

P-BLOCK ELEMENTS

EXERCISE-1

[SINGLE CORRECT CHOICE TYPE] Boron Family

			<u>i i unini y</u>				
Q.1	In the following reaction, compound (X) is						
	$B_2H_6 + 2X -$	\rightarrow 2BH ₃ X,					
	$(A) NH_3$	$(\mathbf{B})\mathbf{R}_{3}\mathbf{N}$	(C) RNH ₂	(D) R_2NH			
Q.2	Incorrect statement for	r compound T l I ₃ , is :					
	(A) Oxidation state of	Tl is +1.	(B) Hybridization	(B) Hybridization of central iodine atom is $sp^{3}d$.			
	(C) All iodine atoms an	e not neutral.	(D) Ionic interactions exists between Tl^{3+} and I^{-} ions.				
Q.3	Which statement regarding benzene and borazine is incorrect ?						
	(A) Both are isostructu	ral and isoelectronic	(B) Both have same no. of sp^2 hybridised atoms				
	(C) Reactivity of both	owards HCl is same	(D) Both have 120	σ and 3π bonds in them			
Q.4	Which statement is co	rrect regarding the diag	onal relationship bet	ween Be and Al?			
	(I) Both carbides on h	ydrolysis produces CH₄	t gas				
	(II) Both Be and Al ox	ides are amphoteric in n	lature.				
	(III) In vapour state chlorides of both exist as chloro-bridge dimer having $(3c - 4e)$ bonds						
	(IV) Both Be and Al nitrides on hydrolysis give NH_3 gas.						
	(A) I, II are correct		(B) I, III are correct				
	(C) I, II, III, IV are co	rrect	(D) Only III is corr	rect			
Q.5	Borax on heating strongly above its melting point melts to a liquid. which then solidifies to a transparent						
	mass commonly known as borax bead. The transparent glassy mass consists of						
	(A) Sodium pyroborat	<i>i</i> e	(B) Boric anhydride				
	(C) Sodium metaborat	ie	(D) Mixture of sodium metaborate and boric anhydride				

The incorrect statement regarding 'X' in given	reaction is :							
$BF_3 + LiAlH_4 \xrightarrow{ether} (X) + LiF + AlF_3$								
(A) 'X' is a toxic gas								
(B) On hydrolysis 'X' produces boric acid								
(C) 'X' is electron deficient and behaves as leve	wis acid							
(D) Structure of 'X' In similar to C_2H_6								
Select correct statement:								
(A) $\angle F - N - F$ in NF ₃ > $\angle Cl - N - Cl$ in NCl ₃								
(B) AlCl ₃ .6H ₂ O is an electron deficient comp	ound							
(C) Order of stability: $BF_3 > BCl_3 > BBr_3$								
(D) B – O bond strength: $B(OH)_3 > B(OH)_2$	Me							
Which of the following molecular species doe	es not act Lewis acid.							
$(A) B_2 H_6 \qquad (B) BeF_2$	(C) AlCl ₃ (D) BF_4^-							
For reaction $BF_2 + NaH \xrightarrow{450 \text{ K}} P + O$								
If O is sodium salt, then incorrect statement i	s :							
(A) P is an electron deficient compound								
(B) P forms adduct with PH_3								
(C) Acidified MnO ₂ oxidizes Q into a coloure	ed gas							
(D) Q forms white precipitate with $CaCl_2$ solu	tion							
Which of the following statement regarding boric acid (H ₃ BO ₃) is false?								
(A) It acts as weak monobasic Lewis Acid	(B) All atoms are lying in same plane							
(C) It contains H-bonding in solid state	(D) It acts as tribasic acid							
When borax is dissolved in water								
(A) Only $B(OH)_3$ is formed	(B) Only $B(OH)_4^-$ is formed							
(C) Both $B(OH)_3$ and B_2O_3 are formed	(D) Both $B(OH)_3$ and $[B(OH)_4]^-$ are formed							
Which statement is correct?								
(A) Tl ³⁺ salts act as good oxidising agents								
(B) In borax bead test the coloured ions give phosphates	characteristic coloured bead due to formation of metal							
(C) BCl_3 and $AlCl_3$ both are lewis acids butA	ICl_3 is stronger lewis acid than BCl_3							
(D) Boric acid is a protonic acid								
	BF ₃ + LiAlH ₄ <u>ether</u> → (X) + LiF + (A) 'X' is a toxic gas (B) On hydrolysis 'X' produces boric acid (C) 'X' is electron deficient and behaves as lev (D) Structure of 'X' In similar to C ₂ H ₆ Select correct statement: (A) ∠F - N - F in NF ₃ > ∠Cl - N - Cl in N (B) AlCl ₃ .6H ₂ O is an electron deficient comp (C) Order of stability: BF ₃ > BCl ₃ > BBr ₃ (D) B - O bond strength: B(OH) ₃ > B(OH) ₂ J Which of the following molecular species doe (A) B ₂ H ₆ (B) BeF ₂ For reaction BF ₃ + NaH <u>450 K</u> P + Q If Q is sodium salt, then incorrect statement i (A) P is an electron deficient compound (B) P forms adduct with PH ₃ (C) Acidified MnO ₂ oxidizes Q into a coloured (D) Q forms white precipitate with CaCl ₂ solut Which of the following statement regarding be (A) It acts as weak monobasic Lewis Acid (C) It contains H-bonding in solid state When borax is dissolved in water (A) Only B(OH) ₃ is formed (C) Both B(OH) ₃ and B ₂ O ₃ are formed Which statement is correct? (A) Tl ³⁺ salts act as good oxidising agents (B) In borax bead test the coloured ions give phosphates (C) BCl ₃ and AlCl ₃ both are lewis acids butA (D) Boric acid is a protonic acid							

SUPER	PROBLEMS IN INORGAN	IC CHEMISTRY		p-BLOCK ELEMENTS			
Q.13	Select incorrect sta						
	(A) Conc. HNO_3 ca	n be stored in alumini	um container				
	(B) Aluminium wire	e is used to make transi	mission cables				
	(C) Mixture of Al &	k NaOH is used to ope	en drain				
	(D) Aluminium uter	nsils are used to kept w	vater over night				
Q.14	Anhydrous AlCl ₃ is	covalent however wh	en it is dissolved in water	hydrated ionic species are formed.			
	This transformation	is owing to :					
	(A) The trivalent sta	te of Al.	(B) The large hydra	ation energy of Al ³⁺			
	(C) The low hydrati	on energy of Al ³⁺	(D) The Polar natu	re of water			
Q.15	$H_3BO_3 \xrightarrow{T_1} X -$	$\xrightarrow{T_2} \mathbf{Y} \xrightarrow{\text{red hot}} \mathbf{Y}$	B_2O_3 , if $T_1 < T_2$ then X	and Y respectively are			
	(A) $X =$ Metaboric acid and $Y =$ Tetraboric acid						
	(B) $X =$ Tetraboric acid and $Y =$ Metaboric acid						
	(C) $X = Borax$ and $Y = Metaboric$ acid						
	(D) $X =$ Tetraboric acid and $Y =$ Borax						
Q.16	Borax is actually ma	ade of two tetrahedra a	nd two triangular units jo	ined together and should be written			
	as:						
	$Na_2[B_4O_5(OH)_4]\cdot 8$	SH ₂ O					
	Consider the follow	ing statements about b	oorax:				
	a. Each boron atom	has four B–O bonds					
	b. Each boron atom has three B–O bonds						
	c. Two boron atoms have four B–O bonds while other two have three B–O bonds						
	d. Each boron atom	has one –OH groups					
	Select correct statem	nent(s):					
	(A) a, b	(B) b, c	(C) c, d	(D) a, c			
Q.17	Select correct state	ment about B_2H_6					
	(A) Bridging groups are electron-deficient with 12 valence electrons						
	(B) It has 2c - 2e B–H bonds						
	(C) It has 3c - 2e B	–H–B bonds					
	(D) All of above are	e correct statements					

SUPER	PER PROBLEMS IN INORGANIC CHEMISTRY P-BLOCK ELEMENTS					
Q.24	Which of the foll					
	$(A) B_2 H_6$	(B) BCl ₃	(C) H_2SO_4	(D) BF ₃		
Q.25	Which of the follo	owing exists as polymeric (l atom?	(covalent) solid at room t	emperature with coordination number		
	(A)AlF ₃	(B) AlCl ₃	(C) AlBr ₃	(D)All ₃		
Q.26	$B_2H_6 + NaH - $ The correct state	\rightarrow ? ement(s) is / are				
	(A) Symmetrical (C) H_2 is produce	l cleavage takes place ced	(B) NaBH $_4$ is pro (D) Both (A) and	oduced (B)		
Q.27	Which of the foll	lowing has the least tender	ncy to dimerise?			
	$(A) Al(CH_3)_3$	C	(B)AlBr ₃			
		$\left \right\rangle = \left _{3}$	(D) GaCl ₃			
0.28	BNH upon hy	drolysis vields				
Q.20	$(A) H_3 BO_3$	(B) NH ₃	(C) H ₂	(D) All of these		
Q.29	 In B₃N₃H₆ compound, the correct option is (State 'T' for True and 'F' for False): (I) '3' pπ–pπ bond is present (II) It can show back bonding. (III) It is non-polar compound with non polar bonds. (IV) Lumphy nodes are present at Boron atom. 					
	(A) TTFF	(B)TITT	(C) TTTF	(D) FTTF		
Q.30	Consider the structure H_3C_{MM} , H_3C_{∞} H_3C_{∞} Select the correct (A) $x < y$ (B) $\alpha < \beta$ (C) Bridge bond (D) All of these	acture given below : $Al \xrightarrow{\gamma^{A}}_{CH_{3}} Al \xrightarrow{\beta^{C}}_{C}$ CH_{3} $Al \xrightarrow{\beta^{C}}_{C}$ CH_{3} $Al \xrightarrow{\beta^{C}}_{C}$ CH_{3} $Al \xrightarrow{\beta^{C}}_{C}$ CH_{3} $Al \xrightarrow{\beta^{C}}_{C}$ CH_{3} $Al \xrightarrow{\beta^{C}}_{C}$	CH ₃ H ₃ sp ³ overlap			

Q.31	Boric acid is an acid be	cause :				
	(A) It contains replaceable H ⁺ ion					
	(B) It gives up a proton					
	(C) It accepts OH ⁻ from	n water releasing H ⁺				
	(D) It combines with pr	oton to form water mol	ecule			
	-					
Q.32	Boron + air $\xrightarrow{\Delta}$ 'X' \downarrow H 'Y' (dee	$_{2}O$ + 'Z' \downarrow CuSO ₄ (aq) 'V' p blue colour)				
	The hybridisation of con	mpound 'V' is :				
	(A) dsp^2	(B) sp^3	(C) d^2sp^3	(D) sp^2		
0.22	Eind the ratio of an ² on	d an ³ hybridized etem i				
Q.55	Find the fatto of sp- and $(\Lambda) 2 \cdot 10$	(\mathbf{P}) 2 · 2	$(C) 2 \cdot 11$	$(D) 1 \cdot 10$		
	(A) 2:19	(b) 2 : 2	$(C) 2: \Pi$	(D) 1 : 19		
Q.34	Number of π bonds in l	oorax is				
	(A) Zero	(B) One	(C) Two	(D) Three		
Q.35	$Mg_3B_2 + HCl \longrightarrow [P]$	$] + MgCl_2$				
	then choose incorrect st	atement.				
	(A) [P] is electron defic	ient	(B) [P] is non polar			
	(C) One of the atom in	[P] is sp ³ hybridised	(D) [P] is planar			
	× /					
Q.36	The total number of oxe	o linkage (X – O – X) in	n Borax molecule is :			
	(A) 3	(B) 4	(C) 5	(D) 6		
1						

SUPER	PROBLEMS IN INORGANIC	p-BLOCK ELEMENTS			
Q.43	Which of the followin	g organo silicon chlorid	e can produce cross linl	ked 3D silicone polymer.	
	$(A)R_3SiCl$	$(B) R_4 Si$	(C) RSiCl ₃	(D) R_2SiCl_2	
Q.44	Graphite is soft while	diamond is hard becaus	e		
	(A) Graphite is in pow	vder form			
	(B) Graphite have sp ²	² while diamond has sp I	Hybridized 'C' atom		
	(C) Graphite is planar	layered solid while diar	nond is 3-D giant netwo	ork solid	
	(D) Graphite is covale	nt while diamond is ioni	с		
Q.45	SnO is prepared in pu	re form by thermal deco	omposition of		
	(A) $\operatorname{Sn}(\operatorname{NO}_3)_2$	(B) SnSO ₄	(C) SnC_2O_4	(D)All	
Q.46	Correct order of melti	ng point is			
	(A) Diamond > Grap	hite > C_{60}	(B) Graphite > Diamond > C_{60}		
	(C) C_{60} > Graphite >	Diamond	(D) Diamond $> C_{60} > $ Graphite		
Q.47	0.47 PbI ₄ does not exist because				
	(A) Iodine is not react	tive	(B) Pb(IV) is oxidisin	ng and I^- is a strong reducing agent	
	(C) Pb(IV) is less stat	ole than Pb(II)	(D) Pb^{4+} is not easily formed		
Q.48	Plague of tin is				
	(A) Conversion of wh	ite tin to grey tin	(B) Emission of sour	nd while bending a tin rod	
	(C) Conversion of star	nnous to stannic form	(D) Atmospheric oxi	dation of tin	
Q.49	Which metal bicarbor	nates do not exist in Soli	d state?		
	(i) LiHCO ₃	(ii) $Ca(HCO_3)_2$	(iii) $Zn(HCO_3)_2$	(iv)AgHCO ₃	
	(A) (i), (ii), (iii), (iv)	(B) (i), (ii), (iii)	(C) (i), (ii), (iv)	(D) (ii), (iii), (iv)	
Q.50	Oxalic acid reacts with concentrated H_2SO_4 to give a mixture of two gases. When this mixture is past through caustic potash, one of the gases is absorbed. Which is the product formed by the absorbed with caustic potash?				
	(A) K_2SO_4	(B) KHCO ₃	(C) K ₂ CO ₃	(D) KOH	
Q.51	Which is incorrect order for group 14 elements? (A) $CX_2 < SiX_2 < GeX_2 < SnX_2$: Order of stability (B) $CO_2 > SiO_2 > GeO_2$: Order of acidic character (C) $C > Si > Ge \approx Sn > Pb$: Tendency for catenation				

SUPER	PROBLEMS IN INORGANIC		p-BLOCK ELEMENTS			
Q.52	Which of the followin	g statements are correct?)			
	(I) $SnCl_4$ is more easil	y hydrolysed than SnCl ₂	(II) SnCl ₂ is good redu	actant while PbCl ₄ is oxidant		
	(III) SnCl ₄ is more vol	latile than SnCl ₂	(IV) PbI ₄ do not exist			
	(A) I, II, IV	(B) II, IV	(C) I, II, III, IV	(D) Only IV		
Q.53	If ΔH_f° of graphite is	taken as zero then ΔH_{f}° (of diamond and fulleren	e is respectively in kJ/mole		
	(A) 1.90, 38.1	(B) 1.90, -38.1	(C) –1.90, 38.1	(D) -1.90, -38.1		
Q.54	Which of the following	g silicate is identified by	general formula $(Si_2O_5)_r$	2n-		
	(A) Cyclic silicate	(B) Pyro silicate	(C) Amphiboles	(D) Sheet silicates		
Q.55	Which of the followin	g metal carbides is a met	hanide carbide?			
	(A) CaC ₂	$(B) Mg_2C_3$	$(C) Al_4C_3$	(D) BaC_2		
Q.56	Which of the following	carbides yields carbon co	ontaining compound having	ng sp hybridisation on hydrolysis.		
	(A) Be_2C	$(B)Al_4C_3$	(C) Mg_2C_3	(D) None of these		
Q.57	An aqueous solution of	of SnCl ₂ does not reduce	e which of the following	metal cation into its respective		
	metallic form.					
	(A) $\operatorname{Bi}^{3+}(\operatorname{aq})$	(B) $Hg^{2+}(aq)$	(C) $Au^{3+}(aq)$	(D) $Fe^{3+}(aq)$		
Q.58	$(\text{COOH})_2 - \frac{\text{conc. H}_2\text{SO}}{2}$	$D_4 \rightarrow P + Q + H_2O$				
	P can be estimated by	using I_2O_5 then incorrect	ct statement about Q is			
	(A) Q reacts with NH	t_3 to form urea				
	(B) Q is linear and neu	ıtral oxide				
	(C) Gives white turbid	lity with Ba(OH) ₂ solution	n			
	(D) In solid form Q is	a sublimate compound				
Q.59	Suppose you have to	determine the percent	age of carbon dioxide	in a sample of a gas available		
	in a container. Which	h is the best absorbed m	naterial for the carbon di	oxide :		
	(A) Heated copper of	oxide	(B) Cold, solid calcium chloride			
	(C) Cold, solid calcin	um hydroxide	(D) Heated charcoal			
Q.60	Bucky ball or buck n	ninister fullerene is :				
	(A) An allotrope of a	carbon				
	(B) It is referred as	C-60				
	(C) It has sp ² -hybrid	ised nature and resemb	oles with soccer ball			
	(D) all of these					

CO is heated v lium benzoate al gem used fo ophite of the following I_3 is not hydroly	vith NaOH under pre (B) Sodium acetate r cutting glass is : (B) Diamond	essure, we get : (C) Sodium formate (C) SiC	(D) Sodium oxalate(D) CaCN₂			
lium benzoate al gem used fo ophite of the following l_3 is not hydroly	(B) Sodium acetater cutting glass is :(B) Diamond	(C) Sodium formate(C) SiC	(D) Sodium oxalate(D) CaCN₂			
al gem used fo ophite of the following l ₃ is not hydroly	r cutting glass is : (B) Diamond	(C) SiC	(D) CaCN ₂			
phite of the following l ₃ is not hydroly	(B) Diamond	(C) SiC	(D) CaCN ₂			
of the following l ₃ is not hydroly	properties describes th					
h form oxides;] h metals dissolv ides and silicid	Which of the following properties describes the diagonal relationship between boron and silicon? (A) BCl_3 is not hydrolysed while $SiCl_4$ can be hydrolysed (B) Both form oxides; B_2O_3 is amphoteric; SiO_2 is acidic (C) Both metals dissolve in cold and dilute nitric acid (D) Deridee and eilicides are hydrolysed discussed.					
4 The silicate anion in the mineral kinoite is a chain of three SiO_4 tetrahedral, that share corners with adjacent tetrahedral. The charge of the silicate anion is						
	(B)-8	(C) –6	(D) –2			
$\xrightarrow{\Delta}$ gas (A)	+ gas(B) + liquid (C).	Gas (A) burns with a blue	flame and is oxidised to gas (B).			
Gas (A) + Cl_2 and E are	$\longrightarrow D \xrightarrow{\mathrm{NH}_3, \Delta} E$					
₀, CO, H₂O, H	ICONH ₂	(B) CO, CO_2 , $COCl_2$, HCONH ₂			
$, CO_2, H_2O, N$	NH ₂ CONH ₂	(D) CO, CO ₂ , H ₂ O, C	COCl ₂			
rect order of ior	nization enthalpy is :					
· Si > Ge> Sn >	> Pb	(B) $C > Ge > Si > Pb$	> Sn			
Ge > Si > Pb	>Sn	(D) $C > Si > Ge > Pb$	> Sn			
orrect statement	t regarding carbon diox	tide				
С	orrect statemen d CO ₂ is know	prrect statement regarding carbon diox $d CO_2$ is known as Dry ice.	prrect statement regarding carbon dioxide $d CO_2$ is known as Dry ice.			

