: The set of all real numbers a such that $a^2 + 2a$, $2a + 3$ and $a^2 + 3a + 8$ are the sides of a traiangle is $(5, \infty)$.
	Reason	: Since in a triangle sum of two sides is greater than the other and also sides are always positive.
	(a) A	(b) B
	(c) C	(d) D
	(e) E	
77.	Assertion	: The number of roots of the equation
		$\sin(2^x)\cos(2^x) = \frac{1}{4}(2^x + 2^{-x})$ is 2.
	Reason	: $AM \ge GM$.
	(a) A	(b) B
	(c) C	(d) D
	(e) E	

-0			10 1		. 1 2 . 2 . 1 . 1	
78.	Assertion	1 :	: lfa>b	> c and a ³	$+b^3+c^3=3abc$, then	1
			the equ	lation ax ²	+bx + c = 0 has one	e
		positiv	e and one	e negative real roots	•	
Reason		:	If roo	ts of opp	posite nature, the	ı
			produc	et of root	s < 0 and $ sums o$	f
			roots ≥	<u>></u> 0.		
	(a) A	(b) B	(c) C	(d) D	(e) E	

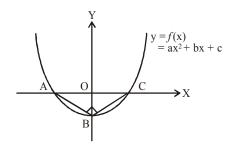
QUADRATIC EQUATION

Using the following passage, solve Q.79 to Q.81

Passage -1

In the given figure vertices of \triangle ABC lie on y = f(x)= $ax^2 + bx + c$. The \triangle ABC is right angled isosceles triangle

whose hypotenuse AC = $4\sqrt{2}$ units, then



79. y = f(x) is given by

(a)
$$y = \frac{x^2}{2\sqrt{2}} - 2\sqrt{2}$$
 (b) $y = \frac{x^2}{2} - 2$

(c)
$$y = x^2 - 8$$
 (d) $y = x^2 - 2\sqrt{2}$

80. Minimum value of y = f(x) is

(a) $2\sqrt{2}$	(b) $-2\sqrt{2}$
(c) 2	(d) - 2

81. Number of integral value of k for which $\frac{k}{2}$ lies between the roots of f(x) = 0, is (a) 9 (b) 10

Using the following passage, solve	Q.82 to Q.84
------------------------------------	--------------

 $\label{eq:Passage-2} \label{eq:Passage-2}$ If roots of the equation $x^4-12x^3+bx^2+cx+81=0$ are positive then

82. Value of b is

83.

(a) – 54	(b) 54
(c)27	(d)-27

Value of c is	
(a) 108	(b)-108
(c) 54	(d) - 54

84. Root of equation 2bx + c = 0 is

$(a) - \frac{1}{2}$	(b) $\frac{1}{2}$
(c) 1	(d)-1

Match the column

85. The value of k for which the equation

 $x^3 - 3x + k = 0$ has

Column–I	Column-II
(A) three distinct real roots	(P) $ k > 2$
(B) two equal roots	(q) $k = -2, 2$
(C) exactly one real root	(R) $ k < 2$
(D) three equal roots	(S) no value of k

86. Column–I Column–II
(A) Number of real solution of (P) 2

$$|x+1|=e^x$$
 is
(B) The number of non-negative (Q) 3
real roots of $2^x-x-1=0$ equal to
(C) If p and q be the roots of the (R) 6
quadratic equation
 $x^2 - (\alpha - 2) x - \alpha - 1 = 0$, then
minimum value of $p^2 + q^2$ is
equal to
(D) If α and β are the roots of (S) 5

$$2x^2 + 7x + c = 0 \& |\alpha^2 - \beta^2| = \frac{7}{4},$$

then c is equal to

Subjective

87. When x^{100} is divided by $x^2 - 3x + 2$, the remainder is $(2^{k+1}-1)x - 2(2^k-1)$ where k is a numerical quantity, then k must be.

