Chapter 11 **Hydroxy Compounds and Ethers**

I. Choose the correct answer

Question 1.

An alcohol (x) gives blue colour in victormayer's test and 3.7g of X when treated with metallic sodium liberates 560 mL of hydrogen at 273 K and 1 atm pressure what will be the possible structure of X?

- (a) CH₃ CH (OH) CH₂CH₃
- (b) $CH_3 CH(OH) CH_3$
- (c) $CH_3 C$ (OH) $(CH_3)_2$
- (d) $CH_3 CH_2 CH$ (OH) $CH_2 CH_3$

Answer:

(a) CH₃ CH (OH) CH₂CH₃

Hint:

 $2R - OH + Na \rightarrow 2RONa + 2H_2 \uparrow 2$ moles of alcohol gives 1 mole of H_2 which occupies 22.4L at 273K and 1 atm

number of moles of alcohol = $\frac{2 \text{ moles of } R-OH}{22.4 \text{ L of H2}} \times 560 \text{ mL} = 0.05 \text{ moles}$

number of moles = $\frac{mass}{\text{molar mass}}$ = molar mass = $\frac{3.7}{0.05}$ = 74 g mol⁻¹

General formula for

 $R - OH C_n H_{2n+1} - OH$

n(12) + (2n+1)(1) + 16 + 1 = 74

14n = 74 - 18

14n = 56

$$n = \frac{56}{4} = 4$$

The 2° alcohol which contains 4 carbon is CH_n CH(OH)CH₂ CH₃

Ouestion 2.

Which of the following compounds on reaction with methyl magnesium bromide will give tertiary alcohol.

- (a) benzaldehyde
- (b) propanoic acid
- (c) methyl propanoate
- (d) acetaldehyde

Answer:

(c) methyl propanoate

Solution:

$$CH_{3} MgBr + CH_{3} - CH_{2} - C - O - CH_{3}$$

$$CH_{3} - CH_{2} - C - OCH_{3}$$

$$CH_{3} - CH_{2} - C - CH_{3}$$

Question 3.

d) None of these

Answer:

a

Solution:

hydro boration – Anti markownikoff product i.e CH₃ – CH₂ – CH – CH₂ – CH₂ – OH

Question 4.

In the reaction sequence, Ethane

$$+OC1 \rightarrow A \xrightarrow{X}$$

Ethan – 1, 2 – diol. A and X respectively are

- (a) Chioroethane and NaOH
- (b) ethanol and H₂SO₄
- (c) 2 chloroethan 1 ol and NaHCO₃
- (d) ethanol and H₂O

Answer:

(c) 2 – chloroethan – 1 – ol and NaHCO₃\

$$CH_2 = CH_2$$
 HOCL CH_2 CH

Solution:

$$\begin{array}{c|cccc} (X) & & & \\ \hline NaHCO_3 & & CH_2 & - CH_2 \\ \hline -NaCl & & | & | \\ -CO_2 & & OH & OH \\ \end{array}$$

Question 5.

Which one of the following is the strongest acid

- (a) 2 nitrophenol
- (b) 4 chlorophenol
- (c) 4 nitrophenol
- (d) 3 nitrophenol

Answer:

(c) 4 - nitrophenol

Question 6.

on treatment with Con. H₂SO₄, predominately gives

a)
$$CH_2$$

d)
$$\langle - \rangle$$
 CH₃

Answer:

b

Solution:

Saytzeff rule
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3

Question 7.

Carbolic acid is

- (a) Phenol
- (b) Picric acid
- (c) benzoic acid
- (d) phenylacetic acid

Answer:

(a) Phenol

Question 8.

Which one of the following will react with phenol to give salicyladehyde after hydrolysis

- (a) Dichioro methane
- (b) trichioroethane
- (c) trichloro methane

(d) CO₂

Answer:

(c) trichloro methane (Riemer Tiemann reaction)

Question 9.

$$(CH_3)_3 - C - CH(OH) CH_3 \xrightarrow{Con H_2SO_4} X$$
 (major product)

- (a) $(CH_3)_3 CCH = CH_2$
- (b) $(CH_3)_2 C = C (CH_3)_2$
- (c) $CH_2 = C(CH_3)CH_2 CH_2 CH_3$
- (d) $CH_2 = C (CH_3) CH_2 CH_2 CH_3$

Answer:

(b) $(CH_3)_2 C = C (CH_3)_2$

Solution:

Question 10.

