SEMICONDUCTOR ELECTRONICS: MATERIALS, **DEVICES AND SIMPLE** CIRCUITS

- The conductivity of intrinsic semiconductor 1. germanium at 27° is 2.13 mhom⁻¹ and mobilities of electrons and holes are 0.38 and $0.18 \text{ m}^2\text{V}^-$ ¹s⁻¹ respectively. The density of charge carriers is
- 0.25Ω 1Ω (a) (b) (d) 5Ω (c) 0.5Ω
- $2.37 \times 10^{19} \,\mathrm{m}^{-3}$ (b) $3.28 \times 10^{19} \,\mathrm{m}^{-3}$ (a)
- $7.83 \times 10^{19} \, {\rm m}^{-3}$ (d) $8.47 \times 10^{19} \,\mathrm{m}^{-3}$ (c)
- Pure Silicon at 500 K has equal electron (n_{e}) and 2. hole (n_h) concentration of 1.5×10^{16} m⁻³. Doping by indium increases n_h to $4.5 \times 10^{22} \text{ m}^{-3}$. The n_e in the doped silicon is
 - (a) 9×10^5 (b) 5×10^9 (c) 2.25×10^{11} 3×10^{19} (d)
- The I-V characteristic of a P-N junction diode is 3. shown below. The approximate dynamic resistance of the p-n junction when a forward bias of 2 volt is applied is

- A zener diode of voltage V_Z (= 6V) is used to 4. maintain a constant voltage across a load resistance R_I (= 1000 Ω) by using a series resistance R_{e} (=100 Ω). If the e.m.f. of source is E (= 9 V), what is the power being dissipated in Zener diode ?
 - (a) 0.144 watt 0.324 watt (b)
 - 0.244 watt (d) 0.544 watt (c)
- The electric conductivity of an intrinsic 5. increases semiconductor when the electromagnetic waves of wavelength equal or shorter than 3895 nm is incident on it. The band gap of the semiconductor is
 - 1.2 eV 0.3 eV (b) (a)
 - $1.0\,\mathrm{eV}$ 1.5 eV (d)(c)
- What is the conductivity of a semiconductor 6. sample having electron concentration of 5×10^{18} m^{-3} , hole concentration of $5 \times 10^{19} m^{-3}$, electron mobility of $2.0 \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$ and hole mobility of $0.01 \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$?

(Take charge of electron as 1.6×10^{-19} C)

- (a) $1.68 (\Omega m)^{-1}$ (b) $1.83 (\Omega m)^{-1}$

- A p-n photodiode is made of a material with a 7. band gap of 2.0eV. The minimum frequency of the radiation that can be absorbed by the material is nearly
 - (b) $20 \times 10^{14} Hz$ (a) $1 \cdot 10^{14} Hz$
 - (d) $5 \times 10^{14} Hz$ $10 imes 10^{14}$ Hz (c)
- Figure shows a circuit in which three identical 8. diodes are used. Each diode has forward resistance of 20 Ω and infinite backward resistance. Resistors $R_1 = R_2 = R_3 = 50 \Omega$. Battery voltage is 6 V. The current through R_3 is :

- 15mA, 7.5mA, 7.5mA (b)
- 12.5mA, 5mA, 7.5mA (c)
- 12.5mA, 7.5mA, 5mA (d)
- In a common emitter configuration with suitable 12. bias, it is given than R_{L} is the load resistance and R_{BE} is small signal dynamic resistance (input side). Then, voltage gain, current gain and power gain are given, respectively, by:

(β is current gain, I_B , I_C , I_E are respectively base, collector and emitter currents)

(a)
$$\beta \frac{R_L}{R_{BE}}, \frac{\Delta I_E}{\Delta I_B}, \beta^2 \frac{R_L}{R_{BE}}$$

(b) $\beta^2 \frac{R_L}{R_{BE}}, \frac{\Delta I_C}{\Delta I_B}, \beta \frac{R_L}{R_{BE}}$
(c) $\beta^2 \frac{R_L}{R_{BE}}, \frac{\Delta I_C}{\Delta I_E}, \beta^2 \frac{R_L}{R_{BE}}$

- In a transistor, a change of 8.0 mA in the emitter 9. current produces a change of 7.8 mA in the collector current. What change in the base current is necessary to produce the same change in the collector current?
 - 100 µA 50µA (a) (b)
 - 200 µA 150µA (d) (c)
- In a *CE* transistor amplifier, the audio signal 10. voltage across the collector resistance of $2 k\Omega$ is 2 V. If the base resistance is $1 k\Omega$ and the current amplification of the transistor is 100, the input signal voltage is :
 - $0.1\,\mathrm{V}$ 1.0V(a) (b)
 - $1 \mathrm{mV}$ (d) 10 mV(c)
- **11.** A Zener diode is connected to a battery and a load as shown below:

The currents, I, I_Z and I_L are respectively.