88. If roots
$$x_1$$
 and x_2 of $x^2 + 1 = \frac{x}{a}$ satisfy

$$|x_1^2 - x_2^2| > \frac{1}{a}$$
, then $a \in \left(-\frac{1}{2}, 0\right) \cup \left(0, \frac{1}{\sqrt{k}}\right)$

the numerical quantity k must be equal to

- 89. The integral part of positive value of *a* for which, the least value of $4x^2 4ax + a^2 2a + 2$ on [0, 2] is 3, is
- 90. If x, y, z are unequal and positive and if x + y + z = 1, the

expression
$$\frac{(1+x)(1+y)(1+z)}{(1-x)(1-y)(1-z)}$$
 is greater than

(The best possible number)

EXERCISE - 4 : PREVIOUS YEAR JEE ADVANCED QUESTIONS

Single Answer Question	2 . 2
1. Let $a > 0$, $b > 0$ and $c > 0$. Then, both the roots of the equation $ax^2 + bx + c = 0$ (1979)	8. The equation $x - \frac{2}{x-1} = 1 - \frac{2}{x-1}$ has (1984)
equation $ax^2 + bx + c = 0$ (1979) (a) are real and negative (b) have negative real parts (c) have positive real parts (d) None of the above 2. Both the roots of the equation (x-b)(x-c)+(x-a)(x-c)+(x-a)(x-b)=0 are always (1980) (a) positive (b) negative	(a) no root (b) one root (c) two equal roots (d) infinitely many roots 9. If $\log_{0.3}(x-1) < \log_{0.09}(x-1)$, then x lies in the interval (1985) (a) $(2, \infty)$ (b) $1, 2$) (c) $(-2, -1)$ (d) None of these 10. If a, b and c are distinct positive numbers, then the expression $(b + c - a) (c + a - b) (a + b - c) - abc$ is (1986)
(c) real (d) None of these 3. The least value of the expression $2 \log_{10} x - \log_x (0.01)$, for $x > 1$, is (1980) (a) 10 (b) 2 (c) -0.01 (d) None of these 4. The number of real solutions of the equation $ x ^2 - 3 x + 2 = 0$ is (1982) (a) 4 (b) 1	(a) positive (b) negative (c) non-positive (d) non-negative 11. If α and β are the roots of $x^2 + px + q = 0$ and α^4 , β^4 are the roots of $x^2 - rx + s = 0$, then the equation $x^2 - 4qx + 2q^2 - r = 0$ has always, if α and β are real numbers. (1989) (a) two real roots (b) two positive roots
(a) 4 (b) 1 (c) 3 (d) 2 5. If x_1, x_2, \dots, x_n are any real numbers and n is any positive integer, then (1982) (a) $n \sum_{i=1}^n x_i^2 < \left(\sum_{i=1}^n x_i\right)^2$ (b) $\sum_{i=1}^n x_i^2 \ge \left(\sum_{i=1}^n x_i\right)^2$ (c) $\sum_{i=1}^n x_i^2 \ge n \left(\sum_{i=1}^n x_i\right)^2$ (d) None of these	(b) two positive roots (c) two negative roots (d) one positive and one negative root 12. The equation $x^{\frac{3}{4}(\log_2 x)^2 + \log_2 x - \frac{5}{4}} = \sqrt{2}$ has (1989) (a) at least one real solution (b) exactly three real solutions (c) exactly one irrational solution (d) complex roots
6. The largest interval for which $x^{12}-x^9+x^4-x+1>0$ is (1982) (a) $-4 < x \le 0$ (b) $0 < x < 1$ (c) $-100 < x < 100$ (d) $-\infty < x < \infty$ 7. If $a + b + c = 0$, then the quadratic equation $3ax^2+2bx+c=0$ has (1983) (a) at least one root in (0, 1) (b) one root in (2, 3) and the other in (-2, -1) (c) imaginary roots (d) None of the above	13. Let a,b,c be real numbers, $a \neq 0$. If α is a root of $a^2x^2 + bx + c = 0$, β is the root of $a^2x^2 - bx - c = 0$ and $0 < \alpha < \beta$, then the equation $a^2x^2 + 2bx + 2c = 0$ has a root γ that always satisfies (1989) (a) $\gamma = \frac{\alpha + \beta}{2}$ (b) $\gamma = \alpha + \frac{\beta}{2}$ (c) $\gamma = \alpha$ (d) $\alpha < \gamma < \beta$ 14. Let $f(x)$ be a quadratic expression which is positive for all real values of x. If $g(x) = f(x) + f'(x) + f''(x)$, then for any real x (1990) (a) $g(x) < 0$ (b) $g(x) > 0$ (c) $g(x) = 0$ (d) $g(x) \ge 0$