The correct IUPAC name of the compound,

- (a) 4 chloro 2, 3 dimethyl pentan 1 ol
- (b) 2.3 dimethyl 4 chloropentan 1 ol
- (c) 2, 3, 4 trimethyl 4 chiorobutan 1 ol
- (d) 4 chioro 2, 3, 4 trimethyl pentan 1 ol

Angwer

(a) 4 - chloro - 2, 3 - dimethyl pentan - 1 - ol

Question 11.

Assertion: Phenol is more acidic than ethanol

Reason: Phenoxide ion is resonance stabilized

- (a) if both assertion and reason are true and reason is the correct explanation of assertion.
- (b) if both assertion and reason are true but reason is not the correct explanation of assertion.
- (c) assertion is true but reason is false
- (d) both assertion and reason are false.

Answer:

if both assertion and reason are true and reason is the correct explanation of assertion.

Question 12.

In the reaction Ethanol

$$\xrightarrow{PCl_5} X \xrightarrow{alc.KOH} Y \xrightarrow{H_2SO_4/H_2O} Z$$

is

- (a) ethane
- (b) ethoxyethane
- (c) ethylbisuiphite
- (d) ethanol

Answer:

(d) ethanol

Solution:

$$CH_3$$
- CH_2 - $OH \xrightarrow{PCl_5} CH_3$ - CH_2 - $Cl \xrightarrow{KOH} CH_2$ - CH_2 - CH_2 - CH_2 - CH_3 -

Question 13.

The reaction

can be classified as

- (a) dehydration
- (b) Williams on alcohol synthesis
- (c) Williamson ether synthesis
- (d) dehydrogenation of alcohol

Answer:

(c) Williamson ether synthesis

Solution:

Cyclic alcohol → sodium cyclic alkoxide → Williamson ether synthesis

Question 14.

Isoprophylbcnzene on air oxidation in the presence of dilute acid gives

- (a) C₆H₅COOH
- (b) C₆H₅COCH₃
- (c) C₆H₅COC₆H₅
- (d) $C_6H_5 OH$

Answer:

(a) C_6H_5 – OH (phenol)

Question 15.

Assertion: Phenol is more reactive than benzene towards electrophilic substitution reaction

Reason: In the case of phenol. the intermediate arenium ion is more stabilized by resonance.

- (a) if both assertion and reason are true and reason is the correct explanation of assertion.
- (b) if both assertion and reason are true but reason is not the correct explanation of assertion.
- (c) assertion is true but reason is false
- (d) both assertion and reason are false,.

Answer:

(a) if both assertion and reason are true and reason is the correct explanation of assertion.

Question 16.

HO CH₂ CH₂ – OH on heating with periodic acid gives

- (a) methanoic acid
- (b) Glyoxal
- (c) methanol
- (d) CO₂

Answer:

(c) methanol

Question 17.

Which of the following compound can be used as artireeze in automobile radiators?

- (a) methanol
- (b) ethanol
- (c) Neopentyl alcohol
- (d) ethan -1, 2-diol

Answer:

(d) ethan -1, 2-diol

Question 18.

The reaction

is an example of

- (a) Wurtz reaction
- (b) cyclic reaction
- (c) Williamson reaction
- (d) Kolbe reactions

Answer:

(c) Kolbe reactions

Question 19.

One mole of an organic compound (A) with the formula C₃H₈O reacts completely with two moles of HI to form X and Y. When Y is boiled with aqueous alkali it forms Z. Z answers the iodoform test. The compound (A) is

- (a) propan -2 ol
- (b) propan- 1- ol
- (c) ethoxy ethane
- (d) methoxy ethane

Answer:

(d) methoxy ethane

Solution:

$$C_3 H_8 O \xrightarrow{\text{Excess}} CH_3 - I \quad CH_3 - CH_2 - I \quad \text{aqueous} \quad OH \quad OH$$

$$C_3 H_8 O \xrightarrow{\text{HI}} X + (Y) \xrightarrow{\text{NaOH}} (Z) \text{ (iodoform test)}$$

$$(CH_3 - CH_2 - O - CH_3)$$

Question 20.

Among the following ethers which one will produce methyl alcohol on treatment with hot HI?

a)
$$(H_3C)_3$$
—C—O—C H_3 b) $(CH_3)_2$ —CH—C H_2 —O—C H_3 c) CH_3 — CH_2 —CH—O—C H_3 d) CH_3 — CH_2 —CH—O—C H_3

Answer:

Solution:

Question 21.