SUPER	PROBLE	MS IN IN	ORGANIC	CHEMIS	TRY						p-BLOCK ELEMENTS
Q.68	Match List-I with List-II and select the correct answer using the codes given below the lists.										
		List-	I (Comp	pound)			List-	Ι			
	(a)	B_4C				(1)	Propy	/ne prep	paration		
	(b) Al_4C_3 (2)				(2)	Abras	sive				
	(c) Mg_2C_3				(3)	Meth	ane prep	paration			
	(d) WC					(4)	Inters	titial car	bides		
		(a)	(b)	(c)	(d)			(a)	(b)	(c)	(d)
	(A)	4	3	1	2		(B)	3	4	2	1
	(C)	2	3	1	4		(D)	4	3	2	1
Q.69	Corre	ect orde	r of bon	d angle	in CH ₂ F	2					
	(A) H \hat{C} H > H \hat{C} F > F \hat{C} F				(B) F	$\stackrel{\wedge}{C} F >$	ΗĈF	$> H \stackrel{\wedge}{C}$	Н		
	(C) H $\stackrel{\wedge}{C}$ H > F $\stackrel{\wedge}{C}$ F > H $\stackrel{\wedge}{C}$ F					(D) H	I Ĉ F>	F C F	$>$ H \hat{C}	Н	
Q.70	In which of the following silicates, only two co (i) Pyrosilicate (iii) Double chain silicate (v) 3 D silicate (A) (i), (ii) and (v) (B) (iv) and (vi) only			corners per tetrahedron are shared : (ii) Cyclic silicate (iv) Single chain silicate (vi) Sheet silicate (C) (i) and (vi) only (D) (ii) and (iv) only							
Q .71	The n	umber	of σ -bor	nd and π	t-bond i	n HCP ar	e respe	ctively			
-	(A) 2	and 2		(B) 1	and 3		(C) 2	and 1		(D) N	Vone
Q.72	Ampl	nibole si	licate str	ucture h	ias 'x' ni	umber of o	corner s	hared pe	er tetrahe	edron. T	he value of 'x' is:
	(A) 2			(B) 2	21/2		(C) 3			(D) 4	L
Q.73	Num	ber of co	orner ox	ygen ato	oms shai	red per te	trahedr	on in py	roxene	and shee	et silicate
	(A) 2	.5, 3		(B) 2	2, 3		(C) 3	, 2		(D) 2	2, 2
Q.74	Amm	onolysi	s of SiC	l ₄ follov	ved by h	eating pro	oduces	a compo	ound of s	Silicon (X). X is
	(A) C	ovalent	nitride				(B) Ic	onic nitri	ide		
	(C) In	terstitia	l nitride				(D) it	is not a	nitride		
Q.75	In wh	ich of th	ne follow	ving opt	ions CO	is not the	e constit	uent.			
-	(A) C	larbogei	n	(B) V	Vater ga	.S	(C) P	roducer	gas	(D) N	None of these

- Q.79 HOOC CH_2 COOH $\xrightarrow{P_4O_{10}}$? The number of sp - hybridised 'C' in one molecule of the product is : (A) 1 (B) 2 (C) 3 (D) zero
- Q.80 Silicon has a strong tendency to form polymers like silicones. The chain length of silicone polymers can be controlled by adding.

(A) CH_3SiCl_3 (B) $(CH_3)_3SiCl$ (C) $(CH_3)_2SiCl_2$ (D) $(CH_3)_4Si$

- Q.81Which of the following gases is not a green house gas?(A) CO(B) O_3 (C) CH_4 (D) water vaporous
- Q.82 Which among the following are ionic carbide? (A) CaC_2 (B) Al_4C_3 (C) Be_2C (D) All of these

 (\mathbf{C})

Q.83	$\begin{array}{c} \operatorname{CaC}_2 + \operatorname{N}_2 \xrightarrow{1100^{\circ}} \\ \textbf{(A)} \end{array}$	$\begin{array}{c} CaCN_2 + C\\ (B) \\ \hline Nitrollium\\ (used as fertilizer) \end{array}$				
	The ratio of π bonds i	n A to B is :				
	(A) 1	(B) 0.5	(C) 2	(D) 0		
Q.84	If the number of Silico magnitude of negative (A) 70,48	on atoms is restricted to 2 charges respectively in (B) 70, 46	23 only, what would be the structure of Pyroxen (C) 23, 48	he number of oxygen atoms and e (single chain Silicate)? (D) 23, 46		
Q.85	Which of the following	g is correct order of boili	ng point?			
	(A) $\operatorname{CCl}_4 > \operatorname{SiCl}_4$	$(B) \operatorname{SiCl}_4 > \operatorname{CCl}_4$	(C) $\operatorname{SiCl}_4 = \operatorname{CCl}_4$	(D) None of these		
Q.86	Comment on the C–C	C bond length for C_2H_6 a	and C_2F_6 compounds.			
	(A) $d_{C-C}(C_2H_6) > d$	$_{\mathrm{C-C}}(\mathrm{C}_{2}\mathrm{F}_{6})$	(B) $d_{C-C}(C_2F_6) > d_{C-C}(C_2H_6)$			
	(C) $d_{C-C} (C_2 F_6) = d_{C-C}$	$_{\mathrm{C-C}}(\mathrm{C_2H_6})$	(D) Can't be predicted	d		
Q.87	Tin dissolves in boiling	g caustic soda solution be	ecause of the formation of	of soluble		
	(A) $Sn(OH)_2$	(B) $Sn(OH)_4$	(C) Na ₂ SnO ₃	(D) SnO ₂		
Q.88	$CF_2-I + OH^- \longrightarrow ?$					
	The products are					
	(A) $CF_3OH + I^-$		(B) $CF_3O^- + I^- + H_2O^-$	C		
	(C) $CHF_3 + OI^-$		(D) No reaction due to repulsion from l.p. of F-atoms			
0.89	In which of following	silicate two oxygen atom	ns are shared per tetrahed	dron.		
	(A) Ortho silicate		(B) Pyro silicate			
	(C) Double chain silica	ate	(D) 4-membered cyclic silicate			
Q.90	Which is not a ortho si	licate?				
	$(A) \operatorname{Be}_{2}[\operatorname{SiO}_{4}]$	$(B) Zn_2[SiO_4]$	(C) $ZrSiO_4$	(D) $Sc_2[Si_2O_7]$		
	2 +-	2 1	т Т			

Nitrogen Family

 $H_3PO_4 \xrightarrow{220^\circ C} (2)$ Q.91 (A)(X) = Pyrophosphoric acid (liquid), (Y) = Metaphosphoric acid (liquid) (B)(X) = Pyrophosphoric acid (liquid), (Y) = Metaphosphoric acid (solid)(C)(X) = Pyrophosphoric acid (solid), (Y) = Metaphosphoric acid (solid) (D)(X) = Pyrophosphoric acid (solid), (Y) = Metaphosphoric acid (liquid)Select the compound in which HCl is **NOT** the product of Hydrolysis Q.92 $(A) NCl_3$ $(B) PCl_3$ (C)AsCl₃ (D) BiCl₃ Q.93 $H_3PO_2 \xrightarrow{\Delta} (X) + PH_3$; is (A) Dehydration reaction (B) Oxidation reaction (C) Disproportionation reaction (D) Dephosphorelation reaction 0.94 Conc. HNO₃ is yellow coloured liquid due to (A) Presence of NO in conc. HNO₃ (B) Presence of NO_2 in conc. HNO_3 (C) Presence of N_2O in conc. HNO₃ (D) Presence of N_2O_3 in conc. HNO₃ Q.95 $H_3PO_2 \xrightarrow{140^{\circ}C} A \xrightarrow{250^{\circ}C} B \xrightarrow{316^{\circ}C} C$; compound (C) is (A) H_2PO_3 (B) H_2PO_3 (C) HPO_3 (D) $H_4P_2O_7$ An explosive compound (A) reacts with water to produce NH₄OH and HOCl. Then, the compound Q.96 (A), is (A) TNG $(C) PCl_3$ $(B) NCl_3$ (D) HNO₃ Q.97 A tetra-atomic molecule (A) on reaction with nitrogen(l)oxide, produces two substances (B) and (C). (B) is a dehydrating agent in its monomeric form while substance (C) is a diatomic gas which shows almost inert behaviour. The substances (A) and (B) and (C) respectively will be (A) P_4 , P_4O_{10} , N_2 (B) P_4 , N_2O_5 , N_2 (C) P_4 , P_2O_3 , Ar (D) P_4 , P_2O_3 , H_2 Q.98 The correct order of acidic strength of oxides of nitrogen is (A) NO < NO₂ < N₂O < N₂O₃ < N₂O₅ (B) N₂O < NO < N₂O₃ < N₂O₄ < N₂O₅ (C) NO < N₂O < N₂O₃ < N₂O₅ < N₂O₄ (D) NO < N₂O < N₂O₅ < N₂O₃ < N₂O₄ chemstudios by pms Page # 301

SUPER I	SUPER PROBLEMS IN INORGANIC CHEMISTRY p-BLOCK ELEMENTS						
Q.99	Nitrogen dioxide is dis						
	(A) HNO ₃ and HNO ₂	2	(B) only HNO ₃				
	(C) only HNO ₂		(D) HNO ₂ and N ₂				
Q.100	Which one of the follow	wing compounds on stro	ng heating evolves amm	onia gas?			
	(A) (NH ₄) ₂ SO ₄	(B) HNO_3	(C) $(NH_4)_2Cr_2O_7$	(D) NH_4NO_3			
Q.101	The compound (SiH ₃)	₃ N is					
	(A) pyramidal and mo	re basic than (CH ₃) ₃ N	(B) planar and less bas	sic than $(CH_3)_3N$			
	(C) pyramidal and less	s basic than $(CH_3)_3N$	(D) planar and more b	asic than $(CH_3)_3N$			
O.102	Concentrated HNO ₃ re	eacts with jodine to give					
	(A) HI	(B) HOI	(C) HOIO ₂	(D) HOIO ₃			
Q.103	$CH_2 < \frac{COOH}{COOH} - \frac{P_4O}{P_4O}$	$_{10}, 150^{\circ}C \longrightarrow X$					
	Compound (X) is						
	(A) malonic acid	(B) carbon suboxide	(C) tartaric acid	(D) acetic acid			
O.104	When AgNO ₃ is heate	d strongly, the products	formed are				
	(A) NO and NO_2	(B) NO ₂ and O ₂	(C) NO ₂ and N ₂ O	(D) NO and O ₂			
0 105	$HNO_{1} + P_{1}O_{2} + N$	$HPO_{1} \land A \cdot the product$	Ais				
Q.105	$(\Lambda) N_{10} \longrightarrow 0$	(B) N ₂ O ₂	(\mathbf{C}) NO.	(\mathbf{D}) N _z O _z			
	$(\mathbf{A}) \mathbf{N}_2 \mathbf{O}$	$(\mathbf{D}) \mathbf{N}_2 \mathbf{O}_3$	(\mathbf{C}) \mathbf{NO}_2	(D) $N_2 O_5$			
Q.106	$Ca + C \xrightarrow{\Delta} CaC_2$	$\xrightarrow{N_2} A$					
	Compound (A) is used	l as a/an					
	(A) fertilizer	(B) dehydrating agent	(C) oxidising agent	(D) reducing agent			
Q.107	One mole of calcium p	hosphide on reaction wi	th excess of water gives				
	(A) one mole of phosp	hine	(B) two moles of phos	phoric acid			
	(C) two moles of phos	phine	(D) one mole of phosp	horus penta-oxide			

SUPER F	UPER PROBLEMS IN INORGANIC CHEMISTRY p-BLOCK ELEMENT						
Q.108	Three allotropes (A), (A	B) and (C) of Phosphore	ous in the following char	nge are respectively			
	$ \begin{array}{c} A & \xrightarrow{470 \text{ K}} \text{B} \\ \hline 1200 \text{ atm}} \text{B} \\ \hline 570 \text{ K} \\ \hline \text{CO}_2\text{-atm}} \text{C} \end{array} $						
	(A) white, black, red	(B) black, white, red	(C) red, black, white	(D) red, violet, black			
Q.109	Which oxide of the nitr	ogen exist in two differen	nt forms, which can be in	terconverted by irradiation with			
	light of the appropriate	wavelength					
	(A) NO ₂	(B) N ₂ O ₃	(C) N ₂ O ₅	(D) N ₂ O			
Q.110	As molecular weight in regularly	ncreases in 15th group h	ydrides then which of th	ne following property increases			
	(A) Boiling point	(B) Melting point	(C) Thermal stability	(D) Reducing nature			
Q.111	 Which of the following statement is incorrect? (A) Each P₄O₁₀ molecule contains 16σ bonds and 6 P–O–P bonds. (B) CaO is used to dry ammonia, while other dehydrating agents conc. H₂SO₄, P₄O₁₀, CaCl₂ react with NH₃. (C) In Holme signal mixture of Ca₃P₂ and CaC₂ are used. (D) Thermodynamical stability of allotropes of phosphorus: white < black < red. 						
Q.112	PH ₃ produces smoky r	ings when it comes in co	ontact with air. This is be	ecause :			
	(A) It is inflammable.		(B) It combines with w	vater vapour.			
	(C) It combines with ni	trogen.	(D) burning of PH_3 by	PH_3 by P_2H_4 .			
Q.113	Ammonium compound	d which on heating does	not give NH₃ is				
-	(A) $(NH_4)_2 SO_4$	(B) $(NH_4)_2CO_3$	(C) NH_4NO_2	(D) NH ₄ Cl			
Q.114	 Which statement regarding phosphine is not correct ? (A) It possess of rotten fish smell (B) It is obtained in Holme's signal by hydrolysis of Ca₃P₂ (C) It is combustile in nature due to presence of impurity of P₂H₄ along with it. (D) It is more soluble in water than ammonia 						
Q.115	Which of the following	g pairs on heating give sa	me gas?				
	(A) $AgNO_3$, $(NH_4)_2$ (Cr_2O_7	(B) $Pb(NO_3)_2$, NH_4N	1O ₃			
	(C) NH_4NO_2 , NH_4NO_2	O ₃	(D) NH_4NO_2 , $(NH_4)_2$	$_{2}Cr_{2}O_{7}$			

SUPER	PROBLEMS	IN	INORGANIC	CHEMISTRY
SUPER	PROBLEMS	IN	INURGANIC	CHEMISIRT

Q.116 Which statement is incorrect?

(A) Pyrophosphoric acid is tetrabasic acid

(B) NCl_3 on hydrolysis give NH_3 and HClO

(C) Cyclotrimetaphosphoric acid is $H_3P_3O_9$ and contains 15σ bonds.

(D) PCl₅ on hydrolysis gives H₃PO₃ and HCl

Q.117 Consider the following statements about the reaction between copper metal and dilute HNO_3 ?

(I) In this reaction NO gas will be released

(II) Cu metal is oxidised to $Cu(NO_3)_2$

(III) NO is paramagnetic and has one unpaired electron in antibonding molecular orbital

(IV) NO reacts with O_2 to produce NO_2 which is bent in shape.

Choose the correct statement:

(A) I, II, III (B) I, III (C) II, IV (D) All are correct

Q.118 Which of the following statement regarding H_3PO_3 is incorrect.

(A) Its K_a value is less than H_3PO_2 .

(B) On heating it gives PH_3 and H_3PO_4 .

(C) It can be prepared by hydrolysis of both PCl_3 and P_4O_6 .

(D) It is formed during reaction of white phosphorous with alkali.

