UNIT – III : CALCULUS CHAPTER-8

DIFFERENTIAL EQUATIONS

Topic-1

Basic Concepts and Variable Separable Methods **Concepts covered:** Definition of differential equation, degree, order, general and particular solutions of a differential equation and solution of differential equations by method of separation of variables.

Revision Notes

Differential Equation :

An equation consisting of an independent variable, dependent variable and differential coefficients of dependent variable with respect to the independent variable is known as differential equation.

e.g.: (i)
$$\frac{d^2y}{dx^2} = -a^2y$$
, (ii) $\frac{dy}{dx} = \frac{x+y}{x^2}$, (iii) $\left| 1 + \left(\frac{dy}{dx}\right)^2 \right|^{3/2} = p\frac{dy}{dx}$

Order of Differential Equation : The order of a differential equation is the order of the highest derivative appearing in the differential equation.

e.g.:
$$\left(\frac{d^3y}{dx^3}\right)^2 - 3\left(\frac{dy}{dx}\right)^3 + 2 = 0$$
 is the differential equation of order 3 because highest order derivative of *y* w.r.t. *x* is $\frac{d^3y}{dx^3}$.

Degree of Differential Equation : The degree of the differential equation is the degree (power) of the highest order derivative, when the differential coefficient has been made free from the radicals and fractions.

e.g. : $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{3}} = 3\frac{d^2y}{dx^2}$ is the differential equation of degree 3, because the power of highest order derivative

 $\frac{d^2y}{dx^2}$ is 3 (after cubing).

> Formation of Differential Equation :

If the equation of the family of curves is given then its differential equation is obtained by **eliminating arbitrary constants** occurring in equation with the help of equation of the curve and the equations obtained by differentiating the equation of the curve.

Algorithm for the Formation of the Differential Equation :

Step 1: Write down the given equation of the curve.

- Step 2: Differentiate the given equation with respect to the independent variable as many times as the number of arbitrary constants.
- Step 3 : Eliminate the arbitrary constants by using given equation and the equations obtained by the differentiation in step2.
- Solution of Differential Equations :
 - (a) General solution : The solution which contains as many as arbitrary constants as the order of the differential

equations, *e.g.*, $y = \alpha \cos x + \beta \sin x$ is the general solution of $\frac{d^2y}{dx^2} + y = 0$.

Here, the differential equation is of second order and there are two arbitrary constants *i.e.*, α and β in the general solution.

(b) Particular solution: Solution obtained by giving particular values to the arbitrary constants in the general solution of a differential equation is called a particular solution *e.g.*, $y = 3 \cos x + 2 \sin x$ is a particular solution

of the differential equation $\frac{d^2y}{dx^2} + y = 0$.

(c) Solution of Differential Equation by Variable Separable Method : A variable separable form of the differential equation is the one which can be expressed in the form of f(x) dx = g(y) dy. The solution is given by

 $\int f(x)dx = \int g(y)dy + k$, or $\int g(y)dy = \int f(n)dn + k$, where *k* is the constant of integration.

Linear Differential Equations

Topic-2

Concepts covered: Solution of linear differential equation in y and solution of linear differential equation in x.

Revision Notes

Linear Differential Equation : A differential equation is said to be linear if dependent variable (say y) and its derivative occurs in the first degree.

- (a) Linear differential equation in *y* : It is of the form $\frac{dy}{dx} + P(x)y = Q(x)$, where P(x) and Q(x) are functions of *x* only.
 - Solution of Linear Differential Equation in y :

Step 1 : Write the given differential equation in the form $\frac{dy}{dx} + P(x)y = Q(x)$.

Step 2 : Find the **integration Factor** (I.F.) $= e^{\int P(x)dx}$. **Step 3 :** The solution is given by, $y(I.F.) = \int Q(x).(I.F.)dx + C$, where *C* is the constant of integration.

(b) Linear Differential equation in x : It is of the form $\frac{dx}{dy} + P(y)x = Q(y)$ where P(y) and Q(y) are functions of x only.

Solution of Linear Differential Equation in *x* :

Step 1 : Write the given differential equation in the form $\frac{dx}{dy} + P(y)x = Q(y)$.

Step 2 : Find the **integration Factor** (I.F.) $= e^{\int P(y)dy}$. **Step 3 :** The **solution** is given by, $x(I.F.) = \int Q(y) \cdot (I.F.) dy + \lambda$, where λ is the constant of integration.

Mnemonics

Concept : Linear Differential equation $\frac{dy}{dx} + Py = Q$

Mnemonics : WHY IF KYON IF

Interpretation : Its solution can be remember as :

$$y \times IF = \int (Q \times IF) dx + C$$

WHY IF KYON IF

Homogeneous Differential Equations Topic-3 Concepts covered: Homogeneous differential equations and their solutions.

Revision Notes

- Homogeneous Differential Equations and their Solutions
 - Identifying a Homogeneous Differential Equation : •

Step 1 : Write down the given differential equation in the form $\frac{dy}{dx} = F(x, y)$. **Step 2**: If $f(kx, ky) = k^n f(x, y)$, then the given differential equation is homogeneous of degree 'n'. • Solving a homogeneous differential equation :

Case I:	If	$\frac{dy}{dx} = f(x, y)$
	Put	y = vx
	\Rightarrow	$\frac{dy}{dx} = v + x \frac{dv}{dx}$
Case II:	If	$\frac{dx}{dy} = f(x, y)$
	Put	x = vy
	⇒	$\frac{dx}{dy} = v + y\frac{dv}{dy}$

Then, we separate the variables to get the required solution.