BIOMOLECULES 28

MCQs with One Correct Answer

- 1. What will happen when D-(+)-glucose is treated with methanolic —HCl followed by Tollens' reagent?
 - (a) A black ppt. will be formed
 - (b) A red ppt. will be formed
 - (c) A green colour will appear
 - (d) No characteristic colour or ppt. will be formed.
- **2.** Which one of the following statements is not true regarding (+) lactose?
 - (a) On hydrolysis (+) lactose gives equal amount of D(+) glucose and D(+) galactose.
 - (b) (+) Lactose is a β-glycoside formed by the union of a molecule of D(+) glucose and a molecule of D(+) galactose.
 - (c) (+) Lactose is a reducing sugar and does not exhibit mutarotation.
 - (d) (+) Lactose, $C_{12}H_{22}O_{11}$ contains 8-OH groups.
- 3. The term anomers of glucose refers to
 - (a) enantiomers of glucose
 - (b) isomers of glucose that differ in configuration at carbon one (C-1)

- (c) isomers of glucose that differ in configurations at carbons one and four (C-1 and C-4)
- (d) a mixture of (D)-glucose and (L)-glucose
- **4.** The linkage between the two monosaccharide units in lactose is
 - (a) C_1 of β -D-glucose and C_4 of β -D-galactose
 - (b) C_1 of β -D-galactose and C_4 of β -D-glucose
 - (c) C_1 of α -D-galactose and C_4 of β -D-glucose
 - (d) C_1 of β -D-galactose and C_4 of α -D-glucose
- Natural glucose is termed D-glucose because :
 - (a) OH on the second carbon is on the right side in Fischer projection
 - (b) OH on the sixth carbon is on the right side in Fischer projection.
 - (c) -OH on the fifth carbon is on the right side in Fischer projection.
 - (d) It is dextrorotatory.
- **6.** Which of the following statement is not correct?
 - (a) Amylopectin is a branched polymer of α glucose.
 - (b) Cellulose is a linear polymer of β-glucose
 - (c) Glycogen is the food reserve of plants
 - (d) All proteins are polymers of α amino acids.

CHEMISTRY 92

- 7. Fructose reduces Tollen's reagent due to:
 - enolisation of fructose followed by conversion to glucose (having aldehydic group) by the base present in Tollen's reagent
 - (b) asymmetric carbons
 - primary alcoholic group
 - (d) secondary alcoholic group
- 8. Cellulose upon acetylation with excess acetic anhydride/H₂SO₄ (catalytic) gives cellulose triacetate whose structure is

(a)

(b)

(c)

- 9. An organic compound with the formula $C_6H_{12}O_6$ forms a yellow crystalline solid with phenylhydrazine and gives a mixture of sorbitol and mannitol when reduced with sodium. Which among the following could be the compound?
 - (a) Fructose
- (b) Glucose
- (c) Mannose
- (d) Sucrose
- 10. **Statement-1:** Treatment of D-glucose with dilute alkali affords an equilibrium mixture consisting of D-mannose, D-fructose and starting substance D-glucose.

Statement-2: The reaction involves an intermediate in which hybridisation of C₂ changes from sp^3 to sp^2 .

- Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- Statement -1 is True, Statement-2 is False.
- Statement -1 is False, Statement -2 is True.
- 11. Which of the statements about "denaturation" given below are correct?
 - (A) Denaturation of proteins causes loss of secondary and tertiary structures of the
 - (B) Denturation leads to the conversion of double strand of DNA into single strand
 - Denaturation affects primary structure which gets distorted
 - (B) and (C)
 - (b) (A) and (C)
 - (c) (A) and (B)
 - (d) (A), (B) and (C)
- During the process of digestion, the proteins present in food materials are hydrolysed to amino acids. The two enzymes involved in the process