15.	The number log, 7 is	(1990)	24.
	(a) an integer	(b) a rational number	
	(c) an irrational number	(d) a prime number	
16.	Let α , β be the roots of the	e equation	
	$(\mathbf{x}-\mathbf{a})(\mathbf{x}-\mathbf{b})$	$=$ c, c \neq 0	
	Then the roots of the equat	tion $(x - \alpha) (x - \beta) + c = 0$ are	
		(1992)	
	(a) a, c	(b) b, c	25.
	(c) a, b	(d) a + c, b + c	
17.	The equation $\sqrt{x+1} - \sqrt{x}$	$x-1 = \sqrt{4x-1}$ has (1997)	
	(a) no solution		
	(b) one solution		
	(c) two solutions		26.
	(d) more than two solution	18	
		- (P) (O)	
18.	In a triangle PQR, $\angle R = \frac{\pi}{2}$	$\frac{r}{2}$, if $tan\left(\frac{P}{2}\right)$ and $tan\left(\frac{Q}{2}\right)$ are	
	the roots of the equation as	$x^{2} + bx + c = 0$ (a $\neq 0$), then	27.
		(1999)	
	(a) a + b = c	(b) $b + c = a$	
	(c) a + c = b	$(\mathbf{d}) \mathbf{b} = \mathbf{c}$	
19.	If the roots of the equation and less than 3, then	$x^2 - 2ax + a^2 + a - 3 = 0$ are real (1999)	28.
	(a) $a < 2$	(b) $2 \le a \le 3$	
	(c) $3 < a < 4$	(d) $a > 4$	
20.		e the roots of the equation	
	$x^{2} + bx + c = 0$, where $c < 0$		
	(a) $0 < \alpha < \beta$	(b) $\alpha < 0 < \beta < \alpha $	
	(c) $\alpha < \beta < 0$	(d) $\alpha < 0 \alpha < \beta$	
21.	If $b > a$, then the equation		29.
		(2000)	
	(a) both roots in (a, b)		
	(b) both roots in $(-\infty, a)$		
	(c) both roots in $(b, +\infty)$.1 .1	20
••	(d) one root in $(-\infty, a)$ and		30.
22.	For the equation $3x^2 + px +$ square of the other, then p	3=0, p>0, if one of the root is is equal to (2000)	
	(a) 1/3	(b) 1	
	(c) 3	(d) 2/3	
23.	The number of solutions of	$f \log_4(x-1) = \log_2(x-3)$ is	
		(2001)	
	(a) 3	(b) 1	
	(c) 2	(d) 0	

equations (k+1)x + 8y = 4kkx + (k+3)y = 3k - 1has infinitely many solution, is (2002) (a) 0 (b) 1 (d) infinite (c) 2 5. The set of all real numbers x for which $x^2 - |x+2| + x > 0$ is (2002) (b) $\left(-\infty, -\sqrt{2}\right) \cup \left(\sqrt{2}, \infty\right)$ (a) $(-\infty, -2) \cup (2, \infty)$ (c) $(-\infty, -1) \cup (1, \infty)$ (d) $(\sqrt{2}, \infty)$ For all 'x', $x^2 + 2ax + (10 - 3a) > 0$, then the interval in which 6. 'a' lies is (2004) (b) - 5 < a < 2(a) a < -5(c) a > 5(d) 2 < a < 5

The number of values of k for which the system of

27. If one root is square of the other root of the equation $x^2 + px + q = 0$, then the relation between p and q is

(a)
$$p^3 - (3p-1)q + q^2 = 0$$
 (b) $p^3 - q(3p+1) + q^2 = 0$
(c) $p^3 + q(3p-1) + q^2 = 0$ (d) $p^3 + q(3p+1) + q^2 = 0$
28. If a, b, c are the sides of a triangle ABC such that $x^2 - 2(a+b+c)x + 3\lambda(ab+bc+ca) = 0$ has real roots, then
(2006)

(a)
$$\lambda < \frac{4}{3}$$
 (b) $\lambda > \frac{5}{3}$
(c) $\lambda \in \left(\frac{4}{3}, \frac{5}{3}\right)$ (d) $\lambda \in \left(\frac{1}{3}, \frac{5}{3}\right)$

