

PHYSICAL EQUILIBRIUM

Physical reaction :

Those reactions in which change in only & only physical states of substances takes place without any chemical change.

(i) Ice-water system (melting of ice) :

 $\begin{array}{c} Ice_{(s)} + Heat \rightleftharpoons water_{(\ell)} \\ \text{(more volume)} \end{array}$

It is an endothermic process & there is decrease in volume. Thus, the favourable conditions for melting of ice are high temperature, & High-pressure.

(ii) Water -Water vapour system (vapourisation of water) :

 $water_{(\ell)} \rightleftharpoons vapour_{(g)}$ (less volume) (more volume)

It is an endothermic process & there is increase in volume. Thus, the favourable conditions for vaporisation of water are high temperature, & low-pressure.

(iii) Solubility of gases in liquids :

 $Gas_{(0)} + water_{(0)} \rightleftharpoons Aqueous solution_{(0)}$

When a gas dissolve in liquid, these is decrease in volume. Thus, increase in pressure will favour the dissolution of a gas in liquid.

LE-CHATELIER'S

PRINCIPLE

If a system at equilibrium is subjected to a change of any one of the factors such as concentration, pressure or temperature then the equilibrium is shifted in such a way as to nullify the effect of change.

Le-Chatelier's principle is applicable for both chemical and physical equilibrium.

(CHEMICAL EQUILIBRIUM)

S. No.	Effect due to change in		$\Delta n_{g} = 0$ $A \rightleftharpoons B$	$\Delta n_g > 0$ $A \rightleftharpoons 2B$	$\Delta n_g < 0$ $2A \rightleftharpoons B$
a)	Concentration	 (i) ↑ [A] (ii) ↓ [A] 	Forward direction Backward direction	Forward direction Backward direction	Forward direction Backward direction
b)	Pressure	(i) \uparrow in pressure (ii) \downarrow in pressure	Unchanged Unchanged	Backward direction Forward direction	Forward direction Backward direction
c)	Temperature	 (i) ↑ in Endothermic (ii) ↑ in Exothermic 	Forward direction Backward direction	Forward direction Backward direction	Forward direction Backward direction
d)	Dissociation	(i) ↑ in pressure(ii) ↑ in volume	Unchanged Unchanged	Dissociation Decreases Dissociation Increases	Dissociation Increases Dissociation Decreases
e)	Mixing of inert gas	(i) at constant P(ii) at constant V	Unchanged Unchanged	Dissociation Increases Unchanged	Dissociation Decreases Unchanged