(d)
$$\beta \frac{R_L}{R_{BE}}, \frac{\Delta I_C}{\Delta I_B}, \beta^2 \frac{R_L}{R_{BE}}$$

13. The input resistance of a silicon transistor is 100 Ω . Base current is changed by 40 μ 4 which results in a change in collector current by 2 mA. This transistor is used as a common emitter amplifier with a load resistance of 4 k Ω . The power gain of the amplifier is :

(a)	10^{5}	(b)	10^{3}
	10^{6}	(d)	10^{2}

- With increasing biasing voltage of a photodiode, 14. the photocurrent magnitude :
 - remains constant (a)
 - increases initially and after attaining cer-(b)tain value, it decreases
 - Increases linearly (c)
 - increases initially and saturates finally (d)
- In the given circuit, the current through zener 15. diode is:

19. A common emitter amplifier has a voltage gain of 49, an input impedance of 100Ω and an output impedance of 490 Ω . The power gain of the amplifier is

(a)	500	(b)	499
(c)	490	(d)	501

- 20. If the given transistor is used as an amplifier then for input resistance of 80Ω and load resistance of $16k\Omega$, the output voltage corresponding to the input voltage of 12mV will be
 - 37.5mV 37500 V(a) (b)
 - 300 V(d) 300mV (c)
- 21. Figure consists of two NOT gates followed by a NOR gate. This combination is equivalent to a single

- A pure semiconductor has equal electron and 17. hole concentration of 10¹⁶ m⁻³. Doping by gallium increases n_h to 5×10^{22} m⁻³. Then, the 23. A logic gate and its truth table are shown below: value of n_e in the doped semiconductor is
 - (a) $10^{6}/m^{3}$ (b) $10^{22}/m^{3}$
 - (c) $2 \times 10^{6}/m^{3}$ (d) $2 \times 10^{9}/m^{3}$
- A diode having potential difference 0.5 V across 18. its junction which does not depend on current, is connected in series with resistance of 20Ω across source. If 0.1 A current passes through resistance then what is the voltage of the source?

(a) 1.5 V		(b)	2.0V	\mathbf{V}	
(c)	2.5 V	(d)	5V		

(a)	NAND gate	(b)	AND gate
(c)	ORgate	(d)	XOR gate

The load resistance and the input resistance of 22. a CE amplifier are respectively $10 \,\mathrm{k}\Omega$ and $2 \,\mathrm{k}\Omega$. If β of the transistor is 49, the voltage gain of the amplifier is

(a)	125	(b)	150
(c)	175	(d)	245

А О- В О-)—0 `
A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

The gate is :

(a)	NOR	(b)	AND
(c)	OR	(d)	NOT

24. The given figure shows the wave forms for two inputs A and B and that for the output Y of a logic circuit. The logic circuit is a/an.

25. To get an output 1 from the circuit shown in the figure, the input must be

(a) A=0, B=1, C=0 (b) A=1, B=0, C=0(c) A=1, B=0, C=1 (d) A=1, B=1, C=0

ANSWER KEY																	
1	(a)	4	(a)	7	(d)	10	(d)	13	(a)	16	(a)	19	(c)	22	(d)	25	(c)
2	(b)	5	(b)	8	(a)	11	(d)	14	(d)	17	(d)	20	(c)	23	(c)		
3	(b)	6	(a)	9	(d)	12	(d)	15	(b)	18	(c)	21	(b)	24	(a)		

Semiconductor Electronics: 28 Materials, Devices and Simple Circuits

1. (a) Conductivity,
$$\sigma = \frac{1}{\rho} = c(n_e \mu_e + n_h \mu_h)$$

ie, 2.13 = 1.6 × 10⁻¹⁹(0.38 + 0.18) n_i
(Since in intrinsic semi-conductor, $n_e = n_h = n_i$)
 \therefore density of charge carriers,
 $n_i = \frac{2.13}{1.6 \times 10^{-19} \times 0.56} = 2.37 \times 10^{19} \text{ m}^{-3}$.
2. (b) $n_i^2 = n_e \cdot n_h$
3. (b) $R = \frac{\Delta V}{\Delta I} = \frac{2.1 - 2}{(800 - 400) \times 10^{-3}} = \frac{1}{4} = 0.25 \Omega$
4. (a) Here, $E = 9V$; $V_z = 6$; $R_L = 1000\Omega$ and $R_s = 100\Omega$,