Enzyme(A) → Polypeptides **Proteins**

Enzyme(B) Amino acids

are respectively

- Diastase and lipase
- Pepsin and trypsin

Biomolecules 93

- (c) Invertase and zymase
- (d) Amylase and maltase
- 13. In both DNA and RNA, heterocyclic base and phosphate ester linkages are at -
 - (a) C_5' and C_1' respectively of the sugar molecule
 - (b) C_1' and C_5' respectively of the sugar molecule
 - (c) C'_2 and C'_5 respectively of the sugar
 - (d) C_5' and C_2' respectively of the sugar molecule
- 14. Match List I (name of vitamin) with List II (deficiency result/disease) and select the correct answer using the codes given below the lists:

List I List II I. Beri-beri Ascorbic acid A. П. B. Retinol Cracked lips C. III. Riboflavin Scurvy IV. Thiamine Night blindness D. (a) I-B, II-A, III-C, IV-D (b) I-A, II-B, III-C, IV-D (c) I-D, II-C, III-B, IV-A (d) I-C, II-D, III-B, IV-A 15. Chargaff's rule states that in an organism

- - (a) amount of adenine (A) is equal to that of guanine (G) and the amount of thymine (T) is equal to that of cytosine (C)
 - (b) amount of adenine (A) is equal to that of cytosine (C) and the amount of thymine (T) is equal to that of guanine (G)
 - (c) amount of adenine (A) is equal to that of thymine (T) and the amount of guanine (G) is equal to that of cytosine (C)
 - (d) amount of all bases are equal
- **16.** Essential amino acids cannot be made by our body. Which of the following is not essential amino acid?
 - (a) Leucine
- (b) Lysine
- (c) Serine
- (d) Histidine

How many peptide bond(s) is/are present in the following structure?

$$H_2N$$
 O
 N
 O
 O
 O
 O
 O
 O
 O
 O
 O

- (a) One
- (b) Two
- Three
- (d) None of these
- The average energy of each hydrogen bond in A–T pair is x kcal mol⁻¹ and that in G–C pair is y kcal mol⁻¹. Assuming that no other interaction exists between the nucleotides, the approximate energy required in kcal mol⁻¹ to split the following double stranded DNA into two single strands is

[Each dashed line may represent more than one hydrogen bond between the base pair]

- (a) 10x + 9v
- (b) 5x + 3v
- (c) 15x + 6y
- (d) 5x + 45y
- A tetrapeptide is made of naturally occurring alanine, serine, glycine and valine. If the Cterminal amino acid is alanine and the N-terminal amino acid is chiral, the number of possible sequences of the tetrapeptide is
 - (a) 12
- (b)
- (c) 6
- (d)
- 20. Which one of the following is NOT correct?
 - (a) D(-) Fructose exists in furanose structure
 - (b) D (+) Glucose exists in pyranose structure
 - (c) In sucrose the two monosaccharides are held together by peptide linkage
 - (d) Maltose is a reducing sugar

Numeric Value Answer

- 21. A strongly alkaline solution of a monoaminodicarboxylic acid contains how many basic groups?
- How many dipeptides are possible from two molecules of a typical α -amino acid?

94 CHEMISTRY

- 23. The optical rotation of α –D fructose is -21° and that of its β -form is -133° . The equilibrium mixture of these anomers has an optical rotation of -92° . What is the % of α –form (upto one decimal place) in its equilibrium mixture?
- **24.** Consider all possible optical isomers of glucose individually. How many moles of periodic acid will be consumed by reaction of one mole of each optical isomer with it?
- 25. Starch is a polymer of two components: amylose and amylopectin. In the structure of amylopectin straight chain is formed by Ca Cb glycosidic linkage and branching occurs by Cc Cd glycosidic linkage. What is the value of a + b + c + d?

	ANSWER KEY																		
1	(d)	4	(b)	7	(a)	10	(a)	13	(b)	16	(c)	19	(d)	22	(1)	25	(12)		
2	(c)	5	(c)	8	(a)	11	(c)	14	(d)	17	(b)	20	(c)	23	(36.6)				
3	(b)	6	(c)	9	(a)	12	(b)	15	(c)	18	(a)	21	(3)	24	(80)				