Williamson synthesis of preparing dimethyl ether is a / an

- (a) SN¹ reactions
- (b) SN² reaction
- (c) electrophilic addition
- (d) electrophilic substitution

Answer:

(b) SN² reaction

Question 22.

On reacting with neutral ferric chloride, phenol gives

- (a) red colour
- (b) violet colour
- (c) dark green colour
- (d) no colouration

Answer:

(b) violet colour

II. Short Answer

Question 1.

IdentIfy the product (s) is/are formed when 1 – methoxy propane is heated with excess HI. Name the mechanism involved in the reaction.

Answer:

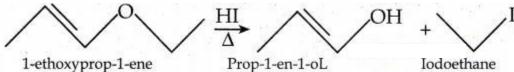
CH₃-O-CH₂-CH₃+HI
$$\rightarrow$$
 CH₃I + CH₃-CH₂-CH₂-OH

1 - methoxy propane

Methyl Iodide

(lodomethane)

 CH_3 -CH₂-CH₂-I+H₂O


1- Iodopropane

Ethers having primary alkyl group undergo S2N reaction

Question 2.

Draw the major product formed when 1 – ethoxyprop – 1 – ene is heated with one equivalent of HI

Answer:

Question 3.

Suggest a suitable reagent to prepare secondary alcohol with an identical groups using a Grignard reagent.

Answer:

$$\begin{array}{c} \text{CH}_3 & \text{CH}_3 \\ \text{CH}_3\text{MgBr} + \text{CH}_3\text{CHO} \longrightarrow \text{CH}_3\text{-CH} - \text{OMgBr} \xrightarrow{\text{H}_2\text{O}} \text{CH}_3 - \text{CH} - \text{OH} & + \text{Mg} \\ \text{Methylmagnesium} & \text{Ethanal} & \text{2-propanol} & \text{OH} \end{array}$$

Question 4.

What is the major product obtained when two moles of ethyl magnesium bromide is treated with methyl benzoate followed by acid hydrolysis

Answer:

Answer:
$$\begin{array}{c} OCH_{3} \\ C_{6}H_{5}-C=0+C_{2}H_{5}MgBr \longrightarrow C_{6}H_{5}-C-OMgBr \xrightarrow{H_{3}O^{+}} C_{6}H_{5}-C=0+Mg \\ Methyl \ benzoate \end{array}$$

$$\begin{array}{c} OCH_{3} \\ C_{6}H_{5}-C=0+C_{2}H_{5}MgBr \longrightarrow C_{6}H_{5}-C-OMgBr \xrightarrow{H_{3}O^{+}} C_{6}H_{5}-C=0+Mg \\ C_{2}H_{5} \\ Acetophenone \end{array}$$

$$\begin{array}{c} C_{2}H_{5} \\ C_{2}H_{5} \\ C_{2}H_{5} \\ C_{2}H_{5} \end{array}$$

$$\begin{array}{c} C_{2}H_{5} \\ C_{2}H_{5} \end{array}$$

Question 5.

Predict the major product, when 2-methyl but – 2 – ene is converted into alcohol in each of the following methods.

- 1. Acid-catalyzed hydration
- 2. Hydroboration
- 3. Hydroxylation using bayers reagent

Answer:

i)
$$CH_3$$
 CH_3 CH_3

(anti - Markownikoff's product)

CH₃

$$CH_3 - C = CH CH_3$$

$$H_2O + [O]$$

$$CH_3 - C - CH CH_3$$

$$CH_3 - C$$

Question 6.

Arrange the following in the increasing order of their boiling point and give a reason for your ordering

- 1. Butan 2 ol, Butan 1 SI, 2 methylpropan 2 ol
- 2. Propan 1 ol, propan 1, 2, 3 triol, propan 1, 3 diol, propan 2 ol

Answer:

1. Boiling points increases regularly as the molecular mass increases due to a corresponding increase in their Van der Waal's force of attraction. Among isomeric alcohols, 2° – alcohols have lower boiling points than 1° – alcohols due to a corresponding decrease in the extent

of H-bonding because of steric hindrance. Thus the boiling point of Butan -2 – ol is lower than that of Butan -1 – ol. Overall increasing order of boiling points is, 2 – methyl propane -2 – ol < Butan – 2 – ol < Butan – 1 – ol

2. 2° -alcohols have lower boiling points than 1° – alcohols due to a corresponding decrease in the extent of H – bonding because of steric hindrance. Therefore Propan – 1 – ol has higher boiling point than Propan – 2 – ol. The hydrogen group increases, boiling point also increases. Overall increasing order of boiling points is, propan – 2 – ol < Propan – 1 – ol < propan – 1, 3 – diol < propan -1, 2, 3 – triol

Question 7.