29. Let α , β be the roots of the equation $x^2 - px + r = 0$ and $\alpha/2$, 2β be the roots of the equation $x^2 - qx + r = 0$. Then the value of r is (2007)

(a)
$$2/9 (p-q) (2q-p)$$
 (b) $2/9 (q-p) (2p-q)$
(c) $2/9 (q-2p) (2q-p)$ (d) $2/9 (2p-q) (2q-p)$

60. Let p and q be the real numbers such that $p \neq 0$, $p^3 \neq q$ and $p^3 \neq -q$. If α and β are non-zero complex numbers satisfying $\alpha + \beta = -p$ and $\alpha^3 + \beta^3 = q$, then a quadratic

equation having
$$\frac{\alpha}{\beta}$$
 and $\frac{\beta}{\alpha}$ as its roots is (2010)

(a)
$$(p^3+q) x^2 - (p^3+2q) x + (p^3+q) = 0$$

(b) $(p^3+q) x^2 - (p^3-2q) x + (p^3+q) = 0$
(c) $(p^3-q) x^2 - (5p^3-2q) x + (p^3-q) = 0$
(d) $(p^3-q) x^2 - (5p^3+2q) x + (p^3-q) = 0$

OUADRATIC EQUATION

31. Let
$$\alpha$$
 and β be the roots of $x^2 - 6x - 2 = 0$, with $\alpha > \beta$. If
 $a_n = \alpha^n - \beta^n$ for $n \ge 1$, then the value of $\frac{a_{10} - 2a_8}{2a}$ is

(2011)

- (a) 1 (b) 2 (c) 3 (d)4
- 32. A value of b for which the equations $x^2 + bx - 1 = 0$, $x^2 + x + b = 0$ have one root in common is (2011)

(a)
$$-\sqrt{2}$$
 (b) $-i\sqrt{3}$

(c)
$$i\sqrt{5}$$
 (d) $\sqrt{2}$

The quadratic equation p(x) = 0 with real coefficients has 33. purely imaginary roots.

Then the equation

$$p(p(x)) = 0$$

has

(a) only purely imaginary roots

(b) all real roots

(c) two real and two purely imaginary roots

(d) neither real nor purely imaginary roots

34. Let S be the set of all non-zero real numbers α such that the quadratic equation $\alpha x^2 - x + \alpha = 0$ has two distinct real roots x₁ and x₂ satisfying the inequality $|x_1 - x_2| < 1$. Which of the following intervals is(are) a subset(s) of S?

(2015)

(2014)

(a)
$$\left(-\frac{1}{2}, -\frac{1}{\sqrt{5}}\right)$$
 (b) $\left(-\frac{1}{5}, 0\right)$
(c) $\left(0, \frac{1}{\sqrt{5}}\right)$ (d) $\left(\frac{1}{\sqrt{5}}, \frac{1}{2}\right)$

Let $-\frac{\pi}{6} < \theta < -\frac{\pi}{12}$. Suppose α_1 and β_1 are the roots of the 35. equation $x^2 - 2x \sec \theta + 1 = 0$ and α_2 and β_2 are the roots of the equation $x^2 + 2x \tan \theta - 1 = 0$. If $\alpha_1 > \beta_1$ and $\alpha_2 > \beta_2$, then $\alpha_1 + \beta_2$ equals. (2016) (a) 2 (sec θ – tan θ) (b) $2 \sec \theta$ (d)0

(c) $-2 \tan \theta$

Assertion & Reason

- (A) If ASSERTION is true, REASON is true, REASON is a correct explanation for ASSERTION.
- **(B)** If ASSERTION is true, REASON is true, REASON is not a correct explanation for ASSERTION.
- If ASSERTION is true, REASON is false (C)
- (D) If ASSERTION is false, REASON is true

Let a, b, c, p, q be the real numbers. Suppose α , β are the roots of the equation $x^2 + 2px + q = 0$ and $\alpha, \frac{1}{\beta}$ are the

roots of the equation $ax^2 + 2bx + c = 0$, where $\beta^2 \notin \{-1,0,1\}.$ (2008)

Assertion : $(p^2-q)(b^2-ac) \ge 0$

Reason : $b \notin pa \text{ or } c \notin qa$.

