Continuity and Differentiability

Question 1: The function $f(x) = [\ln(1+ax)-\ln(1-bx)]/x$, not defined at x=0. The value should be assigned to f at x=0, so that it is continuous at x=0, is

- (a) a+b
- (b) a-b
- (c) b-a
- (d) ln a+ ln b

Question 2: If $x \sin(a+y) = \sin y$, then dy/dx is equal to

- (a) $[\sin^2(a+y)]/\sin a$
- (b) $\sin a / [\sin^2(a+y)]$
- (c) $[\sin(a+y)]/\sin a$
- (d) $\sin a / [\sin(a+y)]$

Question 3: The function f(x) = [x], where [x] denotes the greatest integer function is continuous at:

- (a) 4
- (b) -2
- (c) 1
- (d) 1.5

Question 4: Consider the following in respect of the function $f(x) = 10^x$:

- 1. Its domain is (∞, ∞)
- 2. It is a continuous function
- 3. It is differentiable at x = 0

Which of the above statements are correct?

- (a) 1 and 2 only
- (b) 2 and 3 only

- (c) 1 and 3 only
- (d) 1, 2 and 3

Question 5: Let $f(x) = |\sin x|$. Then

- (a) f is everywhere differentiable
- (b) f is everywhere continuous but not differentiable at $x = n\pi$, $n \in Z$.
- (c) f is everywhere continuous but not differentiable at x = (2n + 1), $n \in \mathbb{Z}$.
- (d) none of these

Question 6: If the function $f(x) = \frac{(2x-\sin^{-1}x)}{(2x+\tan^{-1}x)}$ is continuous at each point of its domain, then the value of f(0) is

- (a) 1/3
- (b) -1/3
- (c) 2/3
- (d)2

Question 7:

If y = log $(\frac{1-x^2}{1+x^2})$ then $\frac{dy}{dx}$ is equal to:

- (a) $\frac{4x^3}{1-x^4}$ (b) $\frac{-4x}{1-x^4}$
- (c) $\frac{1}{4-x^4}$ (d) $\frac{-4x^3}{1-x^4}$

Answer: (b) $\frac{-4x}{1-x^4}$

Question 8:

If y = x tan y, then
$$\frac{dy}{dx}$$
 = (a) $\frac{tanx}{x-x^2-y^2}$ (b) $\frac{y}{x-x^2-y^2}$ (c) $\frac{tany}{y-x}$ (d) $\frac{tanx}{x-y^2}$

(a)
$$\frac{tanx}{x-x^2-y^2}$$

(b)
$$\frac{y}{x - x^2 - y^2}$$

(c)
$$\frac{tany}{y-x}$$

(d)
$$\frac{tanx}{x-y^2}$$

Answer: (b)
$$\frac{y}{x-x^2-y^2}$$

Question 9: The value of c in Rolle's theorem for the function, $f(x) = \sin 2x$ in $[0, \pi/2]$ is

(a)
$$\pi/4$$

(b)
$$\pi/6$$

(c)
$$\pi/2$$

(d)
$$\pi/3$$

Question 10:

If
$$\sec(\frac{x^2-2x}{x^2+1})$$
 – y then $\frac{dy}{dx}$ is equal to
(a) $\frac{y*2}{x^2}$
(b) $\frac{2y\sqrt{y^2-1}(x^2+x-1)}{(x^2+1)^2}$
(c) $\frac{(x^2+x-1)}{y\sqrt{y^2-1}}$

(a)
$$\frac{y*2}{x^2}$$

(b)
$$\frac{2y\sqrt{y^2-1}(x^2+x-1)}{(x^2+1)^2}$$

(c)
$$\frac{(x^2+x-1)}{y\sqrt{y^2-1}}$$

(d)
$$\frac{x^2-y^2}{x^2+y^2}$$

Answer: (b)
$$\frac{2y\sqrt{y^2-1}(x^2+x-1)}{(x^2+1)^2}$$

Question Number	Answers
1	(a) a+b

2	(a) $[\sin^2(a+y)]/\sin a$
3	(d) 1.5
4	(d) 1, 2 and 3
5	(b) f is everywhere continuous but not differentiable at $x = n\pi$, $n \in Z$.
6	(a) 1/3
7	(b)
8	(b)
9	Option (a) π/4
10	(b)