10. (d) Given, $R_C = 2 k\Omega$ $V_{\rm C} = 2 V$ $R_{\rm B} = 1 \, k\Omega$ $\beta = 100$ $\frac{V_{C}}{V_{i}} = \beta \cdot \frac{R_{C}}{R_{R}} \implies \frac{2}{V_{i}} = 100 \cdot \frac{2}{1}$ \Rightarrow V_i = 10 mV **11.** (d) Here, $R = 4 k\Omega = 4 \times 10^3 \Omega$ $V_{i} = 60 \, \text{V}$ Zener voltage $V_z = 10 \text{ V}$ $R_L = 2 \,\mathrm{k}\Omega = 2 \times 10^3 \,\Omega$ Load current, $I_{\rm L} = \frac{V_Z}{R_L} = \frac{10}{2 \times 10^3} = 5 \text{ mA}$ Current through $R, I = \frac{V_i - V_Z}{D}$ $=\frac{60-10}{4\times10^3}=\frac{50}{4\times10^3}=12.5$ mA Fom circuit diagram, $I = I_Z + I_L \Longrightarrow 12.5 = I_Z + 5 \Longrightarrow I_Z = 7.5 \text{ mA}$ **12.** (d) Current gain $\beta = \frac{\Delta I_C}{I_D}$ Voltage gain $A_v = Current gain \times Resistance gain$ $\Rightarrow \beta \frac{R_L}{R_{BE}}$ Power gain $A_p = (Current gain)^2 \times Resistance$ gain $\Rightarrow \beta^2 \frac{R_L}{R_{BE}}$ 13. (a) 14. (d) I-V characteristic of a photodiode is as follows: mA Reverse bias

Potential drop across series resistor $V = E - V_z = 9 - 6 = 3V$ Current through series resistance R_S is $I = \frac{V}{R} = \frac{3}{100} = 0.03 A$ Current through load resistance R₁ is $I_{\rm L} = \frac{V_Z}{R_{\rm T}} = \frac{6}{1000} = 0.006 \,\rm{A}$ Current through Zener diode is $I_Z = I - I_L = 0.03 - 0.006 = 0.024$ amp. Power dissipated in Zener diode is $P_Z = V_Z I_Z = 6 \times 0.024 = 0.144$ Watt (b) Forbidden energy gap $\Rightarrow \frac{hc}{\lambda} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{3895 \times 10^{-9} \times 1.6 \times 10^{-19}}$ $= 0.003 \times 10^2 \,\mathrm{eV} = 0.3 \,\mathrm{eV}$ (a) The conductivity of semiconductor $\sigma = e \left(\eta_e \mu_e + \eta_h \mu_h \right)$ $= 1.6 \times 10^{-19} (5 \times 10^{18} \times 2 + 5 \times 10^{19} \times 0.01)$ $= 1.6 \times 1.05 = 1.68$ (d)

5.

6.

7.

8. (a) Here, diodes D_1 and D_2 are forward biased and D_3 is reverse biased. Therefore current through R₃

$$i = \frac{V}{R'} = \frac{6}{120} = \frac{1}{20}A = 50 \text{ mA}$$

On increasing the biasing voltage of a photodiode, the magnitude of photocurrent first increases and then attains a saturation.

15. (b)

The voltage drop across R_2 is $V_{R_2} = V_Z = 10 V$ The current through R_2 is

$$I_{R_2} = \frac{V_{R_2}}{R_2} = \frac{10 \text{ V}}{1500\Omega} = 0.667 \times 10^{-2} \text{ A}$$
$$= 6.67 \times 10^{-3} \text{ A} = 6.67 \text{ mA}$$
The voltage drop across R₁ is

On increasing the biasing voltage of a 19. (c) Power gain = voltage gain \times current gain

$$V_{R_1} = 15V - V_{R_2} = 15V - 10V = 5V$$

The current through R_1 is

$$I_{R_1} = \frac{V_{R_1}}{R_1} = \frac{5V}{500\Omega} = 10^{-2} A$$
$$= 10 \times 10^{-3} A = 10 \text{ mA}$$

The current through the zener diode is

$$I_Z = I_{R_1} - I_{R_2} = (10 - 6.67)mA = 3.3mA$$

- 16. (a) For same value of current higher value of voltage is required for higher frequency hence(a) is correct answer.
- 17. (d) Here. $n_i = 10^{16} \text{ m}^{-3}$, $n_h = 5 \times 10^{22} \text{ m}^{-3}$ As $n_e n_h = n_i^2$

$$\therefore \quad n_{e} = \frac{n_{i}^{2}}{n_{h}} = \frac{(10^{16} \text{ m}^{-3})^{2}}{5 \times 10^{22} \text{ m}^{-3}} = 2 \times 10^{9} \text{ m}^{-3}$$

18. (c)
$$V' = V + IR = 0.5 + 0.1 \times 20 = 2.5 V$$

- 22. (d) Output resistance, $R_0 = 10 \text{ k}\Omega$ Input resistance, $R_i = 2 \text{ k}\Omega$ and $\beta = 49$ Voltage gain, $A_V = \beta \times \frac{R_0}{R_i} = 49$, $\frac{10}{2} = 245$
- 23. (c) The truth table of OR gate is given as

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

- 24. (a) When both A and B are high between time T_3 and T_4 the output Y is high, otherwise zero. Thus the logic gate is AND gate
- 25. (c) A and B are the inputs of an OR gate. If A = 1, and B = 0, the output of OR gate will be 1. Now the output of OR gate along with C make the inputs of an AND gate.

Thus output of OR gate = 1, and C = 1, give the final output of AND gate as 1.