(a) (b) (c)(d)

Passage Q. 37-39

If a continuous f defined on the real line R, assumes positive and negative values in R, then the equation f(x) = 0 has a root in R. For example, if it is known that a continuous function f on R is positive at some point and its minimum values is negative, then the equation f(x) = 0has a root in R.

Consider $f(x) = ke^{x} - x$ for all real x where k is real constant. (2007)

37. The line y = x meets $y = ke^{x}$ for $k \le 0$ at (a) no point (b) one point

(u) no point	(b) one point
(c) two points	(d) more than two points

38. The positive value of k for which $ke^{x} - x = 0$ has only one root is

(a)
$$\frac{1}{e}$$
 (b) 1

 $(d) \log_{a} 2$

39. For k > 0, the set of all values of k for which $ke^{x} - x = 0$ has two distinct roots, is

(a)
$$\left(0,\frac{1}{e}\right)$$
 (b) $\left(\frac{1}{e},1\right)$
(c) $\left(\frac{1}{e},\infty\right)$ (d) $(0,1)$

Passage Q. 40 to 42

(c) e

Consider the polynomial $f(x) = 1 + 2x + 3x^2 + 4x^3$. Let s be the sum of all distinct real roots of f(x) and let t = |s|

(2010)

40. The real numbers s lies in the interval

(a)
$$\left(-\frac{1}{4},0\right)$$
 (b) $\left(-11,-\frac{3}{4}\right)$
(c) $\left(-\frac{3}{4},-\frac{1}{2}\right)$ (d) $\left(0,\frac{1}{4}\right)$

41. The area bounded by the curve y = f(x) and the lines x = 0, y = 0 and x = t, lies in the interval

(a)
$$\left(\frac{3}{4}, 3\right)$$
 (b) $\left(\frac{21}{64}, \frac{11}{16}\right)$

42. The function f'(x) is

(a) increasing in
$$\left(-t, -\frac{1}{4}\right)$$
 and decreasing in $\left(-\frac{1}{4}, t\right)$
(b) decreasing in $\left(-t, -\frac{1}{4}\right)$ and increasing in $\left(-\frac{1}{4}, t\right)$
(c) increasing in $(-t, t)$

(d) $\left(0, \frac{21}{64}\right)$

- (d) decreasing in (-t, t)

Passage Q. 43 and 44

Let p, q be integers and let α , β be the roots of the equation, $x^2 - x - 1 = 0$, where $\alpha \neq \beta$. For $n = 0, 1, 2, \dots$, let $a_n = p\alpha^n + q\beta^n$.

FACT : If a and b are rational numbers and $a + b\sqrt{5} = 0$, then a = 0 = b. (2017)

43. If $a_4 = 28$, then p + 2q =(a) 12 (b) 21 (c) 14 (d) 7

44. $a_{12} =$

(a) $a_{11} + 2a_{10}$	(b) $a_{11} + a_{10}$
(c) $a_{11} - a_{10}$	(d) $2a_{11} + a_{10}$

Fill in the Blanks

- 45. If $2 + i\sqrt{3}$ is a root of the equation $x^2 + px + q = 0$, where p and q are real, then $(p, q) = (\dots)$. (1982)
- 46. If the products of the roots of the equation $x^2-3kx + 2e^{2\log k} 1 = 0$ is 7, then the roots are real for $k = \dots$. (1984)
- 47. If the quadratic equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ ($a \neq b$) have a common root, then the numerical value of a + b is (1986)
- 48. The solution of the equation $\log_7 \log_5 (\sqrt{x+5} + \sqrt{x}) = 0$ is (1986)
- **49.** If α , β , γ are the cube roots of p, p < 0, then for any x, y and

z, then
$$\frac{x\alpha + y\beta + z\gamma}{x\beta + y\gamma + z\alpha} = ...$$
 (1990)

50. The sum of all the real roots of the equation $|x-2|^2+|x-2|-2=0$ is (1997)

True/False

51. If x - r is a factor of the polynomial

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0, \text{ repeated m times}$ (1 < m ≤ n), then r is a root of f'(x) = 0 repeated m times.