Q.119 Which of the following compound is not directly used as fertilizer because of its explosive nature? (A) $Ca(H_2PO_4)_2$ (B) NH_4NO_3 (C) [CaNCN + C] (D) $(NH_4)_2SO_4$

Q.120 Which of the following does not contain PX_4^+ type cation in solid phase? (X = halogen)(A) PF_5 (B) PCl_5 (C) PBr_5 (D) None of these

Q.121 Consider the following reaction and select **INCORRECT** statement about gas (Y):

 $P_4 + HNO_3(dil.) \xrightarrow{\Delta} X + Y(gas)^{\uparrow}$ (A) Gas is paramagnetic in nature

(B) Gives neutral solution in water

(C) Forms Brown ring with $FeSO_4$ solution (D) Disproportionates with water

Q.122 Select the **CORRECT** order :

(A) $NH_3 > PH_3 > AsH_3 > SbH_3$: Melting point (B) $NH_3 > PH_3 > AsH_3 > SbH_3$: Lewis basicity (C) $NH_3 > SbH_3 > AsH_3 > PH_3$: Boiling point

(D) $SbH_3 > AsH_3 > PH_3 > NH_3$: Bond Angle

Q.123	Phosphine gas is not p	prepared by			
	(A) $Ca_3P_2 + dil. HCl$		(B) $PH_4I + KOH$ soln.		
	(C) Red phosphorus	+ NaOH soln. $\xrightarrow{\Delta}$	(D) P_4 + NaOH s	oln. $\xrightarrow{\Delta}$	
Q.124	Which of the followin	g reaction does not have	e atleast one commo	n product	
	(A) $P_4 + KOH$ (aq.)	\rightarrow	(B) $Ca_3P_2 + H_2C_3$	$) \rightarrow$	
	(C) H ₃ PO ₃ $\xrightarrow{\Delta}$		(D) $P_4O_{10} + H_2C$	$) \rightarrow$	
Q.125	Select INCORRECT	ſ match			
	NO-	$ \xrightarrow{O_2} P \xrightarrow{H_2O} R + S \\ \downarrow Zn / H^+ \\ T $			
	(A) P : Paramgnetic ga	as	(B) S : Colourless	species	
(C) R : Oxidising agent		ıt	(D) T : sp^2 Hybridize central atom		
Q.126	Diamagnetic gas neut	ral towards water is			
	(A) N ₂ O	(B) NO ₂	(C) NO	(D) N ₂ O ₃	
Q.127	When PbO ₂ reacts wi	th conc. HNO ₃ then eve	olved gas is		
	(A) NO ₂	(B) O ₂	(C) N ₂	(D) N ₂ O	
Q.128	Which of the followin	g chloride does not reac	t with PCl ₅ on heatin	ng?	
	(A) Hg_2Cl_2	(B) FeCl ₂	(C) S_2Cl_2	(D) BCl_3	
Q.129	Which of the followin	g property is common a	mong white phospho	prous and red phosphorous	
	(A) Insolubility in wate	er	(B) Solubility in CS_2		
	(C) Reaction with Na	ОН	(D) Phosphoresce	ence	
Q.130	Select the incorrect s	tatement regarding nitro	ous acid and nitric ac	id compound.	
	(A) Nitric acid is mor	e acidic as compare to N	Nitrous acid.		
	(B) O - N - O Bond a	ingle in nitrous acid is l	ess as compare to O	-N-O bond angle in Nitric acid.	
	(C) Both (Nitrous and	l Nitric) acid has coordi	nate bond.		
	(D) Both (Nitrous and	l Nitric) acid shows H-b	onding.		

SUPER F	PROBLEMS IN INORGANIC	CHEMISTRY		p-BLOCK ELEMENTS	
Q.131	When PH ₃ absorbed in	$HgCl_2$ solution the con	rresponding phosph	ide is obtained	
	$(A) Hg_2P_3$	$(\mathbf{B})\mathbf{Hg}_{3}\mathbf{P}_{2}$	$(C) \operatorname{Hg}_{3}(\operatorname{PO}_{4})_{2}$	(D) None of these	
0 132	Calcium phosphide rea	act with water or di HC	l and gives a compo	und V. Pure V is non inflammable	
Q.132			f and gives a compo		
	but becomes inflamma	able owing to the presen	the of $P_2 H_4$ of P_4 val	pours X is absorbed in HI to form	
	compound Y, Y on trea	ating with KOH gives X	compound X and Y	respectively.	
	(A) $X = PH_3$ and $Y = 1$	PH_4I	(B) $X = NaH_2PO$	P_2 and $Y = H_4 PO_2$	
	(C) $X = PH_4^+$ and $Y =$	PH ₄ I	(D) $X = PH_3$ and	$Y = H_4 PO_2$	
Q.133	33 3HNO ₂ '! HNO ₂ + H ₂ O + 2NO				
	The incorrect statements regarding this reaction is :				
	(A) It is an example of disproportionation reation.				
	(B) +3 oxidation state of N is more stable than +5				
	(C) HNO is an example of oxoacids				
	(D) $+3$ oxidation state	of changed into ± 5 and	1+2 oxidation state		
		or changed into +5 and	1 + 2 Oxidution State.		
Q.134	$H_3PO_3 \xrightarrow{\Delta} [X] +$	- [Y] (gas)			
	Choose the correct opt	tion regarding above rea	action.		
	(A) [Y] has smell of an	nmonia.	(B) Basicity of [X	[] is 2	
	(C) [X] and $[Y]$ are not	on-planar	(D) $[Y]$ is sp ³ hyb	ridised	
0.135	Which of the following	g species will not give pa	artial hydrolysed pro	duct?	
	(A) BiCl ₃	(B) PCl ₃	(C) BF_3	(D) SiF ₄	
Q.136	Which is the correct se incorrect order mark (equence in the followin F) :	g properties. For the	e correct order, mark (T), and for the	
(a)	Acidity order	: $SiF_4 < SiCl_4 < $	<SiBr ₄ $<$ SiI ₄		
(b)	Melting point	: $NH_3 > SbH_3$	> AsH ₃ $>$ PH ₃		
(c)	Boiling point	: $NH_3 > SbH_3$	> AsH ₃ $>$ PH ₃		
(d)	Dipole moment order	: $NH_3 > SbH_3$	> AsH ₃ $>$ PH ₃		
	(A) FTFT	(B) TFTF	(C) FFTT	(D) FFTF	

SUPER PROBLEMS IN INORGANIC CHEMISTRY **p-BLOCK ELEMENTS** Q.137 Phosphine is not obtained, when (A) Red phosphorous is heated with NaOH (B) White phosphorous is heated with NaOH (D) Phosphorous trioxide is boiled with water (C) Ca_3P_2 reacts with water Q.138 Which pair of oxides give metallic residue on heating? $(A) Ag_{2}O, PbO$ (B)Ag₂O, HgO (C) HgO, PbO₂ (D) PbO, CuO Q.139 Match the following mixtures with the respective solution used for their separation: (a) $N_2 \& CO$ (i) water (b) $N_2 \& O_2$ (ii) $H_2 SO_4$ (c) $N_2 \& NH_3$ (iii) Ammonical CuCl (d) $PH_3 \& NH_3$ (iv) Pyrogallol (A) a-(iv), b-(iii), c-(ii), d-(i) (B) a-(iii), b-(iv), c-(ii), d-(i)(C) a-(iii), b-(iv), c-(i), d-(ii)(D) a-(iii), b-(ii), c-(iv), d-(i) Q.140 (X) $\xrightarrow{\text{KOH}}$ (Y) (gas turns red litmus blue) +(Z) $\xrightarrow{\text{Zn+KOH}}$ (Y) (gas) (X) $__^{\Delta}$ gas (supports in combustion) Identify (X) to (Z). (A) $X = NH_4NO_2$ $Y = NH_3$ $Z = KNO_2$ (B) $X = (NH_4)_2 Cr_2 O_7$ $Y = NH_3$ $Z = Cr_2O_3$ (C) $X = (NH_4)_2SO_4$ $Y = NH_3$ $Z = K_2SO_4$ $Z = KNO_3$ (D) $X = NH_4NO_3$ $Y = NH_3$ Q.141 When NaN_3 solution is treated with H_2S . (A) Deposit of sulphur takes place & medium becomes acidic (B) Colourless gas is evolved & solution becomes alkaline (C) The gas evolved which causes unconsciousness on inhalation for long time.

(D) The gas evolved which makes $K_2Cr_2O_7$ paper green.

SUPER	PROBLEMS IN INORGAN	IC CHEMISTRY		p-BLOCK ELEMENTS		
Q.142	When a sample of N	$\rm IO_2$ is placed in a containe	r, this equilibrium is r	apidly established.		
	$2NO_2(g) \rightleftharpoons$	$= N_2 O_4 (g)$				
	If this equilibrium n	nixture is a darker colour a	at high temperatures a	and at low pressures, which of these		
	statements about the	e reaction is true?				
	(A) The reaction is	exothermic and NO_2 is da	arker in colour than N	I_2O_4		
	(B) The reaction is	exothermic and N_2O_4 is d	arker in colour than I	NO ₂		
	(C) The reaction is	endothermic and NO ₂ is c	larker in colour than	N ₂ O ₄		
	(D) The reaction is	endothermic and N_2O_4 is	darker in colour than	NO ₂		
Q.143	Calcium imide on hy	drolysis will give gas (B)	which on oxidation by	bleaching powder gives gas (C) gas		
	(C) on reaction with magnesium give compound (D). (D) on hydrolysis gives again gas (B). (B), (C) and					
	(D) are					
	(A) NH_3 , N_2 , Mg_3N_2		$(B) N_2, NH_3, MgI$	NH		
	(C) N_2 , N_2O_5 , M_2	g(NO ₃) ₂	(D) NH_3 , NO_2 , N	$\operatorname{Mg(NO_2)}_2$		
Q.144	Which of the following is true for N_2O ?					
	(I) It has linear structure.					
	(II) Symmetric N–O–N is a favourable skeleton as compare to N–N–O skeleton.					
	(III) Bonds orders a	are fractional for N–N and	d N–O bonds			
	(IV) It is ionic in solid state and exists as ion pair.					
	Choose correct cod	Choose correct code				
	(A) I, II, III	(B) I, II, III, IV	(C) I, III	(D) I, III, IV		
Q.145	When ammonia gas is passed over hot CuO, a gas is evolved. The same gas is ev			same gas is evolved by heating		
	(A) NH ₄ NO ₃	(B) NH ₄ Cl	(C) NH ₄ NO ₂	(D) CH ₃ COONH ₄		
Q.146	Which of the follow:	ing on hydrolysis will give	dibasic acid?			
	(A) PCl_5	(B) PCl ₃	(C) BCl ₃	(D) SiCl ₄		
Q.147	Nitrogen can be pre	rogen can be prepared by :				
	(A) By decompositi	on of sodium azide	(B) By decomposi	tion of Ammonium dichromate		
	(C) By decomposition	on of Ammonium nitrite	(D) All the above			
Q.148	Ammonia can not b	e prepared by :				
	(A) Reduction of nit	rite	(B) Reduction of n	itrate		
	(C) Reduction of nitride (D) Hydrolysis of amides			amides		

SUPER	PROBLE	MS IN INORGANIC	CHEMISTRY			p-BLOCK ELEMENTS
Q.149	Which	n metal will give	nitrous oxide by cold a	und dil H	$NO_3?$	
	(A)Zr	1	(B) Cu	(C) P	b	(D)Ag
Q.150	In a O	stwald process				
	NH ₃ +	$+ O_2 \xrightarrow{\Delta} x + P_t$	- H ₂ O			
	$\mathbf{x} + \mathbf{O}$	$_2 \longrightarrow y$				
	$y + H_2$	$\frac{1}{2}O(\text{excess})$ —	\rightarrow x + z			
	The in	correct option is	3:			
	(A) 'x'	shows paramag	netic behaviour	(B) 'x	a' & 'y' are acid	lic oxide
	(C) 'z'	can acts as oxid	ising agent	(D) 'y	/ & 'z' are acid	lic in nature
Q.151	Very p	ourest form of N	, is prepared by therma	al decom	position of	
	(A) N	H ₄ NO ₃	(B) NH_4NO_2	(C) B	$Ba(N_3)_2$	(D) $(NH_4)_2 Cr_2 O_7$
Q.152	POCL	prepared by the	e reaction of :			
	(I)	$P_4 + SO_2Cl_2 -$	>	(II)	$P_4 + SOCl$	$_{2} \longrightarrow$
	(III)	(III) $PCl_5 + SO_2 \longrightarrow$		(IV) $PCl_5 + C_2H_5OH \longrightarrow$		$H_5OH \longrightarrow$
	(A) I &	& III	(B) II & III	(C) I	& IV	(D) III & IV
Q.153	Which	n of the following	g will give H ₂ gas with	dilute HI	$NO_3?$	
	(A) M	g	(B)Zn	(C) C	Ľu	(D) Hg
Q.154	The ca	atalyst used in H	laber's process of prod	uction of	f NH ₃ now day	ys is –
	(A) Fe	e + MO		(B) In	on oxide with	K_2O and Al_2O_3
	(C) Iro	on oxide with M	lo as promoter	(D) A	$Al_2O_3 + FeCl_3$	
Q.155	Phosp	hine is not obtai	ned, when			
	(A) Re	ed phosphorous	is heated with NaOH			
	(B) W	hite phosphorou	us is heated with NaOH	ł		
	(C) Ca	a_3P_2 reacts with	water			
	(D) Ph	nosphorous triox	tide is boiled with wate	r		

SUPER I	PROBLEMS IN INORGANIC	CHEMISTRY		p-BLOCK ELEMENTS
Q.156	$P_2O_5 + H_2O_5$	$\longrightarrow X$		
	$2X - H_2O - $	\rightarrow Y		
	$Y + O \longrightarrow Z$	2		
	$X + O \longrightarrow I$	Ξ		
	$X - O \longrightarrow H$	7		
	Find the sum of π bor	nd in X,Y,Z,E and F	?	
	(A) 6	(B) 7	(C) 5	(D) 8
Q.157	Choose the correct sta	tement regarding Al	lotropes of phosphorou	15:
	(A) White phosphoro	us exist as a discrete	P ₄ molecules	
	(B) Order of reactivity	y, white phosphorou	s > Red Phosphorous	> Black Phosphorous
	(C) Black phosphorou graphite.	is is a conductor of el	ectricity because it exis	st in the form of hexagonal layers like
	(D) All above information	tion regarding allotr	opes of phosphorous ar	re correct.
Q.158	Which of the followin	ng compounds when	treated with PCl ₅ does	not produce POCl ₃ ?
	(A) SO ₃	(B) H ₂ O	(C) P_4O_{10}	(D) CO ₂
Q.159	Ammonia can be dried	d by using		
	(A) CaCl ₂	$(\mathbf{B})\mathbf{H}_{2}\mathbf{SO}_{4}$	(C) CaO	(D) P ₄ O ₁₀
Q.160	2P + 10 HNO ₃	→ 'X' +	$10 \text{ NO}_2 + 2\text{H}_2\text{O}$ Compound 'Y'	
	Identified the hybridis	ation of phosphorou	s in compound 'V'	
	(A) sn^2	(B) $\operatorname{sp}^{3}d$	$(C) \operatorname{sn}^3$	(D) $\operatorname{sp}^3 d^2$
	(1) 50	(D) sp u	(C) sp	(D) sp u
Q.161	$P_4 + SOCl_2 \longrightarrow X + P_4 + SO_2Cl_2 \longrightarrow M$ Compound 'Y' is :	-Y + Z + Y		
	(A) PCl ₃	(B) PCl ₅	(C) SO ₂	(D) S_2Cl_2

SUPER I	PROBLEMS IN INORGANIC	CHEMISTRY		p-BLOCK ELEMENTS
		Oxygen	n Family	
Q.167	A sulphate of a meta	l (A) on heating evolves	two gases (B) and (C) and an oxide (D). Gas (B) turns
	K ₂ Cr ₂ O ₇ paper green	while gas (C) forms a tri	mer in which there is r	no S–S bond. Compound (D) with
	HCl, forms a Lewis	acid (E) which exists a	s a dimer. Compound	ds (A), (B), (C), (D) and (E) are
	respectively			
	(A) $FeSO_4$, SO_2 , SO_2	O ₃ , Fe ₂ O ₃ , FeCl ₃	$(B)Al_2(SO_4)_3, SO_2$, SO ₃ , Al ₂ O ₃ , FeCl ₃
	(C) FeS, SO_2 , SO_3 ,	FeSO ₄ , FeCl ₃	(D) FeS, SO_2 , SO_3	, $\operatorname{Fe}_2(\operatorname{PO}_4)_3$, FeCl_2
Q.168	The structures of O ₃	and N_3^- are		
	(A) linear and bent re	spectively	(B) both linear	
	(C) both bent		(D) bent and linear, 1	respectively
Q.169	169 Which of the following compound does not liberate oxygen gas on warming with conc. H_2SO_4 ?			
-	(A) SO ₃	(B) PbO_2	(C) MnO_2	(D) CrO_5
0.170	A gas which exists in	three allotropic forms α	$. \beta$ and γ is	
	(A) SO_2	(B) SO ₃	(C) CO_2	(D) NH ₃
0 171	There is no S. S. bond	in		
Q.171	(A) $S_2O_4^{2-}$	(B) $S_2O_5^{2-}$	(C) $S_2O_3^{2-}$	(D) $S_2O_7^{2-}$
Q.172	When an inorganic co	pmpound reacts with SO_2	in aqueous medium, p	produces (A). (A) on reaction with
	Na_2CO_3 , gives compo	ound (B) which with sulph	ur, gives a substance (C	C) used in photography. Compound
	(C) is (A) Na ₂ S	(B) Na ₂ S ₂ O ₇	(C) Na ₂ SO ₄	$(D) Na_2S_2O_2$
	(11) 1(02)	$(D) = (m_2 D_2 D_1)$	(0) 1 (2) 0 4	(2) 1(02)203
Q.173	When H_2S is passed t	hrough dilute nitric acid	solution. the product fo	ormed is :
	(A) SO ₃	(B) Colloidal sulphur	(C) SO ₂	(D) Plastic sulphur
Q.174	A pale yellow crystall	ine solid insoluble in wate	er but soluble in CS ₂ is a	allowed to react with nitric oxide to
	give X and Y. X is a co	plourless gas with punger	nt odour. X is further al	lowed to react in aqueous medium
	with nitric oxide to y	ield Z and T. Compounds	s X. Z and T are	
	(A) SO_3 , H_2SO_3 , N_2	20	(B) SO_2 , H_2SO_4 , N	J ₂ O
	(C) SiO_2 , H_2SO_4 , N	2	(D) SO ₃ , H ₂ SO ₃ , N	J_2

