
# NAMED REACTION

# Aldol Condensation :

Two molecules of an aldehyde or a ketone undergo condensation in the presence of a base to yield a  $\beta$ -hydroxyaldehyde or a  $\beta$ -hydroxyketone. This reaction is called the aldol condensation. In general Carbonyl compounds which contain  $\alpha$ -H atoms undergo aldol condensation with dil. NaOH. Aldol contains both alcoholic and carbonyl group. It may be acid catalysed.



Mechanism :



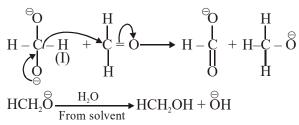
Aldols are stable and may be isolated. They, however can be dehydrated easily by heating the basic reaction mixture or by a separate acid catalyzed reaction.

#### Cannizaro's reaction :

Those aldehydes which do not contain  $\alpha$  -H atom can undergo cannizzaro reaction in presence of concentrated base like (NaOH or KOH); Products of this reaction are Salt of carboxylic acid & alcohol.

In this reaction one molecule of carbonyl compounds is oxidised to acid, while other is reduced to alcohol, such type of reactions are called disproportionation reaction. (Redox reaction).

#### For Example:


HCHO + HCHO 
$$\xrightarrow{\text{Conc.}}$$
 HCOONa + CH<sub>3</sub>OH

Mechanism :

$$H-C-H \xrightarrow{HO^{\ominus}} H-C+H \xrightarrow{r.d.s.} CH_{3}-O^{\ominus} + H-C-O-H \longrightarrow CH_{3}OH + H-C-O^{\ominus}$$

In the presence of a very strong concentration of alkali, aldehyde first forms a doubly charged anion (I) from which a hydride anion is transferred to the second molecule of the aldehyde to form acid and an alkoxide ion. Subsequently, the alkoxide ion acquires a proton from the solvent.

$$H - C - H \xrightarrow{\Theta}_{\Delta} H - C - H \xrightarrow{\Theta}_{OH} H - C - H \xrightarrow{\Theta}_{OH} H - C - H \xrightarrow{O}_{OH} H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C - H - C$$

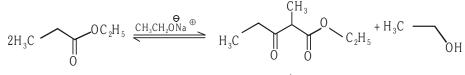


NaOH 、

Note : In cannizzaro reaction the transfer of hydride to the carbonyl group is the RDS of the reaction.

When molecules are same  $\rightarrow$  Simple cannizaro reaction (Disproportionation reaction) Two different molecules  $\rightarrow$  Mixed cannizaro reaction (Simple redox)

In crossed Cannizaro reaction : In crossed Cannizaro reaction more reactive aldehyde is oxidised and less reactive aldelyde is reduced.


> HCOONa + Oxidized (Sodium formate)

C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>OH Reduced (Benzyl alcohol)

# **Claisen condensation :**

 $HCHO + C_6H_5CHO$ 

When two molecules of ester undergo a condensation reaction, the reaction is called Claisen condensation. The product of the claisen condensation is a  $\beta$ -keto ester.



β-keto ester

# Haloform reactions :

Acetaldehyde and methylalkyl ketones react rapidly with halogen ( $Cl_2$ ,  $Br_2$  or  $I_2$ ) in the presence of alkali to give haloform and acid salt.

$$\begin{array}{c} O \\ \parallel \\ R - C - CH_3 \xrightarrow{I_2/NaOH} & R - C - ONa + CHI_3 \end{array} (lodoform)$$

0

In this reaction –  $CH_3$  of  $CH_3 - C$  – group is converted into haloform as it contains acidic hydrogen atom and rest-part of alkyl methyl ketone give acid salt having carbon atom corresponding to alkyl ketone.

$$\begin{array}{c} O \\ \parallel \\ R-C-CH_3 \end{array} \xrightarrow{I_2/NaOH} R \xrightarrow{O} \\ R-C-CI_3 \end{array} \xrightarrow{NaOH} R \xrightarrow{O} \\ R-C-ONa + CHI_3 \end{array} (lodoform)$$

# By Hoffmann's bromamide reaction (Hoffmann's Hypobromite reaction) :

This is a general method for the conversion of alkane amides into one carbon less primary amines. **Example :** 

Ethanamide is heated with bromine and excess of KOH.

$$CH_3CONH_2 + Br_2 + 4KOH \longrightarrow CH_3NH_2 + K_2CO_3 + 2KBr + 2H_2O_3$$

# Mechanism :

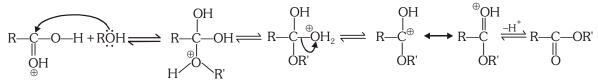
Step  $CH_3$ — $CONH_2 + Br_2 + KOH \longrightarrow CH_3CONHBr + KBr + H_2O$ N-bromo ethanamide Step

$$CH_{3}-C-NHBr \xrightarrow{KOH} CH_{3}-C-\overset{\Theta}{N} - Br + H_{2}O + K^{\oplus}$$

$$O \xrightarrow{G} O \xrightarrow{G} O$$

Step

 $\mathrm{CH}_3 - \mathrm{N} = \mathrm{C} = \mathrm{O} + 2\mathrm{KOH} \rightarrow \mathrm{CH}_3\mathrm{NH}_2 + \mathrm{K}_2\mathrm{CO}_3$ Step


## **Esterification :**

When carboxylic acid reacts with alcohol in the presence of conc.  $H_2SO_4$  to form ester, it is known as esterification

$$\begin{array}{ccc} R - C - OH + R & - OH & \xrightarrow{conc. H_2SO_4} & R - C - OR + H_2O \\ \parallel & & & \\ O & & & \\ \end{array}$$

# **Mechanism :**

$$\begin{array}{cccc} H_2SO_4 & \longrightarrow & H^+ + HSO_4^- \\ R & & & & \\ R & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$



The relative reactivity of alcohol to ester formation markedly dependent on their structure. The greater the bulk of the substituents near the -OH group, the slower the reaction would be same facts is followed by acid as well

 $CH_3OH > CH_3CH_2OH > (CH_3)_2CHOH > (CH_3)_3COH$  $H-COOH > CH_{3}COOH > (CH_{3})_{2}CHCOOH > (CH_{3})_{3}CCOOH$