Can we use nucleophiles such as NH₃, CH₃O for the Nucleophilic substitution of alcohols **Answer:**

1. Increasing order of nucleophilicity, $NH_3 < -OH^{\oplus} < CH_3O^{\ominus}$

- 2. Higher electron density will increase the nucleophilicity.
- 3. Negatively charged species are almost always more nucleophiles than neutral species.
- 4. RO^{\ominus} has an alkyl group attached, allowing a greater amount of polarizability. This means oxygen's lone pairs will be more readily available to reach in RO^{\ominus} than in OH^{\ominus} . Hence CH_3O is the better nucleophile for the nucleophilic substitution of alcohols. NH_3 cannot act as nucleophiles for the nucleophilic substitution of alcohols.

Question 8.

Is it possible to oxidise t – butyl alcohol using acidified dichromate to form a carbonyic compound.

Answer:

3° – alcohols do not undergo oxidation reaction under normal conditions, but at elevated temperature, under strong oxidising agent cleavage of C – C bond takes place to give a mixture of carboxylic acid.

Yes, it is possible. t – butyl alcohol is readily oxiding in acidic solution ($K_2Cr_2O_7$ / H_2SO_4) to a mixture of a ketone and an acid each containing lesser number of carbon atoms than the original alcohol. The oxidation presumably occur via alkenes formed through dehydration of alcohols under acidic conditions.

$$\begin{array}{c} CH_{3} \\ CH_{3} - C - OH \\ CH_{3} \\ CH_{3} \end{array} \xrightarrow{\begin{array}{c} CH_{3} \\ -H_{2}O \end{array}} CH_{3} - C = CH_{2} \xrightarrow{\begin{array}{c} CH_{3} \\ -H_{2}O \end{array}} CH_{3} - C = CH_{2} \xrightarrow{\begin{array}{c} CH_{3} \\ -H_{2}O \end{array}} CH_{3} \xrightarrow{\begin{array}{c} CH_{3} \\ -H_{2}O \end{array}} CH_$$

Question 9.

What happens when 1 – phenyl ethanol is treated with acidified KMnO₄.

Answer:

1 – phenyl ethanol reacts with acidified KMnO₄ to give Acetophenone.

OH
$$CH$$
 CH_3
 $H^+(O)$
 CH_3
 $H^+(O)$
 CH_3
 CH

Question 10.

Write the mechanism of acid catalysed dehydration of ethanol to give ethene.

Answer:

$$CH_3-CH_2-O-H \xrightarrow{H^+HSO_4^-} CH_3-CH_2 \xrightarrow{CH_3-CH_2} CH_2-CH_2$$

$$H \qquad H \qquad -H^+$$

$$CH_2=CH_2 \quad Ethene$$

Question 11.

How is phenol prepared form

- 1. chloro benzene
- 2. isopropyl benzene

Answer:

i) Dow's Process **ONa** QH 633K HC1 + 2 NaOH NaCl 300 bar Chlorobenzene Sodium phenoxide Phenol CH₃ H₃C -о-о-н OH H₂SO₄ + CH₃COCH₃ Acetone Cumene Isopropylbenzene (Cumene) hydroperoxide Phenol

Question 12.

Explain Kolbe's reaction

Answer:

Kolbe's (or) Kolbe's Schmitt reaction:

In this reaction, phenol is first converted into sodium phenoxide which is more reactive than phenol towards electrophilic substitution reaction with CO_2 . Treatment of sodium phenoxide with CO_2 at $400 \, \text{K}$, 4-7 bar pressure followed by acid hydrolysis gives salicylic acid.

Question 13.