SUPER P	ROBLEMS IN INORGANIC CHEMISTRY				p-BLOCK ELEMENTS
Q.175	$SO_2 \uparrow \xrightarrow{Excess Na_2CO_3 \text{ soln.}} P(aq)$ $H_2S \uparrow Q \downarrow$	$\frac{Q}{Boil}$ R			
	Incorrect statement about 'R' is				
	(A)Antichlor agent		(B) Fixing agent in p	hotography	
	(C) Forms ppt with $CaCl_2$ soln.		(D) Reduces Cu ⁺⁺ (aq) cation	
Q.176	 Which of the following statement is i (A) It is thermodynamically less stab (B) It causes headache (C) It is diamagnetic in nature. (D) It oxidises KMnO4. 	incorrect fo	or ozone? gen.		
Q.177	For hydrides of 16th group elements $H_2O < H_2S < H_2Se < H_2Te$ (A) Bond length (B) Reducin	s, select the	property which does (C) Bond angle	not follow th (D) Arrhe	e order: mius acidic character
Q.178	Which order is incorrect : (A) $SF_6 > SeF_6 > TeF_6$ (B) $PCl_5 > SiCl_4 > AlCl_3$ (C) $H_2O > H_2S > H_2Se > H_2Te$ (D) $SF_6 > SeF_6 > TeF_6$: Order : Order : Order : Order	of stability of hydrolysis of thermal stability of hydrolysis		
Q.179	 Which of the following statement is i (A) Sulphur molecule in vapour state (B) Sulphur and selenium occur as S structure. (C) Ozone oxidises KMnO₄. (D) SO₂ can act both as oxidising as 	incorrect ? e exist as S_2 S_8 and Se_8 m well as red	and is paramagnetic nolecules at room ter ucing agent.	in nature. nperature and	l have puckered ring
Q.180	Which statement regarding sulphuric (A) It is responsible for charring of s (B) It is obtained in contact process 1 (C) The value of Ka ₂ for H ₂ SO ₄ is g (D) It consists of two d π -p π bonds a	c acid is inco sugar due to by hydrolys greater than and sulphur	orrect? its dehydrating prop is of oleum. its Ka ₁ value. atom is sp ³ hybridis	erty. ed in it.	

SUPER	PROBLEMS IN INORGANI	C CHEMISTRY		p-BLOCK ELEMENTS
Q.181	Which statement reg	arding ozone is incorr	rect?	
	(A) Ozone is powerf	ful oxidising agent as c	compared to O ₂	
	(B) Formation of ozo	one from O_2 is endother	ermic	
	(C) Ozone molecule	is paramagnetic like or	xygen molecule	
	(D) O_3 is estimated by	by KI in presence of B	orate buffer followed	by titration with hypo
Q.182	Which gas can be dr	ried by conc. H_2SO_4		
-	(A) NH_3	(B) PH ₃	(C) H ₂ S	(D) SO ₂
Q.183	SO_2 is not produced	when		
	(A) P_4 reacts with S	OCl ₂	(B) S_8 reacts wit	h conc. H_2SO_4
	(C) P_4 reacts with S	O_2Cl_2	(D) S_8 reacts wit	h conc. HNO ₃
Q.184	84 Which of the following fluoride does not convert SE, into SE.			
	(A) ClF_5	(B) XeF ₄	(C) O_2F_2	(D) CsF
0 185) 185 Oxygen gas is not evolved when			
Q .100	(A) Potassium permangnate is heated (B) Sodium perovide reacts with water at R T			
	(C) Ammonium nitra	te is heated	(D) Pottasium nit	rate is heated
Q.186	When ozone reacts (pH = 9.2) iodine is 1 this is a quantitative r then product is/are (A) $S_4O_6^{2-}$	with an excess of p iberated which can be nethod for estimating ((B) SO_4^{2-}	botassium iodide solu titrated against a stanc O_3 gas. When liberated (C) $S_2O_4^{2-}$	tion buffered with a borate buffer lard solution of sodium thiosulphate. I_2 and sodium thiosulphate will react. (D) S°
0 197	In which of the follow	wing respection SQ gas	is not produced	
Q.107	In which of the folio	wing reaction SO_2 gas	is not produced	
	(A) S_8 + conc. H_2S_8	$O_4 \xrightarrow{\text{warm}} $	(B) S_8 + conc. H	$INO_3 \xrightarrow{warm} \rightarrow$
	(C) PbS + O ₂ $-\Delta$	>	(D) $FeS_2 + O_2$ -	$\xrightarrow{\Delta}$
Q.188	.188 When conc. H_2SO_4 was treated with $K_4[Fe(CN)_6]$, CO gas was evolved. By mistake, somebody used dilute H_2SO_4 instead of conc. H_2SO_4 then the gas evolved was			
	(A) CO	(B) HCN	(C) N ₂	(D) CO ₂
Q.189	Which gas is respon	nsible for green hous	e effect :	
	(A) CO ₂	(B) SO ₂	(C) CO	(D) SO ₃
chemstudi	os by pms			Page # 314

SUPER	PROBLEMS IN INORGANIC (CHEMISTRY		p-BLOCK ELEMENTS
Q.190	$O_2 + PtF_6 \longrightarrow O_2 [P]$	rtF ₆]		
	Choose the correct op	tion:		
	(A) Oxygen is O_2^- and	paramagnetic	(B) Oxygen is O_2^{2-} as	nd diamagnetic
	(C) Oxygen is O_2^+ and	diamagnetic	(D) Oxygen is O_2^+ and	d paramagnetic
Q.191	$K_2Cr_2O_7 + H_2SO_4 + 4$	$4H_2O_2 \longrightarrow K_2SO_4 +$	$\mathbf{X} + 5H_2O$	
	What is the oxidation s	tate of chromium in proc	duct 'X' ?	
	(A) +10	(B)+6	(C) +7	(D) +5
Q.192	The dipole moment of	H_2O_2 is more than that	of H_2O but H_2O_2 is no	t a good solvent because
	(A) it has a very high di	electric constant so that	ionic compounds canr	not be dissolved in it
	(B) it does not act as an	oxidising agent		
	(C) it acts as a reducing	C) it acts as a reducing agent		
	(D) it dissociates easily and acts as an oxidising agent in chemical reactions			
Q.193	$K_4[Fe(CN)_6]$ reacts wi	th ozone to give		
	(A) Fe_2O_3	(B) $\operatorname{Fe}(OH)_2$	(C) $K_3[Fe(CN)_6]$	(D) KNO ₃
Q.194	$SO_3^{2-} + S^* \longrightarrow SS^*$	0 ₃ ^{2–}		
	$SS^*O_3^{2-} + 2H^+ \longrightarrow C$	$H_2SO_3 + S^*$		
	The above reaction sec	juence proves		
	(A) Two sulphur atoms	of thiosulphate are not e	equivalent	
	(B) Both are equivalent	t		
	(C) Both of the above	are correct		
	(D) None of these			
Q.195	In most of the reaction	s of ozone, oxygen is on	e of the product and it	is considered as
	(A) Reduction product		(B) Oxidation produc	ot
	(C) Thermal decompos	sition product	(D) Disproportionate	d product
0.100			- d	No S O 511 O is subjected to
Q.196	Select the correct state	ements regarding the pr	oducts obtained when	$\ln a_2 S_2 O_3$. $SH_2 O$ is subjected to
	(D) Disproportion	tion reaction takes place		
	(I) Disproportiona (II) No SO and N	luon reaction takes place	Ċ	
	(II) $\operatorname{Na}_2\operatorname{SO}_3$ and $\operatorname{Na}_2\operatorname{SO}_3$	$a_2 S_5$ are produced.		
	(III) $\operatorname{Na}_2 \operatorname{SO}_4$ and N_4	$a_2 S_5$ are produced.	hain atmatura	
	(\mathbf{A}) I II IV	$(\mathbf{R}) \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{V}$		
	(13) 1, 11, 1 V	(U) 1, 111, 1 ¥	(C) 11, 111, 1 ¥	(<i>L</i> , 1, 11, 111, 1 ۲

SUPER I	PROBLEMS IN INOR	GANIC CHEMISTRY		p-BLOCK ELEMENTS
Q.197	The correct order of relative rate of hydrolysis is :			
	(A) $SF_6 < SeF_6$	$_{5} < \text{TeF}_{6}$	(B) $SF_6 < TeF_6 < S$	eF ₆
	(C) $\text{TeF}_6 < \text{SeF}_6$	$F_6 < SF_6$	(D) $\text{TeF}_6 < \text{SF}_6 < \text{S}$	eF ₆
Q.198	Sewage contain pollution. Fishe	ing organic waste should no s in such a polluted water d	ot be disposed in water bo ie because of :	dies because it causes major water
	(A) large number	to of mosquito	vaan in watan	
	(B) increase in (the amount of dissolved oxy		
	(C) decrease in	the amount of dissolved ox	ygen in water.	
	(D) clogging of	gills by mud.		
Q.199	The temporary	pleaching property is shown	n by	
	(A) SO ₂	(B) H ₂ O ₂	(C) HOCl	(D) CaOCl ₂
Q.200	2 × sulphuric a 2 × sulphurous Which option is	cid – $H_2O + O \rightarrow X$ acid – $H_2O = Y$ correct for above information	tion?	
	(A) X has S–O	-S bond	(B) Y has S–O–S be	ond
	(C) Y has S–S l	oond	(D) X has S–S bond	1
O.201	Select the metal	sulphide which is vellow ir	n colour -	
	(A)ZnS	$(B) Ag_2 S$	(C) As_2S_3	(D) CoS
Q.202	 102 Tom Says : Among 16th group elements tendency of catenation is maximum for sulphur. Jerry Says : S–S bond is stronger than O–O single bond. (A) Tom is true & Jerry is also true and Jerry give the correct explanation for Tom statement. (B) Tom is true & Jerry is also true and Jerry does not give the correct explanation for Tom statement (C) Tom is false & Jerry is true. (D) Tom is true & Jerry is false. 			s maximum for sulphur. ation for Tom statement. ct explanation for Tom statement.
Q.203	Which ion can i	not be oxidised by ozone?		
	(A) I^{\ominus}	(B) AsO_3^{3-}	(C) $[Fe(CN)_6]^{3-}$	(D) MnO_4^{2-}

SUPER I	PROBLEMS IN INORGAI	NIC CHEMISTRY		p-BLOCK ELEMENTS		
Q.204	$Na_2S + H_2SO_4 - $ dil.	→SolubleCompound 'X'	d+ Gas 'Y'			
	Select the correct statement regarding products 'X' and 'Y'					
	(A) Hybridisation	of sulphur in 'X' can not	predict.			
	(B) Geometry of 'Y' is bent.					
	(C) Hybridisation of	of sulphur in 'Y' is sp ³				
	(D) Both compoun	d 'X' and 'Y' react with	moist Pb(OAc) ₂ solution	on to form white precipitate.		
Q.205	Gas 'X' + CuSO ₄ (Having Rotten fish smell)	$\rightarrow Compound + Sol'Y' (Black ppt.)$	lution Z'			
	Black precipitate '	7' is :				
	(A) Cu_2O	(B)ZnS	(C) Cu_3P_2	(D) Cu_2S		
		<u>Hal</u>	ogen Family			
Q.206	Which halogen oxi	dizes water at room ten	perature but does not u	indergo disproportionation into it?		
	(A) F_2	$(B) \operatorname{Cl}_2$	(C) Br_2	$(D) I_2$		
Q.207	Chlorine gas is not	produced by heating				
	(A) $SOCl_2$	(B) PbCl ₄	(C) FeCl ₃	(D) Hg_2Cl_2		
Q.208	Bromine is comme Cl ₂	rcially prepared from set $_2 + 2Br^- (aq) \rightarrow 2Cl^- (aq)$	ea water by displacemer aq) + Br ₂	nt reaction		
	Br_2 gas thus formed the solution with	d is dissolved into solut	ion of Na_2CO_3 and then	h pure Br_2 is obtained by treatment of		
	(A) $Ca(OH)_2$	(B) NaOH	(C) H ₂ SO ₄	(D) HI		
0.209	Which of the follow	ving combination doesn	ot evolve Cl ₂ gas			
	(A) HCl (aq) + KN	∕InO₄	(B) HCl + MnO ₂	,		
	(C) HCl + Br_2	- 4	(D) $HCl + F_2$			
	(0)1101 212		(2) 1101 1 2			
Q.210	Which reaction has	positive value of ΔG°				
	(A) $F_2 + H_2O$ —	$\xrightarrow{\text{R.T.}} 2\text{HF} + \frac{1}{2}\text{O}_2\uparrow$	(B) Cl ₂ +	$H_2O \xrightarrow{R.T.} HCl + HOCl$		
	(C) $Br_2 + H_2O$ —	$\xrightarrow{\text{R.T.}} \text{HBr} + \text{HOBr}$	(D) $I_2 + H_2O$ —	$\xrightarrow{\text{R.T.}} \text{HI} + \text{HOI}$		
chemstudio	os by pms			Page # 317		

SUPER	PROBLEMS IN INORGANIC C	HEMISTRY		p-BLOCK ELEMENTS
Q.211	Vander Waal forces of a	attraction is the correct	reason for which of the f	following statement.
	(A) I_2 is solid, Br_2 is lice	quid while F_2 and Cl_2 are	e gases	
	(B) Acidic nature: HF	<hcl<hbr<hi< td=""><td></td><td></td></hcl<hbr<hi<>		
	(C) H_2O_2 is more visco	bus than H_2O		
	(D) CH_3OH is more sol	uble in water than high	er molecular weight alco	hols
Q.212	Which products are exp	pected from disproporti	onation of hypochlorous	s acid?
	(A) $HClO_3$ and Cl_2O		(B) HClO ₂ and HClO	4
	(C) HCl and Cl_2O		(D) HCl and HClO ₃	
Q.213	Correct order of boiling	gpoint		
	(A) $F_2 > Cl_2 > Br_2$	(B) $F_2 > Br_2 > Cl_2$	(C) $Cl_2 > Br_2 > F_2$	(D) $Br_2 > Cl_2 > F_2$
Q.214	.214 For which of the following reaction, blue colouration is not observed in presence of starch			presence of starch
	(A) $I^{-}(aq) + H^{+}(aq) -$	atm air	(B) $I^-(aq) + dil H_2SC$	$D_4 \longrightarrow$
	(C) $I^{-}(aq) + Fe^{3+}(aq)$	\longrightarrow	(D) $I^{-}(aq) + Cu^{++}(aq)$	$) \longrightarrow$
Q.215	Which of the property	follow given order; F ₂ >	>Cl ₂	
	(A) Oxidising property		(B) Bond length	
	(C) Bond energy		(D) Absorbed wavelen	ngth
Q.216	NaOCl on heating give	S		
	(A) Sodium chlorides a	nd sodium chlorate	(B) Sodium chlorite an	nd sodium chlorate
	(C) sodium chlorite and	l sodium chlorides	(D) Sodium chlorite ar	nd sodium perchlorate
Q.217	$Cl_2 + F_2(excess) = \frac{573}{5}$ Select the incorrect stat	$\stackrel{K}{\longrightarrow}$ (P) (Inter halogenergy endoced by the second se	n compound with bent-7	Г-Shape)
	(A) Polar molecule		(B) Conducts electricit	y in liquid state
	(C) Diamagnetic substa	ince	(D) Non planar molecu	ıle
Q.218	Which set of propertie	s follow given order: H	$ClO < HClO_2 < HClO_3$	<hclo<sub>4</hclo<sub>
	(i) Acidic nature	(ii) Oxidising nature	(iii) Thermal stability	(iv) Cl–O single bond length
	(A) Only (i)	(B) Only (i) & (iii)	(C) Only (i), (ii) & (iii)	(D) All of these

SUPER I	PROBLEMS IN INORGAN	IC CHEMISTRY		p-BLOCK ELEMENTS	
Q.219	Which pair of spec	ies can't be prepare by c	conc. H_2SO_4		
	(A) HCl, HBr	(B) HCl, H_3PO_4	(C) H_3PO_4 , HNO_3	(D) HBr, HNO ₃	
Q.220	Which of the follow	ving species is not a pseud	dohalide?		
	(A) CNO ⁻	(B) RCOO ⁻	(C) OCN^{-}	(D) N_3^-	
Q.221	When chlorine gas is passed through an aqueous solution of a potassium halide in the presence of chloroform, avoilet colouration is obtained. On passing more of chlorinewater, the voilet colour is disappeared and solution becomes colourless. This test confirms the presence of which of the following halide in aqueous solution				
	(A) chloride	(B) fluoride	(C) bromide	(D) iodide	
0.222	Conc. H ₂ SO ₄ canno	ot be used to prepare H	Br from NaBr because it		
	(A) reacts slowly w	ith NaBr	(B) oxidises HBr		
	(C) reduces HBr		(D) disproportionates	sHBr	
Q.223	 Halogens are coloured, this is due to (A) Absorption of radiations in visible region. (B) Absorption of radiations in Infra red region (C) Absorption of radiations in Ultra-violet region. (D) None of these 				
Q.224	In the following read	ction.			
	2Ca(OH) ₂	$+ 2Cl_2 \xrightarrow{40^{\circ}C} produ$	cts.		
	Oxidation states of o	chlorine in products is :			
	(A) –1, +1	(B) - 1, +3	(C) –1, +5	(D) 0, +1	
Q.225	Which of the follow gases?	ring halogen oxide is use	d for estimation of carbon	monoxide in automobile exhaust	
	(A) Cl_2O_7	(B) I ₂ O ₅	(C) ClO ₂	(D) BrO ₃	
Q.226	Concentrated HNO	reacts with iodine to g	ive		
	(A) HI	(B) HOI	(C) HOIO ₂	(D) HOIO ₃	