52. The equation $2x^2 + 3x + 1 = 0$ has an irrational root.

53. If a < b < c < d, then the roots of the equation (x-a)(x-c)+2(x-b)(x-d)=0 are real and distinct.

54. If P (x) = $ax^2 + bx + c$ and Q(x) = $-ax^2 + bx + c$, where $ac \neq 0$, then P (x) Q (x) has at least two real roots.

(1978)

Subjective Questions

55. Show that the square of $\frac{\sqrt{26-15\sqrt{3}}}{5\sqrt{2}-\sqrt{(38+5\sqrt{3})}}$ is a rational

56. If α and β are the roots of the equation $x^2 + px + 1 = 0$; γ , δ are the roots of $x^2 + qx + 1 = 0$, then $q^2 - p^2 = (\alpha - \gamma) (\beta - \gamma) (\alpha + \delta) (\beta + \delta)$ (1978)

57. Solve
$$2 \log_x a + \log_{ax} a + 3 \log_b a = 0$$
,
where $a > 0$, $b = a^2 x$

58. If α and β are the roots of $x^2 + px + q = 0$ and γ , δ are the roots of $x^2 + rx + s = 0$, then evaluate $(\alpha - \gamma) (\beta - \gamma) (\alpha - \delta) (\beta - \delta)$ in terms of p, q, r and s.

(1978)

- 59. Show that for any triangle with sides a,b,c; $3(ab+bc+ca) \le (a+b+c)^2 \le 4 (ab+bc+ca)$ (1979)
- **60.** Find the integral solutions of the following systems of inequalities

(b)
$$\frac{x}{2x+1} \ge \frac{1}{4}, \frac{6x}{4x-1} < \frac{1}{2}$$
 (1979)

61. For what values of m, does the system of equations

$$3x + my = m$$

and $2x - 5y = 20$

(a) $5x-1 < (x+1)^2 < 7x-3$

has solution satisfying the conditions x > 0, y > 0?

(1980)

62. If one root of the quadratic equation $ax^2 + bx + c = 0$ is equal to the nth power of the other, then show that

$$(ac^{n})^{\frac{1}{n+1}} + (a^{n}c)^{\frac{1}{n+1}} + b = 0$$
 (1983)

- 63. Find all real values of x which satisfy $x^2 3x + 2 > 0$ and $x^2 2x 4 \le 0$. (1983)
- 64. If a > 0, b > 0 and c > 0 prove that

$$(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \ge 9$$
 (1984)

- 65. Solve for x $(5+2\sqrt{6})^{x^2-3} + (5-2\sqrt{6})^{x^2-3} = 10$ (1985)
- 66. For $a \le 0$, determine all real roots of the equation $x^2 - 2a |x-a| - 3a^2 = 0$ (1986)

67. Solve
$$|x^2+4x+3|+2x+5=0$$
 (1987)

68. Find the set of all x for which

$$\frac{2x}{2x^2 + 5x + 2} > \frac{1}{x + 1}$$
(1987)

69. Solve the x the following equation $(x^2 + 2x + 2x)$

$$\log_{(2x+3)}(6x^{2}+23x+21) = 4 - \log_{(3x+7)}(4x^{2}+12x+9)$$
(1987)

70. Let a, b, c be real. If $ax^2 + bx + c = 0$ has two real roots α and β , where $\alpha < -1$ and $\beta > 1$, then show that

$$1 + \frac{c}{a} + \left| \frac{b}{a} \right| < 0 \tag{1995}$$

- 71. Let S be a square of unit area. Consider any quadrilateral which has one vertex on each side of S. If a, b, c and d denote the length of the sides of the quadrilateral, prove that $2 \le a^2 + b^2 + c^2 + d^2 \le 4$ (1997)
- 72. Find the set of all solutions of the equation $2^{|y|} - |2^{y-1} - 1| = 2^{y-1} + 1$ (1997)
- 73. Let $f(x) = Ax^2 + Bx + C$ where, A, B, C are real numbers. Prove that if f(x) is an integer whenever x is an integer, then the numbers 2A, A + B and C are all integers. Conversely, prove that if the numbers 2A, A + B and C are all integers, then f(x) is an integer whenever x is an integer. (1998)
- 74. If α , β are the roots of $ax^2 + bx + c = 0$, $(a \neq 0)$ and $\alpha + \delta$, $\beta + \delta$ are the roots of $Ax^2 + Bx + C = 0$, $(A \neq 0)$ for some constant δ , then prove that

$$\frac{b^2 - 4ac}{a^2} = \frac{B^2 - 4AC}{A^2}$$
 (2000)

75. Let $-1 \le p < 1$. Show that the equation $4x^3 - 3x - p = 0$ has a unique root in the interval [1/2, 1] and identify it.