Writes the chemical equation for Williamson synthesis of 2 – ethoxy – 2 – methyl pentane starting from ethanol and 2 – methyl pentan – 2 – ol

Answer:

A tertiary alkoxide and primary alkyl halide easily undergo williamson ether synthesis

2-methyl pentan - 2 - ol

$$\begin{array}{ccc} & \text{CH}_3\text{-}\text{CH}_2\text{-}\text{OH} + \text{HI} & \rightarrow \text{CH}_3\text{-}\text{CH}_2\text{I} + \text{H}_2\text{O} \\ & \text{Ethanol} & \text{Iodo Ethane} \end{array}$$

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 $CH_3 - C - CH_2 - CH_2 - CH_3 + CH_3 - C - CH_2 - CH_2 - CH_3 + NaI ONa $CH_3 - C - CH_2 - CH_3 - C - CH_2 - CH_3 + NaI O-CH_2 - CH_3$$

Question 14.

Write the structure of the aldehyde, carboxylic acid and ester that yield 4 - methylpent - 2 – en – 1 – ol.

Answer:

Aldehyde
$$CH_{3}$$

$$CH_{3} - CH - CH = CH - CHO$$

$$CH_{3}$$

$$Carboxylic acid$$

$$CH_{3} - CH - CH = CH - COOH$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3} - CH - CH = CH - CH - CH_{3}$$

$$CH_{3} - COOCH_{2} - CH = CH - CH - CH_{3}$$

Question 15.

What is metamerism? Give the structure and IUPAC name of metamers of 2 – methoxy propane

Answer:

Metamerism:

It is a special type of isomerism in which molecules with same formula, same functional group, but different only in the nature of the alkyl group attached to oxygen.

$$CH_3$$

 $CH_3 - O - CH - CH_3$ 2 - methoxy propane

Metamers:

$$CH_3 - O - CH_2 - CH_2 - CH_3$$
 1 - methoxy propane
 $CH_3 - CH_2 - O - CH_2 - CH_3$ Ethoxyethane

Question 16.

How are the following conversions effected

- 1. benzyl chlorjde to benzyl alcohol
- 2. benzyl alcohol to benzoic acid

Answer:

i)
$$C_6H_5CH_2CI \xrightarrow{NaOH} C_6H_5CH_2OH + NaCI$$

Benzylchloride Benzylalcohol

ii) $C_6H_5CH_2OH \xrightarrow{Na_2Cr_2O_7/H^+} C_6H_5CHO \xrightarrow{(O)} C_6H_5COOH$
Benzyl alcohol Benzaldehyde Benzoic acid

Question 17.

Complete the following reactions

i)
$$CH_3 - CH_2 - OH \xrightarrow{P Br_3} A \xrightarrow{aq.NaOH} B \xrightarrow{Na} C$$

ii) $C_6H_5 - OH \xrightarrow{Zndust} A \xrightarrow{CH_3Cl} B \xrightarrow{acid KMnO_4} C$

iii) $Anisole \xrightarrow{t-butylchloride} ACl_2/FeCl_3 B \xrightarrow{HBr} C$

iv) $CHOHCH_3 \xrightarrow{H^+} A \xrightarrow{i) O_3} B$

Answer:

i)
$$CH_3 - CH_2 - OH \xrightarrow{PBr_3} CH_3 - CH_2 - Br$$

Ethanol

Bromo Ethane

(A)

Ethanol

Bromo Ethane

(B)

Sodium Ethoxide

(C)

Sodi

Question 18.

0.44g of a monohydric alcohol when added to methyl magnesium iodide in ether liberates at STP 112 cm³ of methane with PCC the same alcohol form a carbonyl compound that answers silver mirror test. Identify the compound.

$$C_nH_{2n+1}$$
 - OH + CH₃MgI \rightarrow CH₄ + Mg

1 mole

 C_nH_{2n+1}

(1 mole) 22400 cm3 of Methane can be produced from 1 mole of alcohol

% 112 $\frac{\text{Cm}^2}{\text{Cm}^3}$ of methane is liberated from $\frac{1}{22400} \times 112$ mole of alcohol = 0.005 mole of alcohol

$$n = \frac{W}{M}$$
; $M = \frac{W}{n} = \frac{0.44}{0.005} = 88$

∴ Molar mass of alcohol in 88 g mol⁻¹

 $C_nH_{2n+1}+0H$ $\Rightarrow n \times 12+(2n+1) \times 1+1 \times 16+1 \times 1=88$ 12n+2n+1+16+1=88 14n+18=88 14n=88-18 14n=70 n=70/14=5Answer:

: ie n - pentyl alcohol, or CH_3 - CH_2 - CH - CH_2OH | CH_3 | CH_3 | 2 methyl 1 - butanol.