SUPER F	PROBLEMS IN INORGANIC	CHEMISTRY		p-BLOCK ELEMENTS	
Q.227	7 Reaction which is feasible at room temperature is :				
	(A) Cl_2 - water + Br ⁻	\longrightarrow	(B) Br_2 - water + I ⁻ –	\rightarrow	
	(C) I_2 - water + Cl ⁻ -	\rightarrow	(D) Both (A) and (B)		
Q.228	$H_3 + Cl_2(excess) \rightarrow Explosive substance (X) \xrightarrow{HCl(aq)} (Y) + (Z)$				
			Blue		
	The products (Y) and (Z) are respectively:			
	(A) NH _{\circ} & Cl _{\circ}	$(B) N_a \& Cl_a$	$(C) NH_{a} - NH_{a} \& Cl_{a}$	(D) $HN = NH \& Cl_{a}$	
	(1) 1 (113 00 012	(D) = 12 C C C C C C C C C C C C C C C C C C			
Q.229	The correct order of th	ermal stability is :			
-	(A) $HOCl < HClO_3 <$	$HClO_2 < HClO_4$	(B) HOCl > HClO ₂ >	$HClO_3 > HClO_4$	
	(C) HClO $<$ HClO ₂ $<$	$HClO_3 < HClO_4$	(D) $HClO_4 < HClO <$	$HClO_2 < HClO_3$	
		5 т	4		
Q.230	In the hydrolysis of IC	l, the products are -			
	(A) HI + HCl	(B) HI + HOCl	(C) HCl + HOI	(D) HOCl + HOI	
Q.231	A reddish pink substan the substance turns blu substance is	ce on heating gives off a le. On cooling, if water is	vapour which condenses s added to the residue, it	on the sides of the test tube and turns to its original colour. The	
	(A) Iodine crystals		(B) Copper sulphate cr	ystals	
	(C) Cobalt chloride cry	ystals	(D) Zinc oxide	•	
Q.232	Which of the following	reaction is feasible			
	(A) $2HBr + I_2 \longrightarrow 2$	$HI + Br_2$	(B) $H_2SO_4 + 2HCl -$	\rightarrow SO ₂ + Cl ₂ + 2H ₂ O	
	(C) $2HI + F_2 \longrightarrow 2H$	$IF + I_2$	(D) $NH_3 + HF \longrightarrow N$	NH ₄ F	
Q.233	 Only iodine forms hepta-fluoride IF₇, but chlorine and bromine give penta-fluorides. The reason for this is (A) low electron affinity of iodine (B) unusual pentagonal bipyramidal structure of IF₇ (C) that the larger iodine atom can accommodate more number of smaller fluorine atom around it 				
	(D) low chemical react	ivity of IF ₇			
Q.234	Thermally most stable	compound is			
	(A) HOClO ₃	(B) HOClO ₂	(C) HOCl	(D) HOClO	

SUPER	PROBLEMS IN INORGAN	p-BLOCK ELEMENTS		
Q.235	The interhalogen co	mpound that exist is		
	(A) IBr ₃	(B) ICl ₇	(C) IF ₅	(D) BrF_4
Q.236	Cl ₂ disproportionate	e in :		
	(A) H_2O , NaOH		(B) H_2O , dil. H_2SO_4	
	(C) NaOH, dil. H_2	SO_4	(D) dil. H_2SO_4 , conc	H_2SO_4
Q.237	What is the oxidation	on state of oxygen in X, w	where X is most stable co	mpound of oxygen and fluorine?
	(A) +2	(B)-1	(C) +1	(D) -2
Q.238	Which compound is	s most powerful bleaching	agent?	
	$(A) Cl_2$	(B) CaOCl ₂	$(C) O_{2}$	$(D) H_2O_2$
	2	2	5	2 2
Q.239	$\operatorname{Cl}_2(g) + \operatorname{Ba}(\operatorname{OH})_2$ -	\longrightarrow X (aq) + BaCl ₂ + H	I ₂ O	
	$X + H_2SO_4 \longrightarrow Y$	$Y + BaSO_4$		
	$Y \xrightarrow{\Delta}_{\Delta > 365 \mathrm{K}} Z + \mathrm{H}_2\mathrm{O}$	$+O_2$		
	Y and Z are respect	ively		
	(A) $\mathrm{HClO}_4, \mathrm{ClO}_2$	$(B) \operatorname{HClO}_3, \operatorname{ClO}_2$	$(C) \operatorname{HClO}_3, \operatorname{ClO}_6$	(D) $\mathrm{HClO}_4, \mathrm{Cl}_2\mathrm{O}_7$
Q.240	The reaction which	is consistent with the fac	t that $Cl_2O_{\epsilon}(s)$ exists as	$[ClO_2^+][ClO_4^-]$, would be
	(A) $Cl_2O_6 + NaOH$	$H \rightarrow NaClO_3 + NaClO_4$	$+ H_2O$	- 2 4 -
	(B) $Cl_2O_6 + HF \rightarrow$	$-ClO_2F + HClO_4$	2	
	(C) $2HClO_4 + P_2C$	$D_5 \rightarrow 2HPO_3 + Cl_2O_7$		
	(D) $2ClO_{2} + 2O_{2}$	$\xrightarrow{0^{\circ}C}$ $Cl_{2}O_{c} + 2O_{2}$		
	2 3	2 6 2		
Q.241	Which of the follow	ving does not conduct elec	tricity in the fused state?)
	(A) NaCl	(B) CaF ₂	(C) MgCl ₂	(D)AlCl ₃
Q.242	A black powder (A	h) when heated with NaC	Cl and conc. H_2SO_4 give	es off a greenish yellow gas (B).
	Gas B on passing th	hrough boiling KOH yiel	ds compounds, one of w	hich when heated with the black
	powder evolves oxy	(P) Ph O \mathbf{P}_r	(C) MpO Br	(\mathbf{D}) Ph (\mathbf{D}) Cl
	(A) WIIO_2 , Cl_2	(b) $rv_{3}v_{4}$, b r_{2}	(C) MIIO_2 , Br_2	$(D) \operatorname{FU}_{3} \operatorname{U}_{4}, \operatorname{Cl}_{2}$

Q.243 Violet colour of iodine is decolourised by: (A) Hot and Concentrated NaOH (B) Na-S-O-	
(A) Hot and Concentrated NaOH (B) Na.S.O.	
(C) Concentrated HNO_3 (D) All of these	
Q.244 The bleaching property of chlorine water is due to-	
(A) Formation of nascent oxygen (B) Formation of nascent chlorine	
(C) Formation of O_3 (D) Reducing property of Cl_2	
Q.245 Chlorine can be obtained by which of the following process.	
(A) Electrolysis of molten NaCl (B) NaCl + NaOCl $\xrightarrow{\text{Acidic}}$	
(C) $4HCl + O_2 \xrightarrow{CuCl_2}$ (D) All of these	
Q.246 The principal products obtained on heating iodine with concentrated caustic soda solution	on are
(A) $NaOI + NaI$ (B) $NaIO_3 + NaI$	
(C) $NaOI + NaIO_3 + NaI$ (D) $NaIO_4 + NaI$	
Q.247 F_2 + NaOH conc. \longrightarrow X + Y + Z (gas)	
In above reaction Z (gas) is:	
(A) H_2 (B) O_2 (C) F_2 (D) Na_2 (vapor	ur)
Q.248 $\operatorname{Cl}_2 + \operatorname{NH}_3 \longrightarrow [X] + \operatorname{HCl}_{\operatorname{Concentration lowered}_{\operatorname{down beyond the limit}}}$	
Choose incorrect option :	
(A) $[X]$ is sp ³ hybridised (B) $[X]$ is explosive in nature	
(C) [X] is pyramidal (D) [X] is NH_4Cl	
Inert Gases	
Q249 First compound of inert gases was prepared by scientist Neil Barthlete in 1962. This con	mpound is
(A) $XePtF_6$ (B) XeO_3 (C) XeF_6 (D) $XeOF_4$	
Q.250 Which of the following Xenon compound does not produce explosive XeO_3 on its compl	lete hydrolysis:
(A) XeO_2F_2 (B) XeF_2 (C) XeF_4 (D) XeF_6	

Q.257 Which order regarding inert gases is incorrect?

(A) He < Ne < Ar < Kr < Xe : Order of M.P and B.P

(B) He < Ne < Ar < Kr < Xe : Order of adsorption on coconut charcoal

- (C) He < Ne < Ar < Kr < Xe : Order of polarisability
- (D) He < Ne < Ar < Kr < Xe : Order of Ionization energy

Q.258 XeF₄ molecule is:

- (A) Tetrahedral and acts as fluoride donor with ${\rm SbF}_5$
- (B) Square planar and acts as fluoride donor with $\ensuremath{\mathsf{PF}}_5$
- (C) Square planar and acts as fluoride donor with NaF
- (D) See Saw shape and acts as a fluoride donor with \mbox{AsF}_5
- Q.259 XeF_6 undergoes partially and completely Hydrolysis and gives different Xenon compounds, select the **CORRECT** statement regarding Xenon compounds formed on Hydrolysis.
 - (A) All have planer geometry.
 - (B) All are oxo-flouro xenon compounds.
 - (C) All are non planer and polar.
 - (D) All have different hybridisation and different number of lone pairs on central atom.

Q.260 The decreasing order Xe > Kr > Ar > Ne > He, is correct for

(1) boiling point	(2) solubility in water	(3) polarisability	(4) Ease of liquification
(A) only 1	(B) 1, 2, 3, 4	(C) 1, 2, 4	(D) 2, 4

Q.261 Which of the following is not the correct characteristic property of noble gases.

- (A) Higher degree of diffusibility.
- (B) Producing inert atmosphere.
- (C) All can easily be stored by clathrate formation.
- (D) Their fluorides hydrolyse at room temperature.

Q.262 Which of the following noble gases does not form clathrates?

(A) He (B) Br_2 (C) Ar (D) Xe

SUPER	PROBLEMS IN INORGANIC CH	IEMISTRY		p-BLOCK ELEMENTS		
		EXE	RCISE-2			
		TIPLE CORR	ECT CHOIC	E TYPE]		
Q.1	Which of the following r					
	$(A) B_2 O_3 + H_2 O \rightarrow$		$(B) BCl_3 + H_2$	$0 \rightarrow$		
	(C) $Na_2B_4O_7 + H_2O +$	$HCl \rightarrow$	(D) $B_2H_6 + H_2$	$0 \rightarrow$		
Q.2	$BF_3 + LiAlH_4$ — Dry ethe	\xrightarrow{er} 'X' + LiF + AlF	3			
	One molecule of compo	und 'X' reacts with tw	wo molecules of			
	(A) ROR	$(B) PH_3$	(C) CO	(D) Pyridine		
Q.3	Which of the following s	statements is/are corr	rect regarding B_2H_6	5?		
	(A) banana bonds are log	nger but stronger tha	n terminal B–H bo	nds		
	(B) B_2H_6 is also known	as 3c-2e compound	1			
	(C) hybridisation of B in	B_2H_6 is sp ³				
	(D) it cannot be prepared	d by reacting BF ₃ wi	ith LiAlH ₄ in the p	resence of dry ether		
Q.4	When an inorganic com	pound (X) having 3	c-2e as well as 2c-2	2e bonds reacts with ammonia gas at a		
	certain temperature, giv	es a compound (Y) v	which is iso-structu	ral with benzene. Compound (X) with		
	ammonia at a high temp	erature, produces a ł	hard substance (Z).	Then		
	(A) (X) is B_2H_6		(B)(Z) is know	n as inorganic graphite		
	(C) (Z) having structure	similar to graphite	(D) (Z) having s	structure similar to (X)		
Q.5	$Al_2(SO_4)_3 + NH_4OH -$	\rightarrow X, then				
	(A) X is a white coloure	d compound	(B) X is insolut	ble in excess of NH ₄ OH		
	(C) X is soluble in NaO	Н	(D) X can not b	be used as an antacid		
Q.6	Select correct statement	about B ₂ H ₆				
	(A) Bridging groups are electron-deficient with 12 valence electrons					
	(B) It has 2c - 2e B–H bonds					
	(C) It has 3c - 2e B–H–	(C) It has 3c - 2e B–H–B bonds				
	(D) All of above are corr	rect statements				
Q.7	Which of the following c	compound(s) give pre	ecipitate with solution	on of chrome alum:		
	(A) BaCl ₂	(B) Na ₂ CO ₃	(C) (NH ₄) ₂ S	(D) excess KOH		

SUPER	PROBLEMS	IN	INORGANIC	CHEMISTRY
				•••••••••

Q.8 Which of the following option is / are correct?

 $Ca_{2}B_{6}O_{11} + Na_{2}CO_{3} \xrightarrow{\Delta} CaCO_{3} + A + B$ $A + CO_{2} \longrightarrow B$

- (A) B contains 5 B–O–B linkage
- (B) A will be obtained by thermal decomposition of B
- (C) Aqueous solution of B used as a acidic buffer in titration
- (D) A exist in a polymeric form.
- Q.9 Aqueous solution of boric acid is treated with Salicylic acid. Which of the following statements is/are incorrect for the product formed in the above reaction
 - (A) No product will be formed because both are acid.
 - (B) Product is 4-coordinated complex and optically resolvable.
 - (C) Product is 4-coordinated complex and optically non resolvable
 - (D) There are two ring only which are five membered.
- Q.10 Which of the following option is/are incorrect the most acidic halide among Boron halides?(A) It is volatile halide.(B) It is most thermal stable halide.
 - (C) It form strong $p\pi$ – $p\pi$ back bond.

Q.11 Choose the correct statements:

- (A) In B_2H_6 molecule bond strength of bridge bond is greater than terminal B–H bond.
- (B) In trisilyl amine maximum seven atoms are present in one plane and nitrogen has sp³ hybridisation.

(D) It can form $[BX_4^{-}]$

- (C) Borax give blue bead with $CuSO_4$ salt.
- (D) Borate salt on react with methanol in presence of concentrated H_2SO_4 to form a compound which give green edge flame.
- Q.12 The correct statement(s) related to allotropes of carbon is/are
 - (A) graphite is the most stable allotropes of carbon and having a two dimensional sheet like structure of hexagonal rings of carbon (sp²)
 - (B) diamond is the hardest allotrope of carbon and having a three dimensional network structure of $C(sp^3)$
 - (C) fullerene (C_{60}) is recently discovered non-crystalline allotrope of carbon having a football-like structure.
 - (D) Vander Waal's force of attraction acts between the layers of graphite.
- Q.13 Which of the following is / are correct for group 14 elements?
 - (A) The stability of dihalides are in the order $CX_2 < SiX_2 < GeX_2 < SnX_2 < PbX_2$
 - (B) The ability to form $p\pi$ - $p\pi$ multiple bonds among themselves increases down the group
 - (C) The tendency for catenation decreases down the group
 - (D) They all form oxides with the formula MO_2

Q.14 Which is/are correct options?

- (A) In diamond each C-atom is tetrahedrally surrounded by 4-equidistant neighbour.
- (B) Diamond has the highest thermal conductivity of any known substance.
- (C) Diamond shows less electrical conductivity as compare to graphite.
- (D) Graphite is harder than diamond.
- Q.15 Silane is more reactive than CH_4 due to
 - (A) larger size of Si compared to C which facililates the attack by nucleophile.
 - (B) Polarity of Si–H bond is opposite to that of C–H bond.
 - (C) Availability of vacant 3d orbitals in case of Si to form the reaction intermediate easily.
 - (D) Si–H bond energy is lower than that of C–H bond.
- Q.16 In the following Silicone, select the alkyl/aryl substituted silicon chlorides which are used in formation of given Silicones:

e	R R	R R	
	R - Si - O - Si - O	O - Si - O - Si - R	
	R R	R R	
(A) R SiCl ₃	$(B) R_2 SiCl_2$	(C) R ₃ SiCl	$(D) R_4 Si$
` ' 3		× / 3	× / 4

- Q.17 Which of the following is not true? (A) In SiF₄, Si – F bond length is greater than the sum of the radius of Si and F. (B) In SiF₄, Si – F bond length is small than the sum of the radius of Si and F. (C) In SiF₄, Si – F bond length is equal than the sum of the radius of Si and F. (D) None of these
- Q.18 Nitric oxide gas is evolved by (A) Zn + dil HNO₃ (C) Pb + Hot dil HNO₃

(B) $FeSO_4(aq) + dil HNO_3$ (D) Air oxidation of NH_3

- Q.19 Phosphine gas is prepared by (A) $Ca_3P_2 + dil$. HCl (B
 - (C) Red phosphorus + NaOH soln. $\xrightarrow{\Delta}$ (D) P₄ + NaOH soln. $\xrightarrow{\Delta}$

(B) $PH_4I + KOH$ soln.