- 76. Let a, b, c be real numbers with $a \neq 0$ and let α , β be the roots of the equation $ax^2 + bx + c = 0$. Express the roots of $a^3x^2 + abcx + c^3 = 0$ in terms of α , β . (2001)
- 77. If $x^2 + (a-b)x + (1-a-b) = 0$ where $a, b \in \mathbb{R}$, then find the values of a for which equation has unequal real roots for all values of b. (2003)
- **78.** If α , β are the roots of $ax^2 + bx + c = 0$, $(a \neq 0)$ and $\alpha + \delta$, $\beta + \delta$, are the roots of $Ax^2 + Bx + C = 0$, $(A \neq 0)$ for some

constants δ , then prove that $\frac{b^2 - 4ac}{a^2} = \frac{B^2 - 4AC}{A^2}$ (2004)

79. If $x^2 - 10ax - 11b = 0$ have roots c & d, $x^2 - 10cx - 11d = 0$ have roots a and b. $(a \neq c)$ Find a+b+c+d. (2006)

Integer Answer Type Questions

- 80. The smallest value of k, for which both the roots of the equation $x^2 8kx + 16(k^2 k + 1) = 0$ are real, distinct and have values at least 4, is.... (2009)
- 81. Let (x, y, z) be points with integer coordinates satisfying the system of homogeneous equations 3x-y-z=0, -3x+z=0, -3x+2y+z=0. Then the number of such points for which $x^2 + y^2 + z^2 \le 100$ is...

(2009)

82. Let ω be the complex number $\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$. Then the number of distinct complex number z satisfying

$$\begin{vmatrix} z+1 & \omega & \omega^2 \\ \omega & z+\omega^2 & 1 \\ \omega^2 & 1 & z+\omega \end{vmatrix} = 0 \text{ is equal to.....}$$
(2010)

83. Let *a*, *b*, *c* be three non-zero real numbers such that the equation $\sqrt{3}a\cos x + 2b\sin x = c, x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, has two

distinct real roots α and β with $\alpha + \beta = \frac{\pi}{3}$. Then, the value

of
$$\frac{b}{a}$$
 is _____. (2018)

Learn LIVE Online

ANSWER KEY

EXERCISE - 1 : BASIC OBJECTIVE QUESTIONS

1. (b)	2. (c)	3. (d)	4. (d)	5. (c)	6. (d)	7. (b)	8. (b)	9. (d)	10. (a)
11. (a)	12. (c)	13. (a)	14. (a)	15.(b)	16.(b)	17.(b)	18. (a)	19. (c)	20. (d)
21. (b)	22. (a)	23. (d)	24. (c)	25.(b)	26. (c)	27. (c)	28. (d)	29. (a)	30. (b)
31. (b)	32. (c)	33. (b)	34. (d)	35.(b)	36.(b)	37.(b)	38. (a)	39. (b)	40. (a)
41. (b)	42. (d)	43. (a)	44. (a)	45. (a,b)	46.(c)	47.(c)	48. (a)	49. (b)	50. (b,c)
51. (c)	52. (a)	53. (a)	54. (b)	55.(b)	56.(b)	57.(b)	58. (a)	59. (a)	60. (a)
61. (a)	62. (d)	63. (a)	64. (a,b,c,d)	65.(b)	66. (a,b,c,d)	67.(b)	68. (a)	69. (d)	70. (b)
71. (c)	72.(b)	73. (c)	74. (d)	75.(d)	76. (c)	77.(b)	78. (d)	79. (d)	80. (c)