$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - OH \xrightarrow{PCC} CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_0$$

$$1 - pentanol$$

$$Pentanal$$

$$\downarrow \Lambda g_2 O$$

$$2Ag + CH_3 - CH_2 - CH_2 - CH_2 - COOH$$

Question 19.

Complete the following reactions

i)
$$C_6H_5COCl \rightarrow A$$
 Nitration B (major product)
ii) C_6H_5 -CHCH(OH)CH(CH₃)₂ $Con H_2SO_4$

Answer:

i) OH+ COCI OHT C -
$$O$$
 Phenyl benzoate

(A) Nitration

OHT C - O No2

(B)

4 - Nitro Phenyl/ benzoate

Para isomer (Major product)

HOH C - O HOH C -

(According to Saytzeff's rule, during intramolecular dehydration, if there is a possibility to form C = C bond at different locations, the preferred location is the one that gives the more substituted alkene je, the stable alkene).

Question 20.

Phenol is distilled with Zn dust gives (A) followed by Friedel – crafts alkylation with propyl chloride to give a compound B, B on oxidation gives (C). Identify A,B and C. **Answer:**

Note:

Carbon directly attached to the aromatic ring is called benzylic carbon. If there is hydrogen attached to benzylic carbon it will undergo oxidation.

Question 21.

$$CH_3MgBr+ \underbrace{O} \xrightarrow{H_3O^+} A \xrightarrow{HBr} B \xrightarrow{Mg/ether} C \xrightarrow{HCHO/H_3O^+} D$$

Identify A, B, C, D and write the complete equation.

Answer:

Question 22.

What will be the product for the following reaction

acetylchloride i)
$$CH_3MgBr \rightarrow X \xrightarrow{acidic} K_2Cr_2O_7 \rightarrow A$$
.

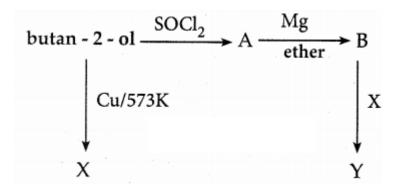
Answer:

Answer:

$$CH_3 - C - Cl$$
 CH_3
 $CH_3 - C - Cl$
 CH_3
 $CH_3 - C - Cl$
 $CH_3 - C + Mg$
 CI
 $CH_3 - C + Mg$
 CI
 $CH_3 - C + Mg$
 CI
 C

Ouestion 23.

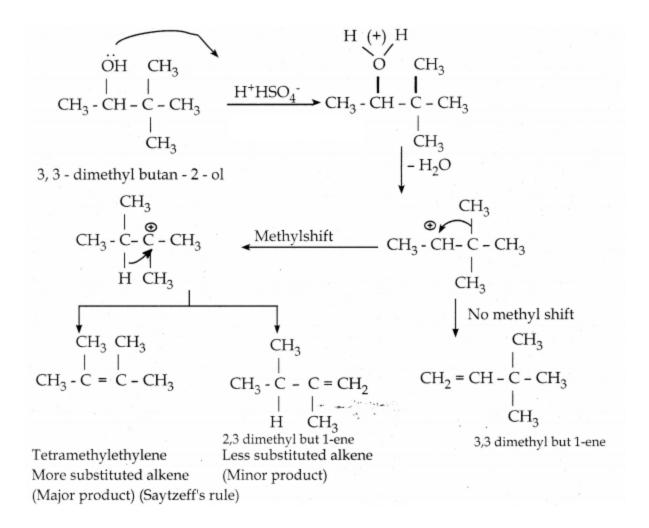
How will you convert acetylene into n – butyl alcohol.


Answer:

$$CH \equiv CH \xrightarrow{42\% \ H_2SO_4} CH_3CHO \xrightarrow{dil \ NaOH} CH_3 - CH - CH_2 - CHO \\ OH$$

$$Acetylene \qquad Acetaldelyde \qquad Aldol \\ CH_3 - CH_2 - CH_2 - CH_2 - OH \xrightarrow{[H]} CH_3 - CH = CH - CHO \\ n - butylalcohol \qquad Crotonaldehyde$$

Question 24.


Predict the product A, B, X and Y in the following sequence of reaction

Answer:

Question 25.

3,3 – dimethyl butane – 2 – ol on treatment with conc. H_2SO_4 to give tetramethyl ethylene as a major product. Suggest suitable mechanisms. **Answer:**