Q.20 $PCl_5(g) + Ag \xrightarrow{\Delta} x + y$

Q.21	Which of the following reaction is/are correct?			
	(A) $PCl_3 + 3H_2O \longrightarrow H_3PO_3 + 3HCl$	(B) $NCl_3 + 3H_2O$ —	\rightarrow NH ₃ + 3HOCl	
	(C) $SbCl_3 + 3H_2O \longrightarrow H_3SbO_3 + 3HCl$	(D) $\operatorname{BiCl}_3 + \operatorname{H}_2O$ —	\rightarrow BiOCl + 2HCl	
Q.22	$CaCN_2 + H_2O \longrightarrow solid + gas, same gas ca$	n also be produced fror	n	
	$(A) (NH_4)_2 S \xrightarrow{\Delta}$	(B) $(NH_4)_2SO_4 - \Delta$	\rightarrow	
	(C) Na(NH ₄)HPO ₄ .4H ₂ O $\xrightarrow{\Delta}$	(D) $(NH_4)_2Cr_2O_7$ —	$\xrightarrow{\Delta}$	
Q.23	Which of the following is false for allotropes o	fphosphorus		
	(A) yellow phosphorus is soluble in CS_2 while	e red phosphorus does no	ot	
	(B) $P - P - P$ bond angle is 60° in red phosphere	orus		
	(C) On heating in air white phosphorus chang	es to red		
	(D) white phosphorus changes to black phosp	horus at ordinary temper	rature	
Q.24	Which of the following equation is/are correctl	y written?		
	(A) $P_4 + 20HNO_3 \xrightarrow{\Delta} 4H_3PO_4 + 20NO_4$	$_{2}$ + 4H ₂ O		
	(B) $I_2 + 10HNO_3 \xrightarrow{\Delta} 2HIO_4 + 10NO_2^{\uparrow}$	$+4H_2O$		
	(C) S + 6HNO ₃ $\xrightarrow{\Delta}$ H ₂ SO ₄ + 6NO ₂ ↑ + 2H ₂ O			
	(D) $\operatorname{Sn} + 4\operatorname{HNO}_3 \xrightarrow{\Delta} \operatorname{H}_2\operatorname{SnO}_3 + 4\operatorname{NO}_2^{\uparrow}$	+ 2H ₂ O		
Q.25	Which of the following compounds is/are direct	ctly used as fertilizer?		
-	(A) $Ca_3(PO_4)_2$ (B) $Ca(H_2PO_4)_2$	(C) CaNCN	(D) (NH ₄) ₂ SO ₄	
Q.26	Aqueous solution of NH ₃ gas is basic because	ð.		
	(A) NH ₃ undergoes self dissociation in water			
	(B) NH_3 acts as electrolyte in water			
	(C) NH_4^+ ion forms stronger hydrogen bond v	with water than NH ₃ mol	lecule does with water	
	(D) NH_3 molecules reduce concentration of H	H^+ ions that are furnished	d from H_2O .	
Q.27	Which of the following reaction(s) liberate N	H ₃ gas.		
	(A) Heating of NH_4ClO_4	(B) Heating of (NH_4)	$_{2}C_{2}O_{4}$	
	(C) $CaCN_2 + H_2O$	(D) $Li_3N + H_2O$		
Q.28	Which combination gives H ₃ PO ₄			
	(A) $P_4 + SOCl_2$ (B) $H_3PO_3 + Br_2$	(C) $P_4 + SO_2Cl_2$	(D) P_4 + conc. H_2SO_4	

SUPER	PROBLEMS IN INORGANIC CHEMISTRY	p-BLOCK ELEMENTS			
Q.29	$Ca_3P_2(s) + 6HCl(dil) \longrightarrow X(aq) + Y^{\uparrow}$				
	gas 'Y' forms precipitate with				
	(A) $CuSO_4$ soln. (B) AgNO ₃ soln.	(C) $Hg(NO_3)_2$ soln. (D) HBr acid			
Q.30	Correct statement(s) for N_2O gas is/are:				
	(A) It is acid anhydride of $H_2N_2O_2$.				
	(B) On heating with sodium metal it does not produce metal nitride.				
	(C) N_2O can be separated from NO by passing the gaseous mixture into aqueous FeSO ₄ solution.				
	(D) Bond order of N – N bond in $N_2O > 2.0$				
Q.31	olution occurs.				
	(A) $NO_3^- + Zn + dil H_2SO_4 \xrightarrow{\text{warm}}$	(B) NH_4^+ salt + NaOH \longrightarrow			
	(C) AlN + steam \longrightarrow	(D) $CH_3COONH_4 \xrightarrow{\Delta}$			
Q.32	Choose the correct options				
	(A) Conjugate base of hydrazoic acid is N_3^- .				
	(B) d_{N-N} bond length in N_2H_4 is more as compare to d_{N-N} in N_2F_4				
	(C) In triazene (N_3H_3) all nitrogen atoms are sp ² hybridised				
	(D) In cyclotriazene (N_3H) all N–N bond lengt	th are equal			
Q.33	Which of the following reactions would evolve	nitrogen gas under suitable condition?			
	(A) $NH_4IO_3 \xrightarrow{\Delta} ?$	(B) Ca(OCl)Cl + NH ₃ \longrightarrow ?			
	(C) $NH_3 + CuO \longrightarrow ?$	(D) $Ba(N_3)_2 \xrightarrow{\Delta} ?$			
Q.34	The reactions which produce N_2 gas are :				
	(A) $H_2N-SO_3H + HNO_2 \rightarrow$	(B) $CO(NH_2) + HNO_2 \rightarrow$			
	(C) $CS(NH_2)_2 + HNO_2 \rightarrow$	(D) $\text{NO}_2^- + \text{N}_3^- + 2\text{H}^+ \rightarrow$			
Q.35	$Cu + dil HNO_3 \rightarrow [X] + [Y]$				
	Products are :				
	(A) $Cu(NO_3)_2$ (B) N_2O	(C) NO (D) NO_2			
Q.36	The ozone layer forms natural in stratosphere b	у			
	(A) the interaction of CFC with oxygen	(B) the interaction of UV radiation with oxygen			
	(C) the interaction of IR radiation with oxygen	(D) the interaction of oxygen and water vapour			

SUPER	PROBLEMS IN INORG	NIC CHEMISTRY		p-BLOCK ELEMENTS
Q.37	$SO_2(g) + Cl_2(g)$	$\longrightarrow x \xrightarrow{P_4} y + Z$		
	Then X, Y and Z	can be.		
	(A) $SOCl_2$	(B) SO_2Cl_2	(C) SO ₂	(D) PCl_5
Q.38	When a compour reacts with Y and (A) $X = HI, Y = I$	d X reacts with ozone is produces compound Z. f_2 and Z = HIO ₃	n aqueous medium, a c Z acts as an oxidising a (B) X = acidifie	compound Y is produced, Ozone also agent, then X, Y and Z will be d KI, $Y = I_2$ and $Z = HIO_3$
	(C) $X = KI, Y = I$	I_2 and $Z = HIO_4$	(D) $X = HI, Y =$	I_2 and $Z = HIO_4$
Q.39	 Which of the following characteristics is/are shown by sulphur dioxide? (A) coloured gas (B) Ability to turn acidified dichromate paper green (C) Ability to decolourise acidified KMnO₄ solution (D) D: acts lewis acid 			
Q.40	Which propertie(s $H_2S_2O_4 <$ (A) Acidic strengt) is/are following given $G > H_2S_2O_5 < H_2S_2O_6 <$	order $H_2S_2O_7$ (B) Number of ($(p\pi - d\pi)$ bond
	(C) Oxidation stat	e of sulphur	(D) Number of a	icidic hydrogen
Q.41	Which substance(s) can show oxidative bl	eaching action.	
	(A) CaOCl ₂	(B) SO ₂	(C) MgO_2	(D) $Na_2S_2O_3$
Q.42	SO ₂ (gas) + Cl ₂ (g CORRECT state (A) It is a dehydra (B) It undergoes h (C) Its aqueous so (D) It contains on	as) $\xrightarrow{\Delta}$ (X) Charcoal Catalyst ement(s) about compoun- ting agent hydrolysis via SN_{AE} reac- lution gives white ppt wo he $(d\pi - p\pi)$ bond	nd (X) is/are etion ith BaCl ₂ solution	

SUPER	PROBLEMS IN INORGA	NIC CHEMISTRY		p-BLOCK ELEMENTS	
Q.43	Na_2CO_3 solution - Which of the follo	$\xrightarrow{SO_2}_{excess}$ (A) $\xrightarrow{NaIO_3 sol}$ wing statements is/ are	$\stackrel{\text{lution}}{\longrightarrow} (B) \text{ (final product}$ correct regarding 'B'.).	
	(A) It has no electr	rical conductivity in sol	lid state but conducts elec	tricity in liquid state.	
	(B) It is highly solu	uble in water.			
	(C) It produces blue	ue solution with starch			
	(D) It produces th above.	e same oxidation state	on reaction with excess	Cl_2 water as that of 2^{nd} reagent used	
Q.44 If ozone absorb red light then emitted colour of ozone is					
	(A) Orange	(B) Blue	(C) Indigo	(D) Yellow	
Q.45	Which of the follo (A) $F_2 < Cl_2 < Br$ (B) $F > Cl > Br > 2$ (C) $Cl_2 > Br_2 > F_2$ (D) $F^-(aq) > Cl^-(a)$	wing property is correct $I_2 < I_2$: Boiling point I: Ionisation energy $I_2 > I_2$: bond dissociation $I_2 > I_2$: bond dissociation $I_2 > I_2$: bond dissociation $I_2 = I_2$: bond	etly match for halogens on energy electrical conductance		
0.46	Which of the following statement(s) is/are correct regarding inter-halogen compounds of ABx types?				
	(A) x may be 1, 3, 5 and 7		(B) A is a more ele	ectronegative halogen than B	
	(C) FBr_3 cannot exit		(D) Only IF_7 is no	(D) Only IF_7 is non polar inter halogen compound	
Q.47	Acidic character of	of HF increases appreci	ably on mixing it with :		
	(A) XeF_2	(B) BF ₃	(C) PF ₅	(D) SiF_4	
Q.48	When a compoun reacts with Y and (A) $X = HI$, $Y = I$ (C) $X = KI$, $Y = I$	d X reacts with ozone produces compound Z $_2$ and Z = HIO ₃ $_2$ and Z = HIO ₄	in aqueous medium, a co Z acts as an oxidising a (B) X = KI, Y = (D) X = HI, Y =	Sompound Y is produced. Ozone also gent, then X, Y and Z will be I_2 and $Z = HIO_3$ I_2 and $Z = HIO_4$	
Q.49	Identify the correc	et statements:			
	(A) Fluorine is a s	uper halogen	(B) Iodine shows	basic nature	
	(C) AgF is insolub	le in water	(D) SCN ⁻ is a pse	eudohalide	
Q.50	Which of the follo	wing fumes is moist air	?		
	(A) TiCl ₄	(B) AlCl ₃	(C) BeCl ₂	(D) BCl ₃	

SUPER	PROBLEMS IN INORGANIC	CHEMISTRY		p-BLOCK ELEMENTS	
Q.51	The decreasing order $Xe > Kr > Ar > Ne > He$, is correct for				
	(A) boiling point	(B) solubility in water	(C) polarisability	(D) Ease of liquification	
Q.52	Which of the following	g Combination of reactar	nts produce chemical ch	ange	
	(A) $ClF_5 + NaF$	(B) $ClF_3 + XeF_2$	(C) $SF_6 + XeF_4$	(D) $B(OH)_3 + HF$	
Q.53	$Xe + F_2 \xrightarrow{1:20} X$	$\xrightarrow{H_2O} Y \xrightarrow{H_2O} Z$	$\xrightarrow{H_2O} XeO_3$		
	Select correct option($(A) X Y$ and Z are in ((s) for X, Y, Z and given of same oxidation state	chemical change		
	(R) All have equal pure $(R) = 0$	wher of lone pair on cent	cal atom		
	(C) All are non-planar				
	(D) All have equal nur	nber of covalent bonds			
Q.54	Which of the following (A) $XeF_2 + HF \longrightarrow$ (B) $XeF_4 + RbF \longrightarrow$ (C) $XeF_4 + PF_5 \longrightarrow$	g reaction(s) of xenon co [XeF] ⁺ [HF ₂] [−] → Rb ⁺ [XeF ₅] [−] → [XeF ₃] ⁺ [PF ₆] [−]	mpounds is/are feasible	2?	
	(D) $2XeF_6 + 3SiO_2 -$	$\xrightarrow{\text{R.T.}}$ 2XeO ₃ + 3 SiF	4		
Q.55	Which substance(s) is	/are acting as refrigerant's	2		
	(A) Solid CO ₂	(B) liquid nitrogen	(C) liquid NH ₃	(D) liquid helium	
Q.56	Correct statement(s) f (A) It is disproportiona (B) It is dangerous to a (C) 1.5 moles of oxyg (D) Hybridization of x	For hydrolysis of XeF ₄ is/ ation reaction. store XeF ₄ in moist glass en is liberated for three r tenon atom changes.	are: 5 vessel. noles of XeF4.		
		[REASON	NG TYPE]		
Q.57	Statement-I: NaBC	O_3/OH^- can be used for O_3/OH^-	oxidation of Cr ³⁺ to Cr	6+	
	Statement-II : In alkaline medium $NaBO_3$ produces H_2O_2				
	(A) If both Statmemt-I & Statmemt-II are True & the Statmemt-II is a correct explanation of the Statmemt-I.				
	(B) If both Statmemt- Statmemt-I.	-I & Statmemt-II are Tr	ue but Statmemt-II is	not a correct explanation of the	
	(C) If Statment-I is T	True but the Statmemt-II	is False.		
	(D) If Statment-I is F	alse but the Statmemt-II	is True.		

PROBLEMS IN INORGANIC CHEMISTRY p-BLOCK ELEMENTS
Statement-I : $SiCl_4$ undergoes hydrolysis whereas CCl_4 does not.
Statement-II: Silicon has vacant d-orbitals in its valance shell whereas carbon does not.
(A) If both Statmemt-I & Statmemt-II are True & the Statmemt-II is a correct explanation of the Statmemt-I.
(B) If both Statmemt-I & Statmemt-II are True but Statmemt-II is not a correct explanation of the Statmemt-I.
(C) If Statment-I is True but the Statment-II is False.
(D) If Statment-I is False but the Statment-II is True.
Statement - I : Hydrated calcium silicate in mild basic medium contains the discrete unit of $Si(OH)_6^{2-}$.
Statement - II : Calcium silicate undergoes hydrolysis to produce silisic acid which under mild alkaline
condition produces $Si(OH)_6^{2-}$ complex.
(A) If both Statmemt-I & Statmemt-II are True & the Statmemt-II is a correct explanation of the Statmemt-I.
(B) If both Statmemt-I & Statmemt-II are True but Statmemt-II is not a correct explanation of the Statmemt-I.
(C) If Statment-I is True but the Statment-II is False.
(D) If Statment-I is False but the Statment-II is True.
Statement-I: Carbonates and silicates are isostructural
Statement-II: Carbon and silicon atoms have same number of valence shell electrons
(A) If both Statmemt-I & Statmemt-II are True & the Statmemt-II is a correct explanation of the Statmemt-I.
(B) If both Statmemt-I & Statmemt-II are True but Statmemt-II is not a correct explanation of the Statmemt-I.
(C) If Statment-I is True but the Statment-II is False.
(D) If Statment-I is False but the Statment-II is True.
Statement-1: Rate of conversion of GeCl_2 , SnCl_2 and PbCl_2 by Cl_2 into GeCl_4 , SnCl_4 and PbCl_4 respectively decreases from GeCl_2 to PbCl_2 .
Statement-2: From Ge to Pb, M–Cl bond energy decreases and promotion energy for M ²⁺ to M ⁴⁺ is not compensated due to inert pair effect.
(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
(C) Statement-1 is fully statement-2 is true (D) Statement-1 is false statement-2 is true

Q.62 **Statement-1** : Pb^{4+} has higher electronegativity as compared to Pb^{2+} .

Statement-2: Pb^{4+} is less stable than Pb^{2+} .

- (A) Statement-1 is true, Statement-2 is true and Statement-2 is correct explanation for Statement-1
- (B) Statement-1 is true, Statement-2 is true and Statement-2 is **NOT** the correct explanation for Statement-1
- (C) Statement-1 is true, Statement-2 is false
- (D) Statement-1 is false, Statement-2 is true

Q.63 **Statement-I :** There is a very little difference in acidic-strengths of H_3PO_4 , H_3PO_3 and H_3PO_2 . **Statement-II :** Number of unprotonated oxygen responsible for increase of acidic-strength due to inductive effect remains the same.

- (A) If both Statmemt-I & Statmemt-II are True & the Statmemt-II is a correct explanation of the Statmemt-I.
- (B) If both Statmemt-I & Statmemt-II are True but Statmemt-II is not a correct explanation of the Statmemt-I.
- (C) If Statment-I is True but the Statment-II is False.
- (D) If Statment-I is False but the Statment-II is True.

Q.64 **Statement-I**: PCl_5 and $PbCl_4$ are thermally unstable

Statement-II: They produce same gas on thermal decomposition

- (A) If both Statmemt-I & Statmemt-II are True & the Statmemt-II is a correct explanation of the Statmemt-I.
- (B) If both Statmemt-I & Statmemt-II are True but Statmemt-II is not a correct explanation of the Statmemt-I.
- (C) If Statment-I is True but the Statment-II is False.
- (D) If Statmemt-I is False but the Statmemt-II is True.
- Q.65 **Statement-I** : Red phosphorus is less volatile then white phosphorus.

Statement-II: Red phosphorus has a discrete tetrahedral structure.

- (A) If both Statment-I & Statment-II are True & the Statment-II is a correct explanation of the Statment-I.
- (B) If both Statmemt-I & Statmemt-II are True but Statmemt-II is not a correct explanation of the Statmemt-I.
- (C) If Statment-I is True but the Statment-II is False.
- (D) If Statmemt-I is False but the Statmemt-II is True.

Q.66 **Statement -1 :** White phosphorus & Sulphur both disproportionated with NaOH producing their respective hydrides as one of the product. But Phosphorus does not come back on acidification of disproportionated products.