EXERCISE - 2 : PREVIOUS YEAR JEE MAINS QUESTIONS

1. (d)	2. (a)	3.(c)	4. (a)	5. (a)	6. (d)	7. (a)	8. (b)	9. (a)	10. (c)
11. (b)	12. (c)	13. (d)	14. (b)	15.(c)	16. (c)	17. (a)	18. (c)	19. (c)	20. (b)
21. (b)	22. (a)	23. (b)	24. (b)	25. (a)	26.(b)	27. (c)	28. (a)	29. (a)	30. (c)
31. (c)	32. (d)	33. (d)	34. (a)	35.(d)	36. (c)	37.(b)	38. (c)	39. (b)	40. (d)
41. (b)									

EXERCISE - 3 : ADVANCED OBJECTIVE QUESTIONS

1. (d)	2. (a,c)	3. (a)	4. (c)	5. (c)	6. (d)	7. (d)	8. (a)	9. (a)	10. (a)
11. (c)	12. (b)	13. (c)	14. (b)	15. (a)	16. (a)	17. (a)	18. (d)	19. (a)	20. (c)
21. (d)	22. (c)	23. (a)	24. (c)	25. (a,d)	26. (d)	27. (c)	28. (c)	29. (b)	30. (c)
31. (c)	32. (d)	33. (b)	34. (b)	35.(b)	36. (c)	37. (a)	38. (a)	39. (b)	40. (a,c)
41.(b)	42. (b)	43.(b)	44. (b)	45.(d)	46. (a)	47.(b)	48.(b)	49. (d)	50. (a)
51. (a)	52.(b)	53. (d)	54. (c)	55.(c)	56.(b)	57.(b)	58. (a)	59. (d)	60. (a)
61. (a)	62.(b)	63. (a)	64. (a,b,c)	65. (a,c)	66. (a,b,c,d)	67. (a,b)	68. (a,b)	69. (a,b)	70. (b,c)
71. (b,c)	72. (b,c)	73. (a,c)	74. (b)	75. (a)	76. (a)	77. (e)	78. (a)	79. (a)	80. (b)
81. (c)	82.(b)	83.(b)	84. (c)	85. A–R; E	3–Q; C–P; D–S	86. A–Q; I	3–P; C–S; D–	R	
87.0099	88.0005	89.0008	90.0008						

EXERCISE - 4 : PREVIOUS YEAR JEE ADVANCED QUESTIONS

1. (b)	2. (c)	3. (d)	4. (a)	5. (d)	6. (d)	7. (a)	8. (a)	9. (a)	10. (b)
11. (a,d)	12. (a,b,c)	13. (d)	14. (b)	15. (c)	16. (c)	17. (a)	18. (a)	19. (a)	20. (b)
21. (d)	22. (c)	23. (b)	24. (b)	25. (b)	26.(b)	27. (a)	28. (a)	29. (d)	30. (b)
31. (c)	32. (b)	33. (d)	34. (a, d)	35. (c)	36.(b)	37.(b)	38. (a)	39. (a)	40. (c)
41. (a)	42. (b)	43. (a)	44. (b)	45.(-4,7)	46.k = 2	471	48.x = 4	49. w^2	50.4
51. False	52. False	53. True	54. True	57. $x = a^{-1/2}$	or a ^{-4/3}	58. $(q - s)^2$	-rqp-rsp+	$sp^2 + qr^2$	
60. (a) $x = 3$	(b) $x = \phi$	61. m $\in \left(-6\right)$	$\infty, -\frac{15}{2} \bigg) \cup (3)$	$(0,\infty)$	63. x ∈[1−	$\sqrt{5}, 1) \cup [1 +$	√5, 2)	65. $x = \pm 2$	$2, \pm \sqrt{2}$
66. x = {a ($(1 - \sqrt{2})$, a ($\sqrt{2}$	$\overline{6}$ -1)}	67. x = −4,	$(-1-\sqrt{3})$	68. x ∈ (−2	$,-1)\cup\left(-\frac{2}{3},\right.$	$-\frac{1}{2}$		
69. $x = -\frac{1}{4}$	72. y ∈ {−1	$\in [1,\infty)$	75. $x = \cos \theta$	$\left(\frac{1}{3}\cos^{-1}p\right)$	76. x = $\alpha^2 \beta$,	$\alpha\beta^2$			
77. $a > 1$	79.1210	80.k=2	81.7	82.1	83.(0.5)				