UNIT - 4: QUADRATIC EQUATIONS

1. Roots of the equation

$$ax^2 + bx + c = 0 \qquad \Rightarrow \qquad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \text{ are } \alpha \text{ and } \beta$$

2. Sum and product of the roots:

$$S = \alpha + \beta = -\frac{b}{a};$$
 $P = \alpha\beta = \frac{c}{a}.$

3. To find the equation whose roots are α and β

$$x^2 - \mathbf{S}x + \mathbf{P} = \mathbf{0}$$

where S is sum and P is product of roots.

4. Nature of the roots

 $D = b^2 - 4ac$ where D is called discriminant.

- (a) If $b^2 4ac \ge 0$, roots are real
 - i) $b^2 4ac > 0$, roots are real and unequal.
 - ii) $b^2 4ac = 0$, roots are real an equal. In this case, each root = $-\frac{b}{ac}$

root =
$$-\frac{1}{2a}$$

- iii) $b^2 4ac =$ perfect square, roots are rational.
- iv) $b^2 4ac = not$ a perfect square, roots are irrational.
- (b) if $b^2 4ac < 0$, i.e., -ve, then $\sqrt{b^2 4ac}$ is imaginary. Therefore the roots are imaginary and unequal.

5. Symmetric function of the roots

If α and β are the roots of $ax^2 + bx + c = 0$, then

- i) $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$
- ii) $\alpha^2 + \beta^2 = (\alpha + \beta)^2 2\alpha\beta$
- iii) $\alpha \beta = \sqrt{(\alpha + \beta)^2 4\alpha\beta}$
- iv) $\alpha^2 \beta^2 = (\alpha + \beta)(\alpha \beta)$
- v) $\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} 3\alpha\beta(\alpha + \beta)$

vi)
$$\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2\alpha^2\beta^2$$

6. Condition for Common roots

Equations: $a_1x^2 + b_1x + c_1 = 0$ Roots: $a_2x^2 + b_2x + c_2 = 0$ Condition for one common root: $(c_1a_2 - c_2a_1)^2 = (b_1c_2 - b_2c_1)(a_1b_2 - a_2b_1)$

Condition for both the roots to be common:

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

- ⇒ **Note:** If the coefficient of x^2 in both the equations be unity, then the value of common root is obtained by subtracting their equations.
- 7. Inequalities

a)	$x^2 > a^2$ is positive	if $\langle -a \text{ or } x \rangle a$
b)	$x^2 < a^2$	if $-a < x < a$
c)	$a^2 < x^2 < b^2$ double inequality	\therefore <i>a</i> < <i>x</i> < <i>b</i> or - <i>b</i> < <i>x</i> <-

8. In an inequality you can always multiply or divide by a +ve quantity but not by a -ve quantity. Multiplying by a -ve quantity or taking reciprocal will reverse the inequality.

a.

e.g., $a > b \Rightarrow -a < -b$ or $\frac{1}{a} < \frac{1}{b}$.