Statement -2 : PH₃ is gaseous substance.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is false, statement-2 is true.
- (D) Statement-1 is true, statement-2 is false.
- Q.67 **Statement-I**: Oxygen is more electronegative than sulphur, yet H_2S is acidic, while H_2O is neutral. **Statement-II**: H–S bond is weaker than O–H bond.
 - (A) If both Statmemt-I & Statmemt-II are True & the Statmemt-II is a correct explanation of the Statmemt-I.
 - (B) If both Statmemt-I & Statmemt-II are True but Statmemt-II is not a correct explanation of the Statmemt-I.
 - (C) If Statment-I is True but the Statment-II is False.
 - (D) If Statmemt-I is False but the Statmemt-II is True.
- Q.68 **Statement-1:** In Caro's acid sulphur atom is sp^3 hybridized state.

Statement-2: Caro's acid contains one peroxy O_2^{2-} linkage.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.
- Q.69 **Statement-I**: Conc. H_2SO_4 can not be used to prepare pure HBr from NaBr **Statement-II**: It reacts slowly with NaBr.
 - (A) If both Statmemt-I & Statmemt-II are True & the Statmemt-II is a correct explanation of the Statmemt-I.
 - (B) If both Statmemt-I & Statmemt-II are True but Statmemt-II is not a correct explanation of the Statmemt-I.
 - (C) If Statment-I is True but the Statment-II is False.
 - (D) If Statmemt-I is False but the Statmemt-II is True.

SUPER	PROBLEMS IN INORGANIC CHEMISTRY	p-BLOCK ELEMENTS
Q.70	Statement -I: Bleaching action of chlorine is permanent while that of SO ₂ is temp	orary.
	Statement -II : Chlorine bleaches by reduction and SO_2 by oxidation.	
	(A) If both Statmemt-I & Statmemt-II are True & the Statmemt-II is a correct	explanation of the
	Statmemt-I.	
	(B) If both Statmemt-I & Statmemt-II are True but Statmemt-II is not a correct	explanation of the
	Statmemt-I.	
	(C) If Statment-I is True but the Statment-II is False.	
	(D) If Statment-I is False but the Statment-II is True.	
Q.71	Statement-I : Cl ₂ gas undergoes disproportionation in hot and concentrated caust solution.	ic soda (NaOH)
	Statement-II : NaCl and NaOCl are the products formed.	
	(A) If both Statmemt-I & Statmemt-II are True & the Statmemt-II is a correct	explanation of the
	Statmemt-I.	
	(B) If both Statmemt-I & Statmemt-II are True but Statmemt-II is not a correct Statmemt-I.	explanation of the
	(C) If Statment-I is True but the Statment-II is False.	
	(D) If Statment-I is False but the Statment-II is True.	
Q.72	Statement-1: HF is not stored in glass bottles.	
	Statement-2: HF is only the liquid halogen acid.	
	(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for	r statement-1.
	(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation	tion for statement-1.
	(C) Statement-1 is true, statement-2 is false.	
	(D) Statement-1 is false, statement-2 is true.	
Q.73	Statement-1 : He and Ne do not form clathrate compound.	
	Statement-2 : Down the group of inert gases, induction by the dipole increases.	
	(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for	r statement-1.
	(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation	tion for statement-1.
	(C) Statement-1 is true, statement-2 is false.	
	(D) Statement-1 is false, statement-2 is true.	

[PARAGRAPH TYPE]

Paragraph for question nos. 74 to 75

The chemical nature of boron is influenced primarily by its small size and high ionization energy, and these factors, coupled with the similarity in electronegativity of B, C and H, lead to an extensive and unusual type of covalent molecular species. The availability of only 3 electrons contribute to covalent bonding involving the four orbitals s, p_x , p_y and p_z confers a further range of properties of Boron leading to electron pair acceptor behaviour (Lewis acidity) and multicentre bonding.

Q.74 Which compound does not form when B_2H_6 reacts with NH_3 at room temperature or higher temperature. (A) $BH_3 \leftarrow NH_3$ (B) $[BH_2(NH_3)_2] [BH_4]$

(C) $B_3N_3H_6$	(D) inorganic graphite

Q.75 Which of the following compound gives $H_3BO_3/H[B(OH)_4]$ on hydrolysis.

$(I) B_2 H_6$	(II) $Na_2B_4O_7$	(III) BCl ₃	$(IV) B_2O_3$
(A) Only I	(B) Only I, III	(C) I, III, IV	(D) All of these

	F	Cl	Br
В	Monomer	Monomer	Х
Al	Ionic	Polymer (W)	Y
Ga	Ionic	Dimer	Ζ

Paragraph for question nos. 76 to 78

Q.76 The compound (X) exists as

(A) Monomer

(B) Dimer

(C) Polymer

(D) Trimer

Q.77 Select the correct statement(s) regarding the compounds (W) and (Z).

(A) Coordination number of Al in the compound (W) is 6

(B) Coordination number of Ga in the compound (Z) is 4.

(C) The compound (Z) exists as dimer.

(D) All of these

Q.78 Which of the following statements is correct for the compound (Y)?

(A) It exists as polymer and the coordination number of Al is 6.

(B) It exists as dimer and the coordination number of Al is 4.

(C) It exists as monomer.

(D) None of these

Paragraph for question nos. 79 & 80

It is clear that $[BH_3]$ is a fugitive reaction species it exit only at exceedingly low concentration but can be isolated and studied using matrix isolation techniques. Thus it can be generated by thermal dissociation of looselly bound 1:1 ligand, H⁻ is a species case since it gives the symmetrical tetrahedral ion BH_4^- isoelectronic with CH_4 and NH_4^+ . Many other complexes of BH_3 with N, PAs, O, S etc. doner atoms are also known and they readily formed by symmetrical homolytic cleavage of the bridge bonds in B_2H_6 .

Q.79
$$[X] + Cl_2 \longrightarrow [Y]$$

Electron Deficient $\xrightarrow{\text{Electric discharge}} [Z] + HCl$

 $[Z] + [L] \longrightarrow [M]_{Adduct}$

The most stable adduct formed by [Z] with [L] then L is : (A) PF_3 (B) CO (C) Me_2S (D) Py

Q.80 Choose correct option w.r.t. B_2H_6

(A) CO gives unsymmetrical cleavage.

(B) NH₃, MeNH₂ and Me₂NH gives unsymmetrical cleavage.

(C) H⁻ form less stable adduct as compare to Me_3N .

(D) Bond length of bridge bond is less than terminal bond length in B_2H_6

Paragraph for question nos. 81 to 82

Silicones are organo-silicon synthetic polymers. These are formed by the hydrolysis of alkyl or aryl substituted chloro silanes and their subsequent Polymerisation. The alkyl and aryl substituted chloro silanes are prepared by the reaction of Grignard reagent anSiCl $_4$. The lower silicones are oily liquids but higher members containing long chains or ring structures are waxy and rubber like solids. They are good electrical insulators and are used in making vaseline like greases which are used as lubricants in aeroplanes.

Q.81 Find the value of n, for which compound $(CH_3)_n Si(Cl)_{4-n}$ on hydrolysis followed by polymerisation gives cross linked silicone

(A) 1 (B) 2 (C) 3 (D) None

Q.82 Which of the following is correct about silicones?

(A) Silicones are organo silicon compounds containing Si-O-Si linkage

- (B) R₃SiCl on hydrolysis followed by subsequent polymerisation gives liner silicones
- (C) RSiCl₃ on hydrolysis followed by subsequent polymerisation gives linear silicones
- (D) When water is eliminated from the terminal –OH groups of linear silicones, cross linked silicones are formed

Paragraph for question nos. 83 & 84

The term carbide is generally applied to compounds in which carbon is bonded to the elements of lower or approximately same electronegativity. This definition excludes the compounds in which oxygen, sulphur, phosphorus nitrogen and halogens are united with carbon. Reactive metals (i.e. of group 1 and 2) form ionic carbides. They hydrolyse to liberate hydrocarbons. Most of them resembles with NaCl in crystal structure. Transition metals forms interstitial carbides.

Q.83 Read the following statement regarding metal carbide.

- (I) All metal carbides are ionic
- (II) CaC_2 has one sigma and two pi bonds
- (III) Be_2C on hydrolysis forms amphoteric hydroxide
- (IV) SiC is 3-D covalent solid compound having sp^2 hybridised Si atoms

Choose the correct options :

(A) Only II	(B) II and III	(C) II. III and IV	(D) II and IV
(ii) Omy n	(\mathbf{D}) II and III	(\mathbf{C}) II, III ullu I V	(D) II ullu I V

Q.84 Select the correct order of hydrolysis:

$(\mathbf{I}) \operatorname{SnCl}_2 < \operatorname{SnCl}_4$	$(\mathbf{II}) \operatorname{FeCl}_2 < \operatorname{FeCl}_3$	(III) AgF > AgI	$(IV) PbF_2 > PbI_2$
(A) I only	(B) I and IV	(C) I and II	(D) I, II, III and IV

Paragraph for question nos. 85 to 86

The following flow diagram represents the industrial preparation of nitric acid from ammonia:

$$NH_3 + O_2 \xrightarrow{(A)} NO \xrightarrow{(B)} (C) \xrightarrow{water} HNO_3 + NO$$

Answer the questions given below:

Q.85 Which line of entry describes the undefined reagents, products and reaction conditions?

	Α	В	С
(A)	catalyst	R.T. (25°C)	NO_2
(B)	catalyst	R.T. (25°C)	N_2O
(C)	catalyst	high pressure	NO_2
(D)	catalvst	high pressure	N_2O_3

Q.86 Formation of HNO_3 when (C) is dissolved in H_2O takes place through various reactions. Select the reaction not observed in this step.

(A) $NO_2 + H_2O$ —	\rightarrow HNO ₃ + HNO ₂
(C) $NO_2 + H_2O$ —	\rightarrow HNO ₃ + NO

(B) $HNO_2 \longrightarrow H_2O + NO + NO_2$ (D) none of these

SUPER	PROBLEMS IN INORGANI	C CHEMISTRY		p-BLOCK ELEMENTS			
		Paragraph for q	uestion nos. 87 to 88				
	In laboratory dinitro $NH_4Cl + NaNO_2 -$	gen is prepared by treati $\rightarrow N_2 + NaCl + H_2O$	ng an aqueous solution	of $NH_4Cl \& NaNO_2$.			
	Small amount of gas	'X' and compound 'Y' is	also formed in this read	ction.			
Q.87	Gas 'X' can be prepa	ared by					
	(A) Heating of Pb(N	$(O_3)_2$	(B) by treating Zn w	vith conc. HNO ₃			
	(C) by treating Fe w	ith dil. HNO ₃	(D) by treating FeS	with dil. HNO ₃			
Q.88	Compound 'Y' is						
	(I) oxidising agent	(II) reducing agent	(III) strong acid	(IV) dehydrating agent			
	(A) Only I &II	(B) Only I & III	(C) Only I & IV	(D) Only I & III, IV			
		Paragraph for q	uestion nos. 89 to 91				
		$P_{4} \xrightarrow{dry \\ Cl_{2}} (T) \xrightarrow{hydrolysis} (V)$ $\downarrow O_{2} \\ (W) \\ \uparrow PCl_{5} \\ (V) \\ \uparrow P_{4} \\ (U)$	$\Rightarrow (X) + HCl$ $(-Y) \downarrow_{\Delta} \qquad \qquad$				
Q.89	The compound (W)	can also be obtained by	the reaction(s).				
	(A) $PCl_5 + H_2SO_4 -$	\longrightarrow ?	(B) $PCl_5 + SO_2$ —	\rightarrow ?			
	(C) $PCl_5 + H_2O$ — (Equimolar ratio)	→ ?)	(D) $PCl_5 + O_2$				
Q.90	Select the correct sta	tement(s)?					
	(A) Heating of (X) in	volves disproportionatio	n.				
	(B) Heating of NH_4NO_3 to get (U) involves disproportionation						
	(C) The compound (U) supports combustion					
	(D) Formation of (Z)	by treating P_4 with caus	tic soda involves dispro	oportionation.			
Q.91	The gas (U) is						
	(A) neutral oxide			(B) oxidising agent			
	(C) also obtained by	treating zinc with dilute	HNO ₃	(D) linear in shape.			

Paragraph for question nos. 92 & 93

		I al agi apii ioi qu	10111105.72×75				
	Nitric acid reacts with	most of the metal (Exce	pt Noble metals like gold	d and platinum) and non metals.			
	Towards its reaction w	with metals HNO ₃ acts	as an acid as well as an o	oxidising agent like other acids			
	HNO ₃ liberate Nasce	nt hydrogen from meta	ls which further reduce	s the nitric acid into number of			
	products like NO, NC	$\mathbf{N}_2, \mathbf{N}_2\mathbf{O}, \mathbf{N}_2, \mathbf{NH}_2\mathbf{OH}$ or	NH ₃ according to the fo	ollowing reactions:			
	Metal + HNO	$D_3 \longrightarrow \text{Nitrate} + H$					
	$2HNO_3 + 2H$	\longrightarrow 2NO + 2H ₂ C)				
	2HNO ₃ + 5H	\longrightarrow 2NO + 5H ₂ C)				
	$2HNO_3 + 10H$	$H \longrightarrow N_2 + 6H_2O$					
	2HNO ₃ + 16H	$H \longrightarrow 2NH_3 + 6H_2$	С				
Q.92	Which reaction can be	used to prepare laughin	ng gas?				
	(A) Reaction of Sn wi	th very dil. HNO ₃	(B) Reaction of Hg wi	th dil. HNO ₃			
	(C) Reaction of Zn with	th dil. HNO ₃	(D) Reaction of Cl with	th HNO ₃			
Q.93	Metal (M) + very dil.	$HNO_3 \longrightarrow No reaction$	on				
	Metal (M) + conc. HNO ₃ \longrightarrow Light $+$ Gas (B) $\xrightarrow{\text{Excessof}}$ Solution (C) $\xrightarrow{\text{Zn}}$ Gas (D)						
	Select correct statement	nt:					
	(A) Solution (C) is on	ly NaNO ₂					
	(B) Gas (B) is diamagr	netic					
	(C) Gas (C) has sp^3 hy	bridisation in their trans	sition state				
	(D) Gas (B) has sp^2 hy	bridisation.					
		Paragraph for qu	estion nos. 94 to 96				
	Among Halogens, F ₂ is	s most reactive Halogen	and under controlled con	ditions when it reacts with other			
	Halogens like Cl_2 , Br_2	and I_2 then tetra-atomic, \tilde{J}	Hexa-atomic and an octa-	atomic interhalogen compounds			
0 0/	Non polar interbaloger	y. n molecule is					
Q.74	(A) Tetra atomic	(B) Heya-atomic	(\mathbf{C}) Octa atomic	(D) None of these			
	(A) Tetra-atomic	(D) Hexa-atomic	(C) Octa-atomic	(D) None of these			
Q.95	Planar interhalogen mo	blecule is					
	(A) Tetra-atomic	(B) Hexa-atomic	(C) Octa-atomic	(D) None of these			
Q.96	Which of the following	g species does not exist?	,				
-	(A) ClI ₃	(B) IF ₅	(C) ICl_2^-	(D) BrF_4			

SUPER	PROBLE	MS IN INORGANIC	CHEMISTRY		p-BLOCK ELEMENTS
			[МАТСН Т	HE CO	OLUMN]
Q.97	B_2H_6				
	W —	$\xrightarrow{\Delta} X \xrightarrow{\Delta} Y$	$X \xrightarrow{\Delta} Z$		
	Colur	nn–I	Columnt-II		
	(P) W	Ţ	(1) B_2O_3		
	(Q) X		(2) HBO ₂		
	(R) Y		(3) $H_2B_4O_7$		
	(S) Z		$(4) \operatorname{H}_3 \operatorname{BO}_3$		
Q.98	Match	n the column-			
	Colu	mn–I (Reaction	s)	Colu	mn—II (Product)
	(A) B	orax	$\xrightarrow{\Delta}$	(p)	BN
	(B) B	$_{2}H_{6} + H_{2}O$	\longrightarrow	(q)	B_2H_6
	(C) B	₂ H ₆ NH ₃ (Exce	$(ss) \xrightarrow{\Delta}$	(r)	H ₃ BO ₃
	(D) B	$Cl_3 + LiAlH_4$	\longrightarrow	(s)	$NaBO_2 + B_2O_3$
Q.99	Match	the following			
		Column-I			Column–II
	$(A) BBr_3 + H_2 \rightarrow B$			(p)	Borax bead test
	(B) $Na_2B_4O_7.10 H_2O_7$		$+ \text{CuSO}_4 \rightarrow \text{Cu(BO)}_4$	$(Q_2)_2 (q)$	Reduction
	(C) A	$\mathrm{ICl}_3 + \mathrm{H}_2\mathrm{O} \to \mathrm{H}_2\mathrm{O}$	ICI	(r)	White fumes
	(D) C	$\mathrm{Cr}_{2}\mathrm{O}_{3} + \mathrm{Al} \rightarrow \mathrm{Cr}_{3}$		(s)	Hydrolysis
Q.100)	Column I			Column II
	(A)	Si ₄ O ₁₃ ¹⁰⁻		(P)	Negative charge on the anion is
					equal to the number of terminal
					oxygen atoms.
	(B)	SiO_4^{4-}		(Q)	Three shared corners and ten
					unshared corners
	(C)	$Si_4O_{12}^{8-}$		(R)	Silicon atom(s) is/are present at
					the center of geometry and every
					oxygen atom is present at each corner
					of the geometry.
	(D)	Si ₂ O ₇ ^{6–}		(S)	Non-planar geometry
				(T)	Total number of oxygen atoms shared in
					between two tetrahedral unit in whole structure
chomotod	ioc by news				is in even number.
	iss by pills				raye # 342

SUPER	PROBLEM	IS IN INORGANIC CHEMIST	RY			p-BLOCK ELEMENTS		
Q.101		Column-I			Colur	nn-II		
		(Reactions)			(Prod	lucts and type of reaction)		
	(A)	$P_4O_6 + H_2O \longrightarrow$			(P)	H ₃ PO ₃		
	(B)	$P_4 + NaOH + H_2O$ _	$\xrightarrow{\Delta}$		(Q)	H ₃ PO ₄		
	(C)	$H_3PO_3 \xrightarrow{\Delta}$			(R)	PH ₃		
					(S)	disproportionation.		
Q.102		Column-I		Column-II				
			[Hydr	olysed product	s at an	y condition]		
	(A)	NF ₃	(P)	One of the pro-	duct is a	anhydride of nitrous acid		
	(B)	NCl ₃	(Q)	One of the pro	duct is	sp ³ hybridised.		
	(C)	PCl ₃	(R)	One of the pro-	duct is i	onic with white turbidity.		
	(D)	SbCl ₃	(S)	One of the pro	duct is a	acidic in nature.		
			(T)	Tautomerism i	s observ	ved.		
Q.103	Match	List-I with List-II						
		List-I Chemical read	ction		List-	II Name of process		
	I.	List-I with List-II List-I Chemical reaction $4NH_3 + 5O_2 \xrightarrow{800^{\circ}C/Pt} 4NO + 6H_2O$		(a) Co	ontact process			
	II.	$4\text{HCl} + \text{O}_2 = \frac{3230^{\circ}\text{C}}{}$	$\xrightarrow{\text{CuCl}_2}$	$2Cl_2 + 2H_2O$	(b) Ostwald's process			
	III.	$2SO_2 + O_2 - \frac{450-500}{2}$	°/V ₂ O ₅	$\rightarrow 2SO_3$	(c) De	eacon's process		
	IV.	$2N_2 + 3H_2 - Fe + Mo$	$\rightarrow 2 \mathrm{NH}_3$	3	(d) Ha	aber's process		
	[INTEGER / SUBJECTIVE TYPE]							
0.104	$2BF_{2}($	$g) + 6NaH \xrightarrow{180^{\circ}C} F$	P(g) + O(g)	(solid). Find out	tmaxin	num number of atom(s) that can lie in a		
X .101	nlana	of covalent molecule 'P'	(6) ' ' '	(50114). 1 1114 04				
	plane	or covarent molecule P.						
Q.105	Find th	ne number of reagents w	hich wou	uld lead to unsyr	nmetric	cal cleavage of diborane.		
	CH ₃ N	H ₂ , NH ₃ , (CH ₃) ₂ NH, ((CH ₃) ₃ N	,NaH				

Q.106 Find the total number of σ -bonds in hydrated borax.

Q.107

(a) Consider thermal decomposition given below:

 $Pb(NO_3)_2 \xrightarrow{\Delta} A(s) + B(gas) + C(gas)$

When gas (B) is allowed to cool down below -11° C, then it is solidified and exists as ion pair. What is bond order of anion?

(b) Consider the following equation

 $H_2S_2O_7 + H_2O \longrightarrow (A)$

When compound (A) is allowed to react with P_2O_5 , compound (C) is formed. How many $d_{\pi}-p_{\pi}$ bonds are present in compound (C).

Note : There are two separate parts in this question i.e. part (a) & part (b). Suppose answer for part (a) is P and for part (b) is Q, then final answer of this question will be the form of P + Q in OMR Sheet.

- Q.108 3 moles of SiF_4 are reacted with water, then calculate how many total number of moles of Hexa fluoride silicic acid are formed in product.
- Q.109 How many of the following silicates have two O-atoms shared per tetrahedron? $Be_2(SiO_4), Ca_2Mg_5[(Si_4O_{11})_2](OH)_2, Sc_2(Si_2O_7), Ca_3(Si_3O_9), Be_3Al_2(Si_6O_{18}), Mg_2[(SiO_3)_2], Al_2(OH)_4 [Si_2O_5]$

Q.110 4HNO₃ + P₄O₁₀ $\xrightarrow{-10^{\circ}C}$ 2N₂O₅ + (HPO₃)₄ Find out the value of expression |x - y| for above reaction where, x = Maximum number of equal N – O bond length in N₂O₅. y = Difference of oxy linkages (P – O – P) between P₄O₁₀ and (HPO₃)₄.

Q.111 How many number of metals will produced NO gas with 20% dil HNO₃ Cu, Fe, Sn, Zn, Hg, Pb, Ag, Au

SUPER I	PROBLEMS IN INORGANIC CHEMISTRY	p-BLOCK ELEMENTS				
Q.112	How many of the following reactions would pr	oduce phosphine gas?				
	(a) $PH_4Cl + NaOH \longrightarrow$	(b) $P_4 + NaOH \xrightarrow{\Delta}$				
	(c) $Ca_3P_2 + H_2O \longrightarrow$	(d) $H_3PO_3 \xrightarrow{\Lambda}$				
	(e) $PCl_5 + H_2SO_4 \longrightarrow$	(f) $H_3PO_2 \xrightarrow{\Delta}$				
	(g) $P_2Cl_4 + H_2O \longrightarrow$	(h) AlP + $H_2SO_4 \longrightarrow$				
	(i) $P_4O_{10} + H_2O \longrightarrow$					
	If your answer is 3, write the answer as 00	03.				
Q.113	How many compounds or elements with PCl_5 Ag, Sn, H ₂ O, C ₂ H ₅ OH, CH ₃ COOH	give POCl ₃ as a minor, major or intermediate product?				
Q.114	How many statements are correct for the comp	blex entity?				
	(a) It is square planar (c) It has 4 chelates.	(d) It has two unnaired electrons.				
	(e) It exhibits geometrical isomerism	(f) $d_{x^2-y^2}$ orbital of Ni ²⁺ ion is involved in its formation.				
Q.115	The product formed in the reactions $2NO + Cl_2 \longrightarrow 2NOCl$ $6NO + 8BrF_3 \longrightarrow 6NO [BrF_4] + B$ have the following characteristics. NOCl gas boiling point : $-7^{\circ}C$ NO[BrF ₄] crystalline melting point 255°C con NO group bonded by a covalent bond & in wh	${\rm r}_2$ ductor in liquid state in which of these compounds is the nich it is in the form of NO^+ ion.				
Q.116	Which of the following oxides are amphoteric? MgO, CaO, FeO, Cu_2O , Ag_2O , Al_2O_3 , PbO. [If your answer is 2 then write the answer	, SnO, ZnO, BeO, Na ₂ O, Cs ₂ O as 0002.]				

SUPER	PROBLEMS	IN	INORGANIC	CHEMISTRY

Q.117 Two molecules of oil of vitriol (ic-acid of sulphur) $-H_2O + O \rightarrow (X)$. How many sp³ hybridised atoms are present in compound (X)?

[If your answer is 2 then write the answer as 0002.]

Q.118 How many S–O–S, S–S bonds and total number of lone pair are present respectively in the trimer of SO₃.

[If your answers are 2,4 and 10 respectively, write the answer as 2410.]

Q.119 Consider the following reaction:

 $H_3C - C \equiv CH + O_2 \xrightarrow{\Delta} (X) (gas) + (Y)$

When gas (X) reacts with NaOH, then compound (Z) is formed at room temperature, calculate the bond order of covalent bond present in anionic part of compound (Z).

Q.120 $S_2O_3^{2\Theta} + I_2 \longrightarrow I^{\Theta} + X$ (ion)

What is the average oxidation state of central atom of X ion.

[Multiply your answer by 100]

- Q.121 Find the number of moles of sodium hydroxide which would exactly neutralise all the acids produced by complete hydrolysis of one mole of SO_2Cl_2 . Assume 100% efficiency of all the reactions involved.
- Q.122 How many number of species give white turbidity with H_2S ? $KMnO_4/H^{\oplus}$, $K_2Cr_2O_7/H^{\oplus}$, KIO_3/H^{\oplus} , $FeCl_3$, Br_2 -water, conc. HNO_3 , conc. H_2SO_4 , H_2O_2
- Q.123 For reaction:

 $IO_3^-(aq) + I^-(aq) + H^+(aq) \longrightarrow X + H_2O$ Find out value of expression P – Q. where; P = Number of lone pairs in a molecule of 'X', Q = Number of covalent bond(s) in a molecule of X.

Q.124 Which of the following species are pseudohalides ?

 CN^{\ominus} , SCN^{\ominus} , OCN^{\ominus} , acac, SO_3^{2-} , $\text{S}_2\text{O}_3^{2-}$, en, NC^{\ominus} , TeCN^{\ominus} , N_3^{\ominus} , CO_3^{2-}

		-
Q.125	How many total number of folle	owing order are correct according to their given property -
	$BF_3 > BCl_3 > BBr_3 > BI_3$	\rightarrow Order of Polarity
	$BF_3 > BCl_3 > BBr_3 > BI_3$	\rightarrow Order of Bond angle
	$BF_3 < BCl_3 < BBr_3 < BI_3$	\rightarrow Order of M–X bond length
	$F^- > Cl^-$	\rightarrow Order of Lewis base character
	$F^- > Cl^-$	\rightarrow Order of Ionisation potential
	$F^- < Cl^-$	\rightarrow Order of Stability
	Cl > F	\rightarrow Order of Electron affinity
	$Cl_2 > F_2$	\rightarrow Order of Bond Energy
	HOF > HOCl	\rightarrow Order of Acidic character
	HF>HCl	\rightarrow Order of Acidic character

Q.126 Iodine dissolves in cyclohexane to give a violet solution when benzene, dioxan or pyridine are added to this solution, its color changes & the apparent dipole moment of this iodine in solution increases. The moments of dipolar species formed in presence of above 3 solvents are 1.8, 3 & 4.5 D respectively with the cyclohexane solution as reference zero. Explain.

p-BLOCK ELEMENTS

SUPER	PROE	BLEMS IN INORGANIC C	HEMISTRY					p-BLOCK ELE	EMENTS
			[AN	SWE	R KEY]				
	P			XERO	CISE-1	<u> </u>	a		2
Q.1	В	Q.2	D	Q.3	C	Q.4	C	Q.5	D
Q.6	D	Q.7	C	Q.8	D	Q.9	C	Q.10	D
Q.11	D	Q.12	A (Q.13	D	Q.14	В	Q.15	A
Q.16	С	Q.17	D	Q.18	C	Q.19	В	Q.20	A
Q.21	A	Q.22	C	Q.23	C	Q.24	D	Q.25	В
Q.26	D	Q.27	C	Q.28	D	Q.29	А	Q.30	D
Q.31	С	Q.32	A	Q.33	Α	Q.34	А	Q.35	D
Q.36	С	Q.37	C	Q.38	D	Q.39	А	Q.40	В
Q.41	D	Q.42	A	Q.43	C	Q.44	С	Q.45	С
Q.46	А	Q.47	В	Q.48	А	Q.49	А	Q.50	С
Q.51	D	Q.52	C	Q.53	А	Q.54	D	Q.55	С
Q.56	С	Q.57	D	Q.58	В	Q.59	С	Q.60	D
Q.61	С	Q.62	C	Q.63	D	Q.64	В	Q.65	С
Q.66	D	Q.67	C	Q.68	С	Q.69	А	Q.70	D
Q.71	Α	Q.72	B	Q.73	В	Q.74	А	Q.75	А
Q.76	В	Q.77	В	Q.78	В	Q.79	С	Q.80	В
Q.81	А	Q.82	D	Q.83	А	Q.84	А	Q.85	А
Q.86	А	Q.87	C	Q.88	С	Q.89	D	Q.90	D
Q.91	В	Q.92	A	Q.93	С	Q.94	В	Q.95	С
Q.96	В	Q.97	A	Q.98	В	Q.99	А	Q.100	А
Q.101	В	Q.102	C	Q.103	В	Q.104	В	Q.105	D
Q.106	A	Q.107	C	Q.108	А	Q.109	А	Q.110	D
Q.111	D	Q.112	D	Q.113	С	Q.114	D	Q.115	D
Q.116	D	Q.117	D	Q.118	D	Q.119	В	Q.120	А
Q.121	D	Q.122	В	Q.123	С	Q.124	D	Q.125	D
Q.126	A	Q.127	В	Q.128	D	Q.129	А	Q.130	С
Q.131	В	Q.132	A	Q.133	В	Q.134	С	Q.135	В
Q.136	A	Q.137	A	Q.138	В	Q.139	В	Q.140	D
Q.141	В	Q.142	A	Q.143	А	Q.144	С	Q.145	С
Q.146	В	Q.147	D	Q.148	С	Q.149	А	Q.150	В
Q.151	С	Q.152	D	Q.153	А	Q.154	В	Q.155	А
Q.156	В	Q.157	D	Q.158	D	Q.159	С	Q.160	С
Q.161	С	Q.162	C	Q.163	В	Q.164	D	Q.165	В
Q.166	D	Q.167	A	Q.168	D	Q.169	А	Q.170	В

SUPER PROBLEMS IN	I INORGANIC CHEMISTRY			p-BLOCK ELEMENTS
Q.171 D	Q.172 D	Q.173 B	Q.174 B	Q.175 C
Q.176 D	Q.177 C	Q.178 D	Q.179 C	Q.180 C
Q.181 C	Q.182 D	Q.183 D	Q.184 D	Q.185 C
Q.186 A	Q.187 B	Q.188 B	Q.189 A	Q.190 D
Q.191 B	Q.192 D	Q.193 C	Q.194 A	Q.195 C
Q.196 B	Q.197 A	Q.198 C	Q.199 A	Q.200 C
Q.201 C	Q.202 A	Q.203 C	Q.204 B	Q.205 C
Q.206 A	Q.207 D	Q.208 C	Q.209 C	Q.210 D
Q.211 A,D	Q.212 D	Q.213 D	Q.214 B	Q.215 A
Q.216 A	Q.217 D	Q.218 B	Q.219 D	Q.220 B
Q.221 D	Q.222 B	Q.223 A	Q.224 A	Q.225 B
Q.226 C	Q.227 D	Q.228 A	Q.229 C	Q.230 C
Q.231 C	Q.232 C	Q.233 C	Q.234 A	Q.235 C
Q.236 A	Q.237 A	Q.238 C	Q.239 B	Q.240 B
Q.241 D	Q.242 A	Q.243 D	Q.244 A	Q.245 D
Q.246 B	Q.247 B	Q.248 D	Q.249 A	Q.250 B
Q.251 B	Q.252 B	Q.253 D	Q.254 C	Q.255 D
Q.256 D	Q.257 D	Q.258 B	Q.259 C	Q.260 B
Q.261 C	Q.262 A			

SUPER F									EMENTS
			K	XER	CISE-2				
Q.1	ABCD	Q.2	ABCD	Q.3	ABC	Q.4	ABC	Q.5	ABC
Q.6	BC	Q.7	ABC	Q.8	ABCD	Q.9	ACD	Q.10	BCD
Q.11	ACD	Q.12	ABD	Q.13	ACD	Q.14	ABC	Q.15	ABCD
Q.16	BC	Q.17	AC	Q.18	BCD	Q.19	ABD	Q.20	ABD
Q.21	ABD	Q.22	ABC	Q.23	BCD	Q.24	ACD	Q.25	BCD
Q.26	BCD	Q.27	BCD	Q.28	BD	Q.29	ABC	Q.30	BCD
Q.31	BCD	Q.32	AB	Q.33	ABCD	Q.34	ABCD	Q.35	AC
Q.36	В	Q.37	BCD	Q.38	AB	Q.39	BCD	Q.40	AC
Q.41	AC	Q.42	ABC	Q.43	ACD	Q.44	В	Q.45	ABC
Q.46	ACD	Q.47	BCD	Q.48	AB	Q.49	ABD	Q.50	ABC
Q.51	ABCD	Q.52	ABD	Q.53	ABCD	Q.54	ABCD	Q.55	ABCD
Q.56	ABCD	Q.57	А	Q.58	А	Q.59	В	Q.60	D
Q.61	А	Q.62	В	Q.63	А	Q.64	В	Q.65	С
Q.66	В	Q.67	А	Q.68	В	Q.69	С	Q.70	С
Q.71	С	Q.72	В	Q.73	А	Q.74	А	Q.75	D
Q.76	А	Q.77	D	Q.78	В	Q.79	D	Q.80	В
Q.81	А	Q.82	А	Q.83	В	Q.84	С	Q.85	А
Q.86	D	Q.87	D	Q.88	В	Q.89	ABC	Q.90	ACD
Q.91	ABCD	Q.92	С	Q.93	D	Q.94	С	Q.95	А
Q.96	А								
Q.97	(P) 4 ; (Q) 2; (R) 3; (S) 1	Q.98	(A) s (B) r (C)	p (D) q			
Q.99	(A) q (B) p (C) r, s (D)) q	Q.100	(A) PQRS (B)	PRS (C	C) PRST (D) PR	S	
Q.101	(A) P, (B) RS,	(C) QR	S	Q.102	(A) PS (B) QS	5 (C) QS	ST (D) RS		
Q.103	I-b, II-c, III-a,	IV-d				Q.104	б	Q.105	0003
Q.106	0034	Q.107	3.33	Q.108	2	Q.109	3	Q.110	2
Q.111	4	Q.112	0006	Q.113	3	Q.114	0004		
Q.115	In NOCl, NO g	group bo	nded by a covale	ent bond	which reflects i	ts boilin	g point and in N	O[BrF ₄] it is in
	the form of NO	⁺ ion wh	ich reflects its m	nelting p	oint and conduc	tivity.			
Q.116	0005	Q.117	0006	Q.118	3018	Q.119	1.33	Q.120	250
Q.121	4	Q.122	8	Q.123	5	Q.124	б	Q.125	6
Q.126	Donar strength	increase	es in the order be	enzene <	dioxan < py. Gr	eater int	eration implies g	greater e	lectron
	transfer and her	nce a hig	gher dipole